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The charge-transfer process between a small metal particle and a nearby electrode is investigat-
ed with electron tunneling experiments. The small particles are produced as an island 61m embed-
ded in a capacitor, separated from one plate by a thin tunnel barrier and from the other by a thick
insulator. The device properties reflect an ensemble average of independent particle-electrode tun-
neling systems. A significant property of the small-particle capacitor is that the potential change
e/e associated with the transfer of a single electron is a non-negligible quantity. The experiments
investigate the dynamics of the charge transfer process between particle and electrode by measur-
ing the device capacitance C and dissipation constant D as a function of frequency ~, temperature
T, and ac voltage amplitude V. Experiments are carried out in the regime kT/e, V g e/c so that
at most one electron transfer to or from a particle is induced during a cycle of the applied voltage.
A model for the suppression of the tunneling rate by the Coulomb charging energy is presented
which predicts C and D should scale as co/T in the zero-voltage limit and e/V in the zero-
temperature limit. Experimental results verify these scaling laws. It is shown that at low tempera-
ture and voltages, a quantum size efFect may cause the results to deviate from these scaling laws.
Experimental results are presented which qualitatively support this prediction. Additional experi-
ments investigate the transport between a small particle and a superconductor.

I. INTRODUCTION

As the size of electronic devices continues to shrink,
physical effects associated with small size, and unimpor-
tant in macroscopic devices, may dominate the electrical
properties. For example, the con6nement of electrons to
efFectively two dimensions has the dramatic consequence
of the quantized Hall effect' at low temperatures.
Another example is the submicrometer tunnel junction
fabricated by electron-beam lithography, which shows
conductance fluctuations that are dominated by the trap-
ping and untrapping of a si,ngle electron. Fulton and
Dolan3 have recently observed single-electron charging
efFects in a series combination of two submicrometer
tunnel junctions. It is now becoming possible to com-
bine the technologies of electron-beam lithography and
molecular-beam epitaxy to fabricate quantum dots, discs
of a two-dimensional electron gas, on the order of a few
hundred angstroms in diameter As a precursor to the
advent of such devices, we have undertaken a study of
the dynamics of charge transfer to and from small metal-
lic particles, with a typical radius of 50 A.

The study of size effects in small metal particles has
been a topic of interest for many years. One principal
efFect is that a signi6cant electrostatic energy is required
to change the charge state of a particle by a single elec-
tron. This Coulomb charging energy, E, -e /r, can be
as large as 0.1 eV for a particle of diameter 100 A in a
vacuum. This gives rise to thermally activated conduc-
tivity in granular films on the insulating side of the
metal-insulator transition. A second category of efFects
goes under the name of quantum size effects (QSE), and
involves the possibility of observing efFects due to the
nonzero spacing of quantized electron states in the small

particle. An order-of-magnitude estimate for the level
spacing gives

5-eF/N-o. 1 meV,

for a 100-A particle. The theoretical groundwork for
this topic was laid by Kubo, who modeled a small parti-
cle as having a fixed number of electrons at a low tem-
perature due to the charging energy, and an energy-level
distribution obeying Poisson statistics. The model dis-
tinguishes particles with an even number of electrons
from those with an odd number. Due to the unpaired
electron on the odd particles, the two classes of particles
difFer in their low temperature susceptibility and heat
capacity. The former efFect has probably been demon-
strated with nuclear-magnetic-resonance measurements
of the Knight shift in small particles. Other experimen-
tal work includes electron spin resonance, heat capacity,
optical and infrared absorption measurements, and is
discussed in a recent review by Halperin.

Our experiments explore the transport process involv-
ing a small particle and an electrode separated by a thin
insulating tunnel barrier. %e describe experiments that
illustrate three aspects of the process. First, we note the
inhuence of the Coulomb charging energy on the con-
ductance of the tunnel junction, an efFect noted in dc ex-
periments by Zeller and Giaever. ' " In our experi-
ments, this elect is measured as a Coulomb-suppressed
tunneling rate. Secondly, we consider the physics of
transport in the regime of low temperatures and small
voltages where quantum size efFects become important.
%e propose that these efFects are amplified in our experi-
ment by the distribution of tunneling level rates in a par-
ticle. Early experimental results are suggestive of the
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effects predicted. Thirdly, we examine the transport
process between a small particle and a bulk supercon-
ductor. Peculiar to the small-particle case is the
Coulomb suppression of all multielectron transport
mechanisms involving a single metal particle. This,
combined with the experimental results, has implications
for "leakage" transport mechanisms in conventional
Josephson junctions.

The system studied is the tunnel capacitor' [Fig. 1(a)
or 1(b)]. The structure consists of an island film of metal
particles, well on the insulating side of the metal-
insulator transition, separated from one capacitor plate
by a thick insulator, and from the other by a thin tunnel
barrier. Transport is perpendicular to the plane of the
film. The advantage of this conAguration, compared to
in-plane conductance studies, is that the system can be
modeled as an ensemble of single-particle tunneling sys-
tems. %e may put aside the many-body aspects of the
granular film transport problem and focus on the physics
of a single electron going back and forth between a par-
ticle and the nearby electrode.

