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Lattice vibrations in thin-film carbon: Electron-Ra3 leigh-wave interaction
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Sound-wave propagation in thin-Slm carbon is investigated in the long-wavelength approxima-
tion. The Rayleigh wave, with a small damping constant and with polarization along the e axis, has
a small sound velocity u& -10 cm/sec if C~ is small. Since the Rayleigh-wave phonons interacting
with carriers have small energies (Lo/kz 1 IQ, these phonons are highly excited even at helium

temperature and they scatter carriers. Of particular interest for transport properties is the carrier
relaxation time ~z -10 '2 sec for Nm thickness d & 100 A at T & 1 K. If the sample is assumed to
be composed of an aggregate of many thin Slms, and each 61m weakly couples elastically with the
others, the present theory is applicable to a sample with bulk thickness. The electron-Rayleigh-
wave interaction is responsible for the unusual temperature dependence of the resistivity observed
for a polyacrylonitrile-based aber heat-treated to -1300'C. A comment is given about one possible
mechanism for the anomalous linear temperature-dependent speciSc heat observed in some kinds of
carbons and in polycrystalline graphite.

I. INTRODUCTION

The lattice dynamics for single-crystal graphite or
highly oriented pyrolytic graphite (HOPG} has been ex-
tensively studied experimentally and theoretically. '

The lattice properties of pregraphitic carbons are es-
timated from the corresponding properties for graphite
by introducing the elastic constants for the pregraphitic
carbons and/or by considering finite-size effects and crys-
tallite orientation effects.

In this article it is pointed out that sound-wave propa-
gation in thin-film carbons takes place in a difFerent way
from that in bulk graphite. If the sample is thin enough
along the c axis ( g 100 A), the Rayleigh wave polarized
along the c axis propagates with little damping and its
sound velocity and frequency are given by
Ua -(C44/p )'~ and co=uttq, where q =q, +q„and p
is the density of the sample. C44 is related to the shearing
force and is very sensitive to crystal perfection, especially
to the density of stacking faults. The magnitude of C44
thus ranges from 4.5 X 10'o dyn/cm for a well-
graphitized crystal ' to 7X 10 dyn/cmt for pregraphitic
carbons with a high density of stacking f(tults. ' A typi-
cal value of the Fermi wave vector kF for the pregraphi-
tic carbons, which are described by a two-dimensional
band, is at most —106 cm '. Accordingly, the energies
of the Rayleigh-wave phonons interacting with the car-
riers are

Etc'/kit -0.4 K,

d ~, where d is the sample thickness. If the sample is as-
sumed to be composed of an aggregation of many thin
films and each film weakly couples elastically with the
others, the present theory is applicable to a sample with
bulk thickness.

In Sec. II the lattice vibrations of thin-film graphite are
studied in the long-wavelength approximation, imposing
boundary conditions on the sample surface. Two cases
are studied: (i) the semi-infinite case and (ii} the thin-film
case in Sec. III. The electron-Rayleigh-wave phonon in-
teraction is treated in Sec. IV for the thin-film case and
the carrier relaxation rate is calculated. This calculation
is then applied to the anomalous temperature-dependent
resistivity observed in polyacrylonitrile (PAN} fibers at
low temperatures. ' '" There is a brief discussion in Sec.
V about one possible mechanism for the anomalous large
linear temperature-dependent specific heat observed in
some kinds of carbons and polycrystalline graphite. '

The contribution from the Rayleigh-wave phonons is ex-
pected to be responsible for the specific-heat anomaly at
low temperature. A summary is given in Sec. VI.

