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Limiting response time of double-barrier resonant tunneling structures
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The lifetime of the lowest quasibound state localized within the quantum-we11 region of a double-

barrier resonant tunneling structure is calculated. The results are used to estimate the limiting

response time for resonant transport in a GaAs/Al„Ga& „As structure.

I. INTRODUCTION

The experimental results of Sollner et al. ' have led to a
renewal of interest in the phenomenon of resonant tun-
neling. Epitaxially grown GaAs/Al, Gai „As double-
barrier resonant tunneling (DBRT) structures, similar to
those used by Sollner et al. , are now the subject of exten-
sive investigation at many laboratories. Growth
methods, 2 barrier widths, quantum-well (QW) composi-
tion, " spacer-layer width, etc. , are all being varied in or-
der to investigate their impact on resulting device I-V
characteristics. Despite these efforts, the very origin of
the negative differential resistance seen in the I-V charac-
teristics of these systems remains. the subject of contro-
versy. 9 Some feel that Fabry-Perot-type resonances are
needed to explain the observations, while others believe
that kinematic constraints associated with tunneling from
a 3D to a 2D system are all that is required (sequential
tunneling model). More work is needed to clarify this
matter.

In this Brief Report we calculate, within the context of
a simple model, the limiting response time r of a DBRT
structure where a substantial fraction of the electrons
comprising the current can be associated with states
satisfying a Fabry-Perot-type resonance condition. We
feel that measured intrinsic response times substantially
lower than our estimates would argue in favor of sequen-
tial tunneling models where, in principle, limiting
response times could be much shorter. In the next sec-
tion we discuss the conceptual framework of our calcula-
tion and describe some of its details. We then use our re-
sults to estimate ~ for actual GaAs/Al„Ga, „As DBRT
structures.

II. CALCULATION

One of the most attractive features of DBRT structures
is their short response times. A significant ac response
has been measured at frequencies up to 2.5 THz, ' sug-
gesting response times shorter than 10 "sec. When the
enhanced current in the I-V characteristic can be attri-
buted to a Fabry-Perot-type resonance, the structure's in-
trinsic limiting response time v can be estimated. Consid-
er such a structure biased just below the lowest resonance
voltage V, . A substantial fraction of the electrons con-
tributing to the steady current in this case are in wave
functions which are coherent over the entire structure's
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width. Electrons in such states benefit from the reinforc-
ing nature of multiple reffections and are able to tunnel
through the structure with up to unity transmission.
However, as pointed out by Ricco and Azbel, ' the very
electrons which benefft the most from the effects of
wave-function coherence are also those primarily aff'ected

by the delay times connected with the resonance. This
means that if one applies a small-amplitude ac voltage
5V(co) to a DBRT structure biased just below V„, a
signiffcant linear current response 5I(co) will cease to ex-
ist for frequencies much greater than 1/~. " In fact, nu-
merical studies of the temporal evolution of electron
wave packets through DBRT-structure model potentials
show that packets satisfying the resonance condition ex-
perience significant time delays in their transmission. ' '
Harada and Kuroda'i estimated this delay time by study-
ing the time dependence of the wave-function amplitude
inside the QW region of a DBRT structure while an in-
cident wave packet propagated through the system.
External fields and the difFerent effective masses in the
QW and barrier regions of the structure were ignored in
their calculation. In the work described below, we ap-
proach the problem of calculating the resonance lifetime
from a difFerent (although standard' ) perspective. First,
an electron is placed in an initial state localized within
the QW region of a DBRT structure. This state is ex-
panded in the complete set of time-dependent eigenstates
of the system, states which properly account for its
effective-mass profile. After a time r elapses, the evolved
state is projected back onto the initial state. From the
long-time behavior of this projection coefficient, an ana-
lytic expression for the lifetime is obtained. The expres-
sion is then evaluated for a number of difFerent
GaAs/Al„Gai „As DBRT structures. When the
effective-mass diference between the QW region and bar-
rier regions is ignored, our results agree with earlier
work. ' For simplicity, we ignore the effects of an exter-
nally applied 6eld in this calculation. A calculation in-
chjding these el'ects is deferred to future work.