A circuit model for a small-particle tunneling system
is shown in Fig 2(a). cI and ca are the capacitance be-
tween a particle and the distant and nearby electrodes, R
represents tunneling between the particle and the nearby
electrode, and V~ is an applied voltage to the circuit.
The Debye-like frequency dependence of the capacitance
Cz and the dissipation constant Dp expected for a cir-

cuit are given by

1+co 8 c~(ci, +cl)
Cz(co) =cl

1+co R (e„+cl)
mRe

Dp(co) =
1+co R c~(cii+cl)

The actual capacitance C of the device will be the sum
of the capacitance contribution from each of the particle
tunneling systems, plus a Axed parallel contribution from
the direct capacitance between the upper and lower elec-
trode due to the spaces between the particles. The dissi-
pation constant D of the device represents the average
dissipation constant of all of the particles. Changes in
the dissipation peak frequency and in the shape of the
Debye curves with temperature and ac voltage will
reflect the nonlinearities associated with the fundamental
transport properties of a small particle.

These experiments differ from those of Lambe and
Jaklevic' in that the latter were Axed ac voltage mea-
surements of the device capacitance versus dc bias
characteristic in the zero-frequency, zero-ac-voltage
limit, exploring a memory effect in the device, which will
be mentioned later in this introduction. The physics of
our experiments is more closely related to the work of
Giaever and Zeller, ' '" who performed dc conductance
experiments on tunnel junctions with an island Alm of
small particles embedded in the barrier with significant
tunnel conductance to both electrodes. Transport be-
tween junction electrodes was via a small particle. Our
experimental observations, which we shall describe
below, of a shift in the location of the loss peak with
temperature and voltage due to the Coulomb charging
are in accord with the Coulomb suppression of junction
conductance observed in the dc experiments.
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FIG. l. Tunnel capacitor sample geometry. (a) Particles
make tunneling contact to bottom electrode through a native
aluminum-oxide tunnel barrier. (b) Particles make junctions
with the upper electrode. For samples with gold particles the
tunnel barrier is evaporated aluminum oxide. For indium or
tin particles, the barrier can be grown as a native oxide on the
particles. (c) Sample top view.
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FIG. 2. (a) Circuit model for a small metal particle in a tun-
nel capacitor. (b) Charge added to the particle as a function of
bias Vz.
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%ith the ac experiment, there is additional informa-
tion in the shape and amplitude of the Debye curves
which may be useful in studying quantum size effects.
The tunnel capacitor structure is also better suited to
studying leakage current effects between a sma11 particle
and a superconductor; in an analogous dc experiment,
one would be concerned about contributions to the
zero-bias conductance by pinhole shorts between the
electrodes in addition to the transport via particles. In
the tunnel capacitor, particles shorted to the tunneling
electrode make no contribution to the capacitance sig-
nal.

In all of the experiments described in this paper, the
charging energy plays a crucial role, so it is useful here
to briefly set forth some basic ideas about how Coulomb
efkcts modify the description of a small-particle capaci-
tor. If the charge on a single particle could be measured
as a function of bias applied to the circuit of Fig. 2(a) at
zero temperature, the result would be the staircase curve
of Fig. 2(b). The steps are due to the discreteness of
electron charge and are of width e/cr. cl is typically a
micro-picofarad, so the charging voltage is on the order
of 0.1 V. In the discussions that follow, it will be con-
venient to refer to potentials at the particle rather than
across the device. We represent the applied bias and
charging voltage by quantities that are scaled down by a
factor, y=cl/(c„+el ):

V =t'Vs

elc =y(e/c, ) .
(3)

An estimate for the scale factor y, of a given sample,
may be obtained by a measurement of t4e device capaci-
tance in low- and high-frequency limits which we denote
Cc and C„,respectively. The relationship from which
we deduce y is

1

1+fC„/(Cc—C„)'

where f is the filling fraction of the island film.
Because the particle and electrode are separated by a

thin tunnel barrier and may therefore exchange charge,
the Fermi levels of the two will tend to become aligned.
In general, however, there will be a residual misalign-
ment, VD due to the charging voltage. Figure 3, a po-
tential energy diagram for the particle-electrode system,
illustrates this point. If the tunneling interaction is ini-
tially turned off [Fig. 3(a)], the vacuum levels of particle
and electrode are aligned. The Fermi levels are separat-
ed by the difFerence in wo'k functions. %hen the tun-
neling interaction is turned on, the Fermi levels are
brought into closer alignment by the transfer of charge
[Figs. 3(b) and 3(c)], the potential at the particle chang-
ing by e/c with each charge transfer. The tunneling
process, however, can only bring the Fermi levels to
within e/2c of one another [Fig. 2(c)].