II. LA'x-l. FACE DYNAMICS
IN THIN-FILM CARSONS

The theory of the lattice vibrations in graphite was first
proposed by Kornatsu-Nagamiya and Komatsu' in con-
nection arith the lo~-temperature speci5c heat. The
equations for the lattice vibrations are given by

where the values C~ ——7& 10 dyn/crn, p~ =2.26 g/cm,
and q =10 cm ' are employed. This imphes that the
Rayleigh-a&ave phonons interacting arith carriers are
highly excited even at —1 K. This is a striking effect,
and the carrier scattering rate by these phonons at —1 K
is comparable to the values of the phonon scattering rate
in bulk graphite at -50 K. This rate is proportional to
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where u. , U. , and N„r epr~ ent the displacement of a
point (x,y) in the nth graphite layer. U& and U, are the
longitudinal and transverse sound wave velocities associ-
ated with the in-plane vibration, U, the sound velocity re-
lated to the out-of-plane vibration, e the Poisson ratio
given by C,2/C», co the interlayer distance, and I, is the
two-dimensional I.aplacian B2/Bx 2+B2/By 2, while a is a
constant related to the bending modulus of the graphite
layers and g= C44/p

In the long-wavelength approximation Eqs.
(2.1a}-(2.1c) become

u U
U = V exp[As+i (q,x+q y —r )] .
m W'

(2.3)

As will be mentioned in Sec. V, the term —a 6 N in Eq.
(2.2c} is responsible for the anomalous large linear
temperature-dependent specific heat observed in some
kinds of carbons and polycrystalline graphite. ' Howev-
er, this term is negligibly small compared with the other
terms for q —106 cm ', and can be neglected in calculat-
ing the electron-Rayleigh-wave interaction.

Solutions for Eqs. (2.2a)-(2.2c) are assumed in the
form
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I

Inserting Eq. (2.3) into Eqs. (2.2a)-(2.2c), we obtain

U
M V =0,

where

(2.4)
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i (A,qy CO +Uzi, —gq

By introducing the transformation matrix:

n„n 0
—n n„0

0 0 1

n„= „q/qyi„=q /q, (2.6)

the transformed matrix M = TMT ' becomes

~2+p 2
U 2q 2

~2+@2 U2q2 (2.7)

The secular equation detM =0 yields the algebraic equation

(aP+giL —U, q )[(@@2+A —UI q )(co +U, A, —gq )+g A, q ]=0. (2.8)
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Equation (2.8) implies that only the longitudinal in-plane
vibration couples with the out-of-plane vibration. The
same situation is realized in the bulk sample. '

The sample is bounded at z =0 and z = —d along the c
axis, and its extension in the xy-plane is assumed to be
infinite. To solve Eq. (2.4), two limiting boundary condi-
tions are imposed at z =0 and z = —d: (i) the strain-free
condition e„,=e„,=e =0; (ii) the stress-free condition

T„,=T~ =T =0. Both boundary conditions give rise to
the same equations:

au aN aU aN aN
az+ ax

= ' az+ ay
= '

az
= (2.9)

at z =0 and z = —d. It is easily shown that the Rayleigh
wave propagation (A, real) does not take place in the un-
coupled mode which corresponds to the in-plane trans-
verse vibration. Namely, we have

tv =gqg +Ut q and A, = lqg (2.10)

To obtain solutions for the Rayleigh-wave propagation,
Eq. (2.3) is assumed to be in the form

u U
v = V exp[As+i(qx a)t)] . — (2.11)
m 8'

Equation (2.11)does not lack generality. Substituting Eq.
(2.11) into Eq. (2.2b), we obtain

C~ (or g} is very sensitive to crystal perfection, especially

to the density of stacking faults, while C23 is approxi-
mately independent of crystal perfection. From Eq.
(2.16) we have

a =u, /g)" =33.3,
P=(g—u„)'i /u, (g'i /U, =0.16,

y =g/u, =0.025,

5=V, /g=az,

(2.17)

Pt)-ay/5=) ~ /uiu, =7.53X10 (2.19)

III. RAYLEIGH-%AVE PROPAGM'ION

where /=0. 40X10' cm /sec, which is a typical value
for pregraphitic carbons with a high density of stacking
faults. '"

By inserting the displacement vector (u, O, N) given by
Eq. (2.15) into the boundary condition Eq. (2.9) and by el-
iminating A, 8, C, and D, we obtain the following condi-
tion:

(p p )(e2aqd 1 )(ezt)qd 1 ) 4pp (eaqd et)qd)2 ()

(2.18)
where

and Eq. (2.4) becotnes

(t0 +Pz ui—qz)U+i(AqW 0=,

iP,qU+(riP+U, A, —gq )W=O .