In each semiconductor layer comprising the structure,
a one-band efective-mass Hamiltonian can be written in
the form

where m, is the conduction-band effective mass charac-
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terizing the layer (say, m, in the QW region and beyond

the barriers, and m2 in the barrier regions), and the po-
tential V(z), is given by

V( )
Vo, if a ( I

z
I
(a(1+(),

0, otherwise .
In this expression, g is the width of the barriers (in units
of a) and Vo is the energy difference between the
conduction-band edges in the two difkrent semiconduc-
tors. Since H is translationally invariant in the x and y
directions, its eigenstates can be written in the form

where E is the energy eigenvalue and k —=k„+k . We
choose vanishing boundary conditions for P at z = kL/2,
force P to be continuous at z =+a and z =ka(1+ /), and
require that m, 'dP(z}/dz be continuous at the interface
coordinates z =ka and z =+a(1+/). ' The normahzed
solutions to (3) satisfying the specified boundary condi-
tions are easily found; the even functions inside the QW
region are given by

P(z) =C (q) cos(qz),

where the coefficient C(q) satisfies the relation

g{r ) =—exp(ik„x +ikey )P(z),
1 hm —

I C(q) I
=F(qa)

a/L —+0 2
(5)

where periodic boundary conditions [f{x+L,y, z)
=P( x, yz), etc.] along the x and y directions lead to the
identification k, =2irn„ /L, with n„~ =0,+1,+2, . . . ,
etc. Substituting {2}into (1) leads to the reduced equation

dzy(z) 2m,

dzz $z 2tn
+ E— —V(z) f(z)=0,

with

QF(u)=

The function D(u) is given by

QD(u)=u2+, '[py+(1 —p}uz] cos2(u)+ sin (u) I cosh[2(ia(u)] —1I
p(y —u')

[py+(1 —JM)u ]u sin(2u) sinh[2(io(u)],
2pia(u)

where )u =—m, /mz, the function ia (u) is given by
I /2

ia(u)—:
p

and y is defined by p=y —{1—p, }uz. Here y is the di-
mensionless potential strength given by y

—=2m, Voa /A'2,

and U =—ka is the magnitude of the transverse wave vector
characterizing the state. The allowed values for q in (4)
are given by the roots of a transcendental equation; how-

ever, in the limit when a/L~O the root density ap-
proaches 2m/L and the equation's solution becomes un-

necessary. '
%'e are now in a position to investigate the decay of a

state initially localized within the QW region. Since
sharp resonances are best viewed from the infinite y (or
infinite g) limit, it is reasonable to let $0 (g at t =0) be
the ground state corresponding to y= ao, normalized to
unity within the QW region. ' Setting the transverse
wave vector to (k„,k ), we let

$0(r) =—exp(ik„x+ik~y) —cos(nz /2a)1 .— .— j

for Iz I
(a, (9)

and $0——0 for
I
z

I ~ a. In order to determine how long
the electron stays inside the QW region, we calculate the
probabihty amplitude A(t) for ffnding the electron in the
initial state fo after a time t has elapsed. This is given by

cos (qa)

(qa n /2)z(qa +—n l2)

which, when used in (10},gives

cos uA(t)= —J du F(u)
(u —m/2)2(u +m/2)

X exp( —iA, u ) . (12)

To obtain (12), we made use of the relation

g ~(L/2m ) J dq and for convenience let k=0 (i.e., we

set U =0). ' The variable I, is related to t through the ex-
pression A= St /mro, w,

h—ere so= 16m, a /nA is —the period
of the lowest bound state when y= m. To compute the
integral in (12), we first replace exp( —iA, u ) with its
Fourier transform. This leads to the expression

&(t)= g exp( ito„ —t)
I & k q u I

id{'0& I

'
k QiP

where p labels the parity of the state and

coi, =(R/2m&)(k +q ). Since $0 is even, it will have a

projection onto only the even states given in (4). Further-

more, only states with k=(k„,k~) will contribute to the

sum in (10}since transverse momentum is a good quan-

tum number. A sin1ple integration leads to the result

0& I
=+a

I C(q)
I
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where f(u } is defined by

(13}

A(r)= exp( —in/4) J dk exp(ik /4A)
00

~f du f(u)exp(iku),

to oo. After inserting this expansion for f into (13), using
the fact that f (0)=0 for positive y, and performing the
required integrations, we obtain

A(t)= grrb, exp( —iA, u,i )
$, 0'

Xerfc[rr A,u, exp( i n—/4) ]

f(u)=—F(u) 2(u —n /2) (u +n'/2)