The remaining separation VL, for a given particle de-
pends on accidents of the particle-electrode capacitance
and work function difference. Just as the work functions
of diferent crystal faces of a metal may differ by
amounts on the order of tenths of volts, so may one

j IE

e/2c

bulk electrode

(a)

FIG. 3. Alignment of the Fermi levels. (a) The tunneling in-

teraction is imagined to be initially turned ofF. Switching on
this interaction causes the Fermi levels to align via the transfer
of charge [(b) and (c)]. With each transfer, the particle's poten
tial drops by e/e. Finally, in (c) the situation is reached where

no more charge transfers occur. The Fermi levels remain

separated by the residual amount VD, determined by the work
functions of particle and electrode, the charging voltage, and

any random static potentials in the oxide.

reasonably expect variations in the work functions from
particle to particle to vary over a similar range. This
variation is large compared with the charging voltage at
the particle e/c, which is about 10 meV for a 100-A-
diameter particle. Thus, one may expect VD to be distri-
buted uniformly over the range +e/2c for an ensemble
of particles with a given c. Actually, the presence of de-
fect charges or dipoles in the oxide may alter the distri-
bution of VD somewhat, making it nonuniform. This
gives rise to a memory effect in the device, the subject of
Lambe and Jaklevic's study of tunnel capacitors. ' This
eft'ect is a small capacitance oscillation as a function of
dc bias. The effect is an interesting example of the role
defects can play in small devices and we discuss it in
another paper. ' The small magnitude of this effect,
however, indicates that the distribution of VD is nearly
uniform. A uniform distribution for VD in the range
ke/2c will be assumed in the arguments given in this
paper.

The values VD
——+e/2c act as thresholds for charge

transfer. For example, if VD &0, a bias V=(el2c —VD)
must be supplied in order to induce a transfer of one
electron of the particle with a given VD. Similarly, at
nonzero temperature„ the activation energy for this
transfer is e (e/2c —VD ).

By keeping the measuring voltages and kT/e small
compared with e/c (where T is the temperature), we can
assume that the tunneling contributions to C and D only
include processes involving the transfer of a single elec-
tron. Indeed, at low enough voltages and temperatures,
only a small fraction of the particles contribute to the
tunneling current —those with VD near the Coulomb
threshold. It is interesting to note that particles with VD
within a small voltage of e/2c may act as "supercapaci-
tors. " For example, the capacitance measured from a
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small particle with VD =e/2c —5V, using an ac measur-

ing signal of amplitude 5V, will be EQ/b, V=e/5V, an
arbitrarily large quantity for arbitrarily small 5V. At
the same time, particles with VD -0 will have a capaci-
tance of zero. %e note that these efFects combine to
produce a device capacitance that, in the limit of zero
frequency, is independent of the ac measuring voltage V,
for the capacitance will be the product of the number of
particles contributing to charge transfer V/(e/c) times
the capacitance of each particle e / V. The nonlinearity
associated with reduced measuring voltage appears in a
different way, s8ecting the rate of charge transfer ss de-
scribed later in this paper.

A. Sample preparation

The major dif6culty in sample preparation is in pro-
ducing samples whose dissipation-constsnt peak lies
within the frequency range of our capacitance bridge, 50
Hz-50 kHz. This peak frequency is the characteristic
tunneling rate for a small particle, and varies—
according to one model described below —linearly with
the ac measuring voltage in the zero-temperature limit
and linearly with temperature in the zero-voltage limit.
It is also an exponential function of tunnel barrier thick-
ness; an increase of 3 A in an aluminum-oxide barrier
changes the tunneling rate by a factor of 10. Thus, we
have devoted a considerable e6'ort to tailoring samples to
fit the desired temperature snd voltage range of experi-
ment.

Figures 1(a) and 1(b) show the two sample configura-
tions we have used. A top view is shown in Fig. 1(c).
The samples are prepared in an electron-beam evapora-
tor with a typical base pressure of 5/10 Torr, with a
quartz-crystal monitor characterizing average film thick-
ness. The substrates sre glass coverslips with deposited
gold contact pads. In Fig. 1(a), we begin with a 1000-A
Al strip which is oxidized in room air to form a tunnel
barrier perhaps 20 A thick. Then, in the same pump-
down, sn island film of small metal particles 20-40 A in
average thickness is deposited, followed by a 100-A layer
of evaporated A1203. The area of this deposition is large
compared to the actual junction area„ in order to prevent
shorting at the edges. Finally, a top counter strip of
aluminum 1000 A thick is evaporated to complete the
tunnel capacitor structure. The native aluminum-oxide
tunnel barrier produces a dissipation-constant peak at
4.2 K in the zero-voltage limit that is typically near the
lowesting measuring frequency of our bridge. In Fig.
1(b), the particles make tunnel junctions with the upper
electrode. In an earlier paper, ' we presented results on
a sample of this type in which the small particles were
composed of indium and the tunnel-barrier oxide was
grown as a native oxide on the particles. The native ox-
ide layer on indium is thinner than the native aluminum
oxide layer and so the loss peak for this structure ai 4.2
K occurs at a much higher frequency, generally between
1 and 50 kHz. To study the transport between a normal
particle (i.e., Au) and a superconductor (Al) at low tem-

peratures, we needed a thinner barrier than we were able
to obtain using the structure of Fig. 1(a). Instead, we
used a device of the type in Fig. 1(b); but since gold does
not oxidize, the tunnel barrier was obtained by evaporat-
ing a small amount of A1203 on top of the particles.
Macroscopic tunnel junctions prepared this way are sub-
ject to pinhole shorts. In the tunnel capacitor, however,
the few particles shorted to the electrode make no con-
tribution to the frequency-dependent capacitance signal.