(2.12)

(2.13) uii -(g—pt)u, )' =g' =6.3X10 cm/sec, (3.1)

In the following we consider two cases: (i) the semi-
infinite case d = tx), and (ii) the thin-film case with qd l.

(i) d = oc. the setni inj7nite c-ase In this. limit, Eq. (2.18)
leads to P =Pi) Then, w.e have

Two positive roots }),i and A,z exist, if the Rayleigh-wave
velocity ua ——c0/q satisfies the condition Ua jui ~g /Vi =

30 ((11/2 (3.2)

(2.14}

and the displacement vector (u, O, N) becomes

u =[ia(Ae q'+Ce «')

+ p(geP«g+~e —iiqz}]ei (qx rut)—
N =[y(Ae q' —Ce q')

+g getiqz De —Pqz)]eitqx rut)—
(2.15)

where (A, , /q) =a, (Az jq) =p . The coefficients a, p, y,
and 5 are complicated functions of u, , u„and g, while A,
8, C, D and Uz are determined from the boundary condi-
tions given by Eq. (2.9). To estimate a, p, y, and 5, the
following set of parameters is employed: ' '

ui
—(C»/p )'~2=2. 10X10 cm /sec,

p =2.26 g/cm

u, =[(C» —C,z)/2p ]'i =1.39&(10 cm/sec,

In this case the terms including e q' and e @' in Eq.
(2.15) disappear, and u and N become

u=ig(aeaqz p e ' )etiqx —~t)P qz
0

g(p aqz e 0 )eitqx ror)—P qz
0 (3.3)

Equation (3.3) approximately satisfies the boundary con-
dition Eq. (2.9), since pt)/a=2&(10

As is shown in Eq. (3.3}, u and N are composed of two
diferent terms: one is a rapidly damping term with e~'

Poqz
and the other is a slowly damping wave with e . This
situation re6ects the highly anisotropic elastic properties
in graphite:

ui »ug »g ~ (3.4)

The above results are easily extended to the case with a
wave vector q=(q„,q }. In terms of the phonon opera-
tors, Eq. (3.3) is rewritten as

=i g +B (ae «' pve
' )—

u (C3g2/p~)' =4.0X10 cm /sec,

C44 ——4.5/10' to 0.7&10' dyn jcrn
X ( b t i (ti r rut ) b

—i tq r—tot)y. —(3.5)
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w=an +8 (p()e q' —ae '
)

r z. f —i(q r —cot), s. i(q r —cot) y (3.6)

where n=(0, 0, 1), and b and b denote the phonon
operators. 8 is determined by the condition +b i(q r .co—t)] (3.13)

( u, U, w ) are approximately symmetric around z = —d l2
because of the condition pqd «1. Inspection of Eqs.
(3.11}and (3.12) therefore yields

u, U «w= —a +8 coshPqz[b e
q

2 f «2 ( Iu I'+ IU I'+ Iw I')=&~,(b,'b, +-,') then, we obtain

Then, we have

0Bq- 4
Pm "s~ a

' 1/2

(3.8)

1

a 2p
L

(3.14)

where 0 is the sample volume.

IV. KLECMON-RAVLEIGH-%AVE INTERACTION

where S is the surface area of the sample.
(ii) d jl nite: the thin jllm case It .is not easy to obtain

an expression for ulcc in the general case with an arbitrary
qd value. However, it is possible to solve for Ua if the
conditions of pqd «1 and qd & 1 are satisfied. By using
the conditions aqd » 1 »pqd and qd & 1, Eqs. (2.17) and
(2.1 8) yield (4.1}grad UJ„,

JrP2
' 1/2

2poUz pop=
qd qd

(3.9) where

The electron-Rayleigh-wave phonon interaction is cal-
culated according to the procedure employed by Sugihara
and Sato' in the study of the electrical conductivity of
graphite.