The integral over u in (13) can be done formally by noting
that f (u) has an infinite sequence of simple poles in the
complex plane and is bounded at infinity. This fact al-

lows us to use the Mittag-IgSer theorem2e to replace

f (u) by the expansion

f(u)=f(0)+ g ' +
"s,u ~s, n

L

where Iu, I are the simple poles of f and jb, ] are the
corresponding residues. In labeling these poles {and resi-
dues) we make use of the fact that for each pole z off in
the first quadrant of the u plane one can find associated
poles at —z', —z, and z'. Hence, positive increasing s
labels the poles in the first quadrant according to the or-
de.ing I u, , I & I ui, , I & I u, , I &, e«., while a i.
+ 1 or —1, depending on whether the pole is in the upper
or lower half plane, respectively. The three poles associ-
ated with u, „located in the second, third, and fourth
quadrants, are then denoted by u, &, u, &, and u,
respectively. For purposes of iHustration, the first few
poles of f (u) are plotted in Fig. 1 for the case y =10,
/=0. 15, and )M, =0.73. We also superimposed on the
same plot the value of F(u ) as a function of real u for this
parameter set. As can be seen in the Sgure, each
complex-conjugate pair of poles in F {for values of real u

plotted) leads to a I.orentzian-type feature in F. These
I.orentzians correspond to the (even} quasi-bound-states
between the barriers; they approach 5 functions as y goes

7r3/2 b,+ exp( in—/4) g
$,0 S, CT

(14)

Expression (14) gives the amplitude for finding the elec-
tron in the state $0 after a time t has elapsed. For large
times, t »ro„we expect A(t) to decay exponentially with
time. In order to extract the lifetime associated with the
decay, we replace the complementary error functions in
(14) by their asymptotic expansions. ' This replacement
produces a number of cancellations and leads to the form

A(t) —2iir g b, iexp( —iA, u,', ),
k, y)1

(15)

r= rrro/32aP . (18)

We have computed a and p from expression (7) and
have plotted in Fig. 2 the logarithm of r/ro as a function

where the sum in (15) is restricted to the poles off which
lie in the first quadrant of the complex plane; symmetry
relations between the poles and their residues in the other
quadrants have been used to obtain this result. Exam-
ination of this expression shows that the largest contribu-
tion to A for A, »1 comes from the pole with the small-
est imaginary part, the pole corresponding to the lowest
quasi-bound-state in the QW region. If we approximate
the sum by this term and define u, , =a+ ip, we obtain

A(t) —2in b~ i exp[ —iA, (a —p —2iap)] . (16)
A. gal

The probability P(t) =
I
A(t)

I

~ then becomes

P(t) —4n
I b, , I

exp( t/r), — (17)
f )&To

where the lifetime of the quasi-bound-state is given by
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FIG. 1. The simple poles off(u } in the first quadrant of the
u plane (for the case y = 10, g'=0. 15, and @=0.73}are marked
by darkened circles. (The imaginary part of the poles is given
by the vertical axis on the right. ) The function F(u} [see Eq.
(6}]is also plotted vs real u for the same parameter set.

0.0 2.0 3.0 4.0 5.0 6.0

FIG. 2. The logarithm of rlro is plotted as a function of g for
various conduction-band discontinuities Vo.
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of g for a number of different barrier heights Vo. To
compare these results with experiment, we choose param-

eters consistent with the work of Sollner et al. ;
'

m, =0.065mo and a =25.4 A l~ads to vo ——1.89)(10
sec. If we furthermore let V0=0.23 eV, mz ——0.0914mo

(p =0.73), and /=2. 0, we obtain a lifetime
~=2.05 && 10 ' sec. This lifetime corresponds to an in-

trinsic cutofF frequency of 0.49 THz, a value which is sub-

stantially smaller than the 2.5 THz frequency quoted ear-

lier. ' %e are not in a position to infer anything from this

difFerence since we ignored the effects of an external field

in our work.

III. CONCLUDING REMARKS

We have calculated the lifetime of the lowest quasi-

bound-state localized between the barriers of a DBRT

structure. A simpli6ed view of the barrier structure was
employed, ignoring the e8ects of other bands, band non-
parabolicity, and most importantly, an applied electric
6eld. Since an applied 6eld will modify the shape of the
potential acting upon an electron, it may have a
significant effect on the lifetime. (We suspect this to be
the case for the Sollner structure. ) In circumstances
where the efFect of the 6eld cannot be ignored, one should
regard our estimates as upper limits on the lifetime since
an external Geld would tend to decrease the structure's
ability to con5ne charge.
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