The high- and low-frequency capacitance of the circuit
model for the small particle, Fig. 2(a), differ by the fac-
tor cR/(cr+cR). To make the small-particle tunneling
process a significant contributor to the device capaci-
tance, it is useful to keep cr comparable with cz. For
most of our samples, we made cI a factor of about 5

smaller than cz. Thus, the thicker insulating layer was
set at about 100 A, thick enough to prevent tunneling.
Such thin-film capacitors are subject to avalanche break-
down, due to electrostatic charges, so care was needed in
handling the samples and attaching leads. Also, the
samples were stored in liquid nitrogen to prevent oxida-
tion and slow any diftusion processes which might alter
the samples' characteristics.

B. Characterization

To ensure that the samples are indeed tunnel capaci-
tors, a few tests are performed on a sample prior to ex-
periments. First, the dc conductance in the plane of the
island film is checked, to ensure that it is well on the in-
sulating side of the metal-insulator transition. Second,
we measure the dc resistance of the device. Capacitors
with resistance less than 20 MQ at room temperature
are discarded. Thirdly, at 4.2 K the samples are
checked for the presence of the small I.ambe-Jaklevic
memory effect. The memory effect also served to pro-
vide a rough estimate for the magnitude of e/c in the
sample.

That tunneling is indeed the transport mechanism in
these samples is demonstrated in an experiment done on
samples of the type in Fig. 1(b). In a rotating stage eva-
porator we evaporated different amounts of A1$03 to
produce different tunnel-barrier thicknesses on what
were otherwise identically, simultaneously prepared sam-
ples. Four different barrier thicknesses were used: 13,
16, 19, and 22 A, as measured by the quartz-crystal
monitor. Figure 4 shows the dissipation-constant curves
for the four thicknesses, in which the exponential depen-
dence of tunneling rate on thickness is event. The
curves have a width that is less than a decade broader
than the Debye curves implied by Eq. (2). It is remark-
able that the curves are not broader, suggesting that the
oxide thickness in a sample is uniform to -3 A.

C. Experiments

The samples were studied in two difFerent cryostats.
One was a convenient stick that dipped into a helium-
four storage Dewar and had an operating range of
1.6—40 K. The other was a dilution refrigerator, which
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FIG. 4. Curves of D vs frequency for four samples of
different tunnel barrier thickness. The data are taken at 4.2 K
with a voltage small compared to kT/e at the particle.

was borrowed from another group for one run snd al-
lowed us to take data from 140 mK to 77 K.

Data is collected using s computer-automated two-
phase capacitance bridge, which is described in another
paper. ' A measuring signal of a given amplitude,
waveform, and frequency is applied to the bridge. The
bridge balances C and D using a lock-in amplifier to
detect the bridge unbalance signal at the fundamental
frequency of the measuriog signal. The values of C and
D for a range of voltage, and frequency are recorded by
the computer which then is used to plot the data. The
lead resistances are measured sod corrected for in the
computer software.

uI. COUI.OMB EFFECTS

A. Zero-temperature model

Coulomb effects can be expected to be important in
small-particle transport when V, kT/e &e/c. This is
seen in the data for s tunnel capacitor, sample 0 in Fig.
5, which shows a set of C and D versus frequency (co)
curves taken st 4.2 K using a square-wave excitation sig-
nal of varying amplitude. Square-wave excitation is used
because the response of the system to it is easiest to cal-
culate. This particular sample is of the type shown in
Fig. 1(a) with gold particles. Reduction of voltage am-
plitude apparently shifts the Debye curves to lower fre-
quency. In contrast, for s macroscopic normal-metal-
oxide —normal-metal tunneling structure, no voltage
dependence of the conductance at this low temperature
would be expected. The model described below is a
zero-temperature model which shows how the Coulomb
charging voltage acts to reduce the tunneling rate be-
tween a sma11 particle and an electrode as the voltage
amplitude 1s reduced.

The charge-transfer process during a cycle is indicated
in Fig. 6 for a particle with VD pO. In (a), the negative
step of amplitude V has been applied, raising the Fermi
level of the particle above the Coulomb threshold for
transferring an electron to the electrode. Since
V+V& &e/2c, the total energy of configuration (b),
where s charge has been transferred, is lower than that

O2 &0' to'
frequency(Hz)

0.10

O.GB-U
M

0 0.06 -~
0

0.04—
U
Q

0.02 -'
U

0,00

* ~

&& ~ ~
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of configuration (a). Further, only electrons occupying
states above the Coulomb threshold at e/2c can tunnel
snd conserve energy for the full system in the final state.
The number of these levels is

V+ VD —e/2c
5/e

where 5 is the average spacing between quantum energy
levels. In this initial discussion, 5 merely plays the role
of an inverse density of states. Effects due to the
discreteness of the energy levels sre neglected for now,
but will be considered in a later section. When the elec-
tron tunnels to the electrode, the potential at the particle
drops by e/c, Fig. 6(b). In Fig. 6(c), the positive step of
the square wave has been applied bringing the Fermi lev-
el beyond the Coulomb threshold for transferring an
electron back to the particle. Here, the number of levels
available for tunneling is

V —VD+e/2c
5/e

The particle potential jumps up e/c when the electron is
returned to the particle [Fig. 6(d)]. The tunneling rate
during the positive and negative steps will be

where 1 jwo is the tunneling rate of a single quantum lev-
el. Note that a reduced voltage implies a reduced tun-
neling rate.