If we assume that the ions are displaced without being
deformed, the perturbing potential is given by

()x -g' is the same as the value for d = zc. Therefore,
in samples with a high density of stacking faults (small g
or C»4), the Rayleigh wave propagates with a small sound
velocity which is much smaller than U, =4.0X 10
cmlsec. The displacements u and w are given by

u =i g (ae aqz ae —aq(z+d)

Pocosh—Pqz —P sinhPqz )e 'q"

g'J„——(u(RJq), U(R)„),w(Ri„)), U„=U(r R,„) . —

(4 2)

Here, j represents the jth unit cell and (M the nonequiva-
lent carbon atoms in the unit cell. U „is the potential en-

ergy of an electron due to the ion (j,p). In the present
problem

(4.3)

w =a 8 [p eaq' poe a—q" +~) (3.10)

—a coshPqz (aPolP—) sinhPqz ]e"q'

The first and second terms in parentheses in Eqs. (3.10)
represent rapidly damped waves and the third and fourth
terms are very weakly damped. In terms of the phonon
operators bq and b», the displacement vectors are given
by

(aeaqz ae —aq(z+d)

w(g) = —az g g coshPqz(be t(q r ~—')+b —et(q. r —~t))

(4.4)

where R=(r, z) [see Eq. (3.13)]. The matrix elements of
%' are proportional to the following type of integral:

~

~

~

kiq R. Pqs.g e '"e '"nqgrad UJ„+t kdr, (4.5)
JzP

—Po cosllPqz —P slllhPqz )

i(q r rut) —
b i(—q r cot))—

q8 (3.11)

where t and t' are suSxes specifying electron and hole
states and q=(q„,q, 0), n =(0,0, 1). The expression
(4.5) then becomes'

[p eaqz p e
—aq(z+d)

q

acoshPqz (aP()I—P) sinhPqz ]—
in .(k —k'—)

, D5
d Pq+l(k —k') a "a (4.6)

X(bt —t (q r a&t)+b i'(q r —rut)). —
q8 (3.12)

where q= (q„,q„,O) and n =(0,0, 1). It would appear that
Eqs. (3.11) and (3.12) do not seem to be symmetrical
around z = —d/2. However, this is not the case, since D =3.7 eV . (4.7)

where k, =(k„,k, O) and k=(k„k, ). Here D is the
electron-phonon interaction associated with the out-of-
plane vibration in bulk graphite and was estimated to
be16
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From Eq. (3.9) we have

Pq —10 cm {4.8)

lD
~

k —k', kq
' (4.9)

for d=lOA and q=10 cm '. This value is much
smaller than k, —k,' except for the special case
k, —k,' =0; then the expression (4.6) becomes

( I /r)„„;d &-10' sec (4.17)

which is not an unreasonable value for pregraphitic car-
bons. The decrease of dR(T)/dT with increasing tem-
perature below T,„ is due to an increase in carrier densi-
ty. Since the Fermi energy for these samples is low, an
increase in carrier concentration is expected below -30
K. The carrier density increase above T,„ is a dominant

Nq-Nq+ 1 =k' T/Acoq, (4.11)

is employed, since typical energies for the Rayleigh-wave
phonons which interact with carriers are

Thus, the relaxation rate due to the scattering by the
Rayleigh-wave phonons is obtained as follows:

2mk~ TD
1 — 5(Ek Ek ), —

„(E„) @ u„'d'n „q'
(4.10)

where the high-temperature approximation for phonons

t.os—

Ct

0.95-

20

500

I

40 60
)

and
AS 4-%

Ace~/ks=huzq/k&-4. 8X10 q g 1 K,
for q 5 10 cm '. From Eqs. {4.10}and (4.11) we obtain

1 ka~ 1 D
~a (E) 4' cu E u„d

(4.12)

(4.13}

D =3.7 eV, p =2.26 g/cm, cu=3. 35 A

where cu denotes the interlayer spacing. In deriving Eq.
(4.13) the two-dimensional dispersion E =@ok, where
ps=(3' /2)yua is employed. Inserting

090 '

0 50 100 150 200 250 500
Temperature ( K)

I t 1 t

(4.14)

E =0.01 eV, uz ——6.3X10 cm/sec, d =70 A

into Eq. (4.13), one obtains

=4.8X10"T/sec K . (4.15}

R(20 K)—R (10 K) =a few percent . {4.16)

This magnitude is expected if the relaxation rate associat-
ed with the residual resistance R ( T =0}has a value

It should be noted that I/~z at T = 1 K is comparable to
the scattering rate due to phonons in single-crystal graph-
ite at T-50 K.' Thus, the Rayleigh-wave interaction
produces a striking efFect, and this efFect is expected to be
responsible for the unusual low-temperature electrical
resistivity behavior of PAN-based 6bers, ' " which is
shown in Figs. 1(a) and 1(b). At low temperatures the
resistivity increases with temperature and exhibits a max-
imum between 30 and 35 K. The resistivity decrease
above T~,„ is ascribed to an increase in carrier density.
It is unusual that the resistivity has a signi6cant tempera-
ture dependence even at liquid-helium temperature.
From Figs. 1(a}and 1(b) we have that the ratio

).16

OJ

~ t.12

CC

1.08

4-W

1.04
0 40 80 120 160 200 240 280

Temperature ( K)

FIG. 1. (a) The variation with temperature of the reduced
resistivity of carbon 6bers. The inset shows the temperature
dependence dR/dT belo~ 50 K. Celion 300 is a PAN-based
fiber with heat-treatment temperature (HTT) —1300'C. PAN-
based fibers manufactured by Hercules Powder Co. (Magnamite
AS 4-%') and one from Union Carbide Corp. (Thornel 300) ex-
hibit a similar behavior (Ref. 10). (b) The variation of reduced
resistance R (T)/R (290 K) for several PAN-based Abers with
H I l -1300'C. The resistance continues to fall with increasing
slope down to the lowest measurement temperature (-1.5 K)
(Ref. 11).
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factor which controls the temperature dependence of the
resistivity [see Figs. 1(a) and 1(b)].

The electron-Rayleigh-wave interaction is also respon-
sible for the temperature-dependent negative magne-
toresistance Of pregraphitic carbons at low tempera-
tures. ' This will be treated in a separate paper.
Another interesting eI'ect in which the Raleigh wave may
play an important role is the speci6c-heat anomaly in
disordered carbons. ' This is briefiy discussed in the next
section.

V. A COMMENT ON THE ANOMALOUS
LINEAR ra,MPERATURE-DEPENDENT

SPECIFIC HEAT IN CARBONS

Some kinds of disordered carbons exhibit an anoma-
lous, large linear temperature-dependent specific heat
which cannot be ascribed to the carrier contribution. 'z

To consider this problem, it is necessary to take into ac-
count the —Pb, 2m term in Eq. (2.2c), which is neglected
in the previous sections. However, its contribution to the
specific heat is important since the relevant wave vector
is not restricted to small values of q —10 cm ' in consid-
ering the contribution from the phonon degrees of free-
dom. Introduction of the —z b,~ut term provides an ex-
tra contribution a q to ro and the Rayleigh wave then
has a dispersion relation

C/T=aT +y, (5.5)

y„=0.0138 mJ/mol K (5.6)

while the observed linear temperature-dependent specific
heat in pregraphitic carbons and in polycrystalline graph-
ites provides'2