1Q 1Q 'lQ 1Q 'IQ

frequency(Hz)
FIG. 5. Curves of C and D vs frequency taken with different

voltage amplitudes of the square-wave excitation signal.
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']k:
V+VDt I::= N(t)=2Vgo f f (0;y, Vrz)exp

we can integrate from 0 to e/2c and double the result to
obtain the device response. Now only particles with VD

within V of the Coulomb threshold wiB transfer an elec-
tron and so the range of integration may then be taken
as e/2c —V to e/2c. If we express the integral in terms
of the variable y, we have during the negative step

Vt (1+y)
5/e ro

eict( =

%e calculate the response of an ensemble of Nz parti-
cles with the same VD and e/c to one cycle of the square
wave. The square wave has period t~ and we define the
time origin r =0 to be the beginmng of the negative step.
Let Nt(t) be the number of particles at time t that have
the electron, and No(t) be the number that have
transferred the electron to the particle. Nt(r) and No(t)
satisfy the condition

t)+No(r)=ND .

Nt(t) decays exponentially during the negative step and
No(t) decays exponentially during the positive step:

Nt(t)=Nt(0)e, 0(t (tp/2,
(s —t+ /2)

N, (t)=N (tp/2)e ' ', tt, /2&t &t~ .
(9)

N, (0) and No(t~/2) are deduced by matching the
periodic boundary condition associated with the times
t =0 and t =tz, and the boundary condition associated
with the step at t =tz/2. One obtains the relations

(~) (b) (c) (d)

FIG. 6. Square-wave response of a small metal particle dur-

ing one cycle. (a) The negative voltage step has been applied
raising the Fermi level of the particle above the Coulomb
threshold. (b) The electron has been transferred to the elec-
trode, dropping the particle s potential by e/e. (c) The positive

step has been apphed, taking the Fermi level of the particle
beyond the Coulomb threshold for returning an electron to the
particle. (d) The electron has been returned to the particle in-

creasing the particle potential by e/e.

Equation (11) describes the decay of charge during the
negative step for the ensemble of particles. The argu-
ment may now be continued to obtain the current, and
then expressions for C and D. Further, in our sample
there is substantial variation from particle to particle of
the various critical parameters, e/c, ro, 5, etc. To com-
pute the actual device capacitance and dissipation con-
stant, we must integrate over distributions of these pa-
rameters. Fortunately, the important physics is already
evident in Eq. (11). Compare this result with the
response of a linear circuit model, Fig. 2(a), to a voltage
step of amplitude Vz. The charge Q on the capacitor
Cz will decay after the step according to

Cg C~ —r/[R(c&+c )]Q= Vse8+ 1

(12)

The important feature of the small-particle result, Eq.
(11), is that the time t and the square-wave period t~ ap-
pear only in the products Vt and Vtz Chan. ges in volt-

age effectively change the time scale of the response.
Even after integration over the distributions of the pa-
rameters e/c, vo, and 5, this connection between voltage
and tine-scales remains, for it is independent of these
distributions and is an essential feature of the small-
particle tunneling dynamics. As a consequence of this
connection, the model predicts that C and D should de-
pend only on the ratio co/V. We note that the quantity
e/2c does not appear in Eq. (11). As long as kT/e « V
& e/2c, the voltage sets the energy scale in the problem.

The scaling prediction is that reduction of the voltage
amplitude by a given factor causes a uniform shift of the
Debye curves to lower frequency by the same factor.
Figure 7 shows a plot of log&ou vs log&OV5 where u is

the peak frequency of a dissipation constant curve at a
given voltage amplitude. The scaling law predicts a
slope of 1. The scaling prediction of the model is well

ND —N, (0)=No(tp /2)e
fp/'&

ND N, (0)e —=No(tp/2),
(10)

10000

which may be solved to obtain N, (0) and No(t~/2) in
terms of XD. If we de6ne a dimensionless variable

y =( VD —e/2c)/V, N, (0) can be expressed simply as a
function of y and the combination Vtz, which we will

write ND f (0;y, Vr~ ). We now integrate Eq. (9) over VD.
We assume a uniform distribution of Vz between +e/2c,
g(V&)=go, which in the integral takes the place of ND.
Because the response is the same for VD ~0 and V~ ~0,

1000.

D

100
0.001 0.010

log, o vs (volts)

FIG. 7. Log,~~ vs log&OVz for data from Fig. 5.
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obeyed for the voltage range 4-32 mV. The scaling
breaks down with applied voltages of less than 4 mV, be-
cause the zero-temperature assumption has lost its valid-
ity. It also will begin to break down at voltages greater
than 32 mV when V becomes greater than e/2c and the
assumption of a single electron transfer per cycle is
violated.

B. Debye model for temperature dependence

U (r) = V cos(~r) = V Re(e'"') . (13)

The quantities NG and NE will then depend on time,
obeying the rate equation

The transition rates uo& and au&o are

&o=

( I/ )ge ev lkT

Here we consider the effect of finite temperature on
the charge transfer process, describing the response of
the system to a sinusoidal excitation voltage for which
V &~kT/e. The model presented is analogous to the
calculation of Debye of the dielectric response of a sys-
tem with dipole defects.