NQ: )600

NCC 2000

NCC800
NCC'5100

where the aT term is the normal Debye specific-heat
contribution. The increase in a with decreasing heat-
treatment temperature (HTT) is related to a decrease in
rigidity and characteristic vibrational frequency, which
are re8ected in an increased room-temperature speci6c
heat. ' The electronic contribution to the specific heat in
graph1te 18

co =K q +Ugq

It should be noted that the most important contribution
to co for bulk samples is U,2q,z, though this term does not

appear in thin film samples, as was discussed in the previ-
ous sections. Since a has a value of —6X 10
cm /sec, ' the z q term exceeds the Uz~q term for

q 5 107 cm '. If the Uazqz term is neglected in Eq. (5.1),
we obtain a linear temperature-dependent speci5c heat at
low temperatures:

0
0 10

T (K )

where

~q (4~) G (zmax )

exp(Ace~ /ka T) 1—4mkcox

(5.2)

G(z)= f dx „,z,„=kcq,„/ksT, (5.3)z
1

~ max

and co is the interlayer distance. Equation (5.2) is valid
for T~ 3 K. Since we are interested in the specific heat
at liquid-helium temperature, ' z can be replaced by
infinity and we have

kaG(oo)C=y T y =2~. 6( )=6
27pRcoK

(5.4)

Typical examples for the anomalous speci5c heat are
shown in Figs. 2(a) and 2(b). 'z The sharp peak observai
below 1 K is ascribed to locaBzed spin centers which give
rise to an extra ESR absorption. ' Apart from this contri-
bution C/T is expressed by

~RC 17(m
I00 20

FIG. 2. (a) Specific-heat curve obtained for various heat-
treated National Carbon Company baked carbon rods (NCC) as
reported by Delhaes and Hishiyama (Ref. 19) (The number in-
dicates the HTT. ) The curve for NCC 1250 is added for com-
pleteness (Ref. 20). The curve for NCC 3100 agrees we11 vvith

the data of Keesorn and Pearlman (Ref. 21) for polycrystalline
graphite (Ref. 12). (b) Speci5c-heat curves obtained for various
heat-treated, laboratory-made ram coke rods (needle coke made
from Resin C coal tar pitch arith Resin C binder) (Refs. 12, 22,
and 23).
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y = 10 —10 p,J /mol K (5.7)

=3g10', (5.8)

which is consistent with the observed results. The de-
crease of the value of y with HTT is consistent with the
present model. The film thickness d which specifms the
elastically correlated length along the e axis increases
with HTT and in the samples with large d the distance
through which the Rayleigh wave propagates without
damping is much smaller than d. In these samples the
contribution of the linear temperature-dependent part to
the specific heat is negligible. %'e intend to give detailed
calculations in a separate paper.

VI. SUMMARY

(1) The lattice dynamics in thin film carbons are inves-
tigated in the long wavelength approximation by impos-
ing appropriate boundary conditions on the sample sur-
face.

which is one or two orders of magnitude larger than y„
tsee Figs. 2(a) and 2(b)]. Inserting co =3.4 A and
it=6K 10 cm /sec into Eq. (5.4), we obtain

(2) The Rayleigh wave, with a small damping constant
and with polarization along the c axis, has a small sound
velocity Ua —10 cm/sec if C44 is small. The
electron-Rayleigh-wave phonon interaction is obtained
and the scattering rate of carriers is evaluated. Of partic-
ular interest for transport properties is the carrier relaxa-
tion time rs —10 ' sec for a thin film with thickness
d ~100 A at T-1 K. If the sample is assumed to be
composed of an aggregation of many thin fj.lms and each
film weakly couples elastically to the others, the present
theory is applicable to a sample with bulk thickness. The
electron-Raylrigh-wave interaction can explain the
unusual temperature-dependent resistivity of PAN 6bers
heat treated to -1300'C.

(3) The Rayleigh-wave contribution can explain the
linear temperature-dependent speci5c heat observed in
some disordered carbons.
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