At nonzero temperature, the charge state of a particle
mill be subject to thermal fluctuation. Figure 8 shows a
particle with a given e/c and VD in its ground (a) and
lowest-energy excited state (b). As mentioned in the in-
troduction, the activation energy for the excited state is
e (e/2c —VD ). If we consider an ensemble of Xz, identi-
cal particles, with the same e/c and Vn, the ratio of the
number of particles in the excited state XE to those in
the ground state NG will be given by the Boltzmann fac-
tor, 8:—exp[ —e(e/2c —VD)/kTj. Note that at a tem-
perature T, there is enough thermal energy to cause a
fluctuation in charge state only if VD is roughly within
kT/e of the Coulomb threshold. We begin by calculat-
ing the response of this ensemble of particles to a small
sinusoidal voltage, which at the particle is

When VD ——e /2c, the number of states outside the
threshold is zero. At nonzero temperature, however,
there is a smearing of the Fermi surface over an energy
range of roughly kT, so that for a particle with

VD
——e/2c there will be of order kT/5 unoccupied states

beyond the Coulomb threshold. Indeed, for all particles
with VD roughly within kT/e of the Coulomb threshold,
the number of unoccupied electron states beyond the
threshold is given by

nr-kT/5 . (18)

As mentioned before, it is the particles with this range of
Vz for which there is enough thermal energy to cause
charge fluctuations, and thus which dominate in the
current response. Because of the Coulomb energy, only
one electron is transferred, and any of the unoccupied
states beyond the threshold act as available channels for
tunneling. The tunneling rate 1/r then, is

I /r = (1/ro)nr,

where 1/ro is a WKB rate constant for a single energy
level that falls ofF exponentially with barrier thickness.
%e see that the tunneling rate decreases linearly with
temperature. This discussion has described a particle
with VD gO, in the case Vz ~0, the lowest excited state
has an extra electron, but otherwise the response for a
negative VD is the same as for a positive VD of the same
magnitude.

We now integrate over VD from ke/2c. A uniform
distribution of VD is assumed between ke /2c,
g( VD) =go, which in the integral takes the place of XD.
%e note that the symmetry of the response about VD ——0

1/r is most easily explained with the aid of Fig. 8. First
imagine the electron states in the particle are occupied
by a Fermi distribution at zero temperature. Then, in
Fig. 8(b) the number nr of unoccupied one electron
states outside the Coulomb threshold in the excited
charge state is

e /2c —VD

5/e

where I/r is a rate constant to be discussed shortly. We
are interested in the linear response of the system and so
we make the approximation

e'" " =1+eu/kT . (16)

XDB

~~() kT1+8
J-+1+8 ' (17)

This is the response for an ensemble of particles with
6xed VD. The proper value to use for the rate constant

The sinusoidal voltage is acting to perturb NG from its
equilibrium value XD/(1+8), and so we represent the
change in XG due to the voltage by the quantity
hNG =KG(t) ND/(1+8)—Subst—itutin. g Eqs. (15) and
(16) into the rate equation (14), we obtain for b,NG

il
barrier „e/2c

/g gV 1//rVPY//~

I("bulk electrode

FIG. 8. Potential energy diagram for electron transfer to a
particle in (a) the gronnd state, and (b) the loosest-energy excit-
ed state.
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allows us to obtain the device response by integrating
over the range 0 to +e/2c and multiplying the result by
two. To put the integral over V~ into a useful form, we
make a change of variables, defining a dimensionless in-
tegration variable x analogous to the variable y in Eq.
(11),

e /2c —VD

kT/e

The result of the integration of KNG(r) over VD, which
we denote AN(r), is the response of the ensemble of par-
ticles to the perturbing voltage:

b,N(t)=2gcVe' ' dx .
[j (co/T)(r05/k)+1+e "](1+e") (21)
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FIG. 9. Data taken on the same sample as used for Fig. 5
plotted against frequency/temperature.

We use infinity instead of (e/2c)/(kT/e) as the upper
limit on the integral since the integrand falls o8' ex-
ponentially with x for large x and since (e/2c)/(kT/e)
is assumed greater than 1.

We may now continue the argument to obtain formal
expressions for the current e (d hN /dr ) and then for C
and D in terms of integrals over the distributions of the
parameters e/c, ro, and 5. The most important result,
however, is already contained in Eq. (21): frequency and
temperature appear only in the combination colT. This
relation of temperature and time scale is valid indepen-
dent of the distribution of e/c, ro, and 5, and is solely a
consequence of the physics of transport involving a small
particle. We can now predict that C and D should scale
as co/T. We note again that the charging energy e/c
does not appear in the expression; so long as
kT/e &e/2c, it is the temperature that sets the energy
scale in the problem.

Figure 9 shows a full set of dissipation constant data
plotted against co/T. The curves were measured with a

voltage applied to the sample given by Vz cosset, with Vz
such that the voltage amplitude at the particle,
V = Vsci /(ci+cz )« kT/e. This condition is deter-
mined experimentally by reducing the voltage amplitude
until there is no dependence of C or D on amplitude.
Then, the system is responding linearly to the measuring
signal. The scaling law appears to work fairly well for
the highest three temperatures. However, at 4.2 and 2.4
K the curves seem to have shifted more than predicted,
and there is some reduction in the magnitude of the dis-
sipation constant peak. We believe these deviations
from scaling arise from QSE. We explore this possibility
further in the next section.

C. Discussion

In the models of parts A and 8, we have shown how
the Coulomb charging voltage e/c reduces the tunneling
rate in a small-particle tunnel junction as the ac voltage
ainplitudes and temperature are brought below e/c. The
models predict the data will obey scaling laws, co/V in
the zero-temperature limit, and co/T in the zero voltage
limit. These scahng laws are entirely consistent with the
results of Zeller and Giaever, using essentially the same
physics, where the resistance of a macroscopic tunnel
junction with an island film of particles in the barrier is
predicted to show a 1/T dependence in the zero-bias
limit and a 1/V dependence in the zero-temperature lim-
it. Indeed, the satisfactory agreement of the data with
predictions in both our and Giaever and Zeller's experi-
ments give convincing evidence for the veracity of the
physical model.

Thus, satisfied with our understanding of the role of
the Coulomb energy in the problem, we now probe lower
temperatures and voltages to search for deviations from
the simple charging energy model due to quantum size
eFects and superconductivity. The deviation from tem-
perature scaling around 4.2 K in the data of Fig. 9 sug-
gests that there is indeed something happening in this re-
g11Tle.

IV. QUANTUM SIZE EFFECTS

A. Single-level transport

If the voltage and temperature are reduced so that e V,
kT ~5, then only a single quantum level can be involved
in the transport. In the zero-temperature model, as long
as a particle has state at the Fermi level within V of the
Coulomb threshold, the tunneling rate in either direction
will be just 1/ro, independent of V. Thus„we expect the
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Debye curves for the device, which shift to lower fre-
quency hnearly with decreasing voltage for 5/e & V &e/
c to become independent of voltage when V ~5/e, with
a dissipation peak centered at the frequency 1/wo. An
analogous argument for the zero-voltage model predicts
that the Debye curves become independent of tempera-
ture when kT &5 and show a dissipation peak at 1/7o.
The predicted device behavior is then curious in that at
the extremes of high voltage and/or high temperature
and low voltage and low temperature —it displays a
linear response, while in the regime 5 & kT, eV &e /c it
is markedly nonlinear.

This model predicts that on a scaled plot, Debye
curves at low temperatures in the zero-voltage model
and at low voltages in the zero-temperature model will

appear to the right (higher co/T or higher ~/V) of the
universal curve that data in the scaling regime fall on.
The Coulomb suppression of the tunneling rate has
ceased and all charge transfers occur at the rate 1/ro
For a particle with 5=0. 1 meV, we might expect to ob-
serve this effect at temperatures below 1 K and at sam-
ple voltages of 0.1 mV/y-0. 5 mV. The deviations from
temperature scaling in sample 0 (Fig. 9), however, occur
at somewhat higher temperature (4.2 and 2.4 K) and,
more importantly, these curves appear somewhat to the
left (lower co/T) of the universal scaling curve, in con-
tradiction with the expectation of the model. This mod-
el neglects what we believe to be an important manifes-
tation of QSE in this device —a distribution of tunneling
rates among the levels of a particle.

8. Tunneling-rate distribution

As mentioned in the introduction, the average spacing
between levels in a particle of diameter 100 A is a-
bout 0.1 meV. This corresponds to a voltage of 0.1 mV
at the particle and a temperature of I K, below the
ranges of voltage and temperature in the experiments de-
scribed above. There may, however, be an amplification
of the quantum size efFect in this experiment due to a
distribution of tunneling rates among the levels of the
particle.

Consider the &KB expression for the tunneling rate
for an electron in a box of volume d, to pass through a
barrier of amphtude U and thickness s:

2
Pz P j. 2m

v~Kg = exp —2$ U-
2PFl d 2PPl

(22)

~here p~ is the component of the electron's momentum
in the direction of tunneling, perpendicular to the junc-
tion planes. %e assume conservation of transverse
momentum in the tunneling process. The quantity
p~/2md is the "attempt" rate and the exponential is the
barrier attenuation. An ensemble of electrons in such a
box fills up a Fermi sphere, with states on the Fermi sur-
face contributing to the tunneling current. The distribu-
tion of p~ on the Fermi surface is uniform between zero
and the Fermi momentum pz. Thus in the box, there
will be a distribution of tunneling rates among the vari-
ous quantum states.

We have studied the eff'ects of a distribution of tunnel-

ing rates with the aid of a computer model for the sys-
tern. p~ is presumably not a good quantum number in a
100-A particle; it is perhaps more reaHstic to think in
terms of quantum states with wave functions having
diferent spatial distributions, which can also yield a dis-
tribution of tunneling rates. Nevertheless, for the sake
of concreteness, and to get a feel for the importance of a
distribution of tunneling rates in our experiment, we
have used Eq. (22) to obtain the distribution of tunneling
rates from a uniform distribution ofpj.

Figure 10 shows a histogram of the distribution of
tunneling rates, generated from Eq. (22) by randomly
selecting p~ from a range 0 to pz 1000 times. In the
plot, we used a Fermi energy of 10 eV, a barrier height
of 3 eV, and a barrier thickness of 10 A. The distribu-
tion spans twelve decades in frequency —a much
broader frequency range than that spanned by the exper-
imental Debye curves shown in the previous sections.
The implication for the experiment is the following:
consider an ensemble of particles with fixed VD. If the
applied voltage or temperature is much greater than the
level spacing, each particle has enough levels available
for tunneling to sample the entire distribution, and the
particle's tunneling rate will simply be the mean tunnel-
ing rate for the distribution times the number of levels
available for tunneling, i.e., Eqs. (19) and (7). The con-
tribution to this mean tunneling rate for the entire distri-
bution will come mostly from levels in the upper few de-
cades of the distribution. The median frequency for the
distribution is much lower than the mean and most of
the levels contribute very little to the tunneling current.
If the applied voltage and temperature are small enough
that only a few levels are available for tunneling, each
particle will have a rate that depends on the accidents of
how its few levels sample the distribution, and so there
will be a distribution of rates among the particles. Since
the device capacitance and dissipation constant are su-
perpositions of the capacitance and dissipation constant
of the particles in the device, the device will display
broadened Debye curves. Also, because most of the tun-
neling level rates are below the mean of the distribution,
most of the particles will have tunneling rates below that

200
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quantum level tunneling rate (Hz)

FIG. 10. Computer-generated histogram of tunneling-rate
distribution for the levels on the surface of a Fermi sphere.
The data were obtained from Eq. (22) using a barrier height of
3 eV, a Fermi energy of 10 eV, and a barrier thickness of 10 A.
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expected in the Coulomb model (mean rate for the level
distribution multiplied by the number of levels available
for tunneling. ) Thus the Debye curves for the device
will appear at lower frequency than that expected by the
Coulomb model. If the voltage and temperature are re-
duced below 5, then the situation as described in Sec. I
occurs and there is only one available tunneling level per
particle, contributing to the tunneling current. Then the
distribution of particle tunneling rates is just that of Fig.
10. Here, the location of the dissipation constant peak is
an indication of the median rate in the distribution of
tunneling rates.

(r, VD, j) .
dt y . dt

(23)

From this current, a capacitance and a dissipation con-
stant are deduced.

In the zero-temperature model, the tunneling rate for
the negative and positive steps are obtained by summing
the rates of the n or n+ [Eqs. (5) and (6)] levels avail-
able for tunneling. This replaces Eq. (7). The current
response, the time derivative of Eqs. (9), is calculated for
j particles of each VL„which is summed over all parti-
cles with appropriate range of VD for the square-wave
amplitude. The sum replaces the time derivative of the

C. Computer model

As pointed out in the previous section, the Debye
curves are already shifting in frequency with changes of
voltage and temperature as a result of the Coulomb
charging energy. %e now wish to incorporate our ideas
about quantum size efFects into the model for Coulomb-
suppressed tunneling rate in the small-particle tunneling
system. To illustrate ihe predicted effects, we use a com-
puter model for an ensemble of particles obeying the
laws of Coulomb-suppressed tunneling with the
modification of a distribution of tunneling rates in each
particle. As before, wc look at the system in two limits:
zero temperature and zero voltage.

The computer calculates the current response of ap-
proximately 4tXS small particles. Each par'ticlc is as-
signed a value of VD, with VD uniformly distributed over
the range ke/2c. Each quantum level of a given parti-
cle is assigned a tunneling rate according to the distribu-
tion generated from Eq. (22) and a uniform distribution
of pj. The computed capacitance and dissipation con-
stant are multiplied by a constant scale factor so that the
results may be displayed in the units of actual experi-
mental data.

To obtain the tunneling rate for a given particle in the
zero-voltage model, we sum the rate of the nr [Eq. (18)]
levels available for tunneling. This replaces Eq. (19).
We calculate the current response, i.e., the derivative
with respect to time of Eq. (17), for discrete values of
VD; for each VD we consider j particles, each with a
different set of level rates. The integral over the range of
VD appropriate for a given temperature, i.e., the time
derivative Eq. (21), is replaced by a sum over the same
range of the current responses of the particles:

integral of Eq. (11). We take the fundamental com-
ponent of the current to obtain the experimentally mea-
sured quantities of capacitance and dissipation constant.

To test the computer model, we replace the distribu-
tion of tunneling rates with a single tunneling rate as-
signed to all levels. As expected, the zero-temperature
computer data obey an co/V law, while the zero-voltage
computer model produces data which obey an co/T scal-
ing relationship.

Now we put in the distribution of tunneling rates us-

ing the same parameters that were used to generate the
histogram of Fig. 10. The results of the zero-voltage
computer simulation are shown in Fig. 11. We are look-
ing for deviations from the Coulombic scaling laws and
so the computer data are presented as plots against ~/T.
The temperature of the curves cover a range
5 &kT/5& 160.

The highest two temperatures are obeying the scaling
law fairly well. Further increases in temperature pro-
duce data that obey the scaling laws exactly and are not
included in thc 6gures,

As the temperature is reduced, the deviations from
scaling are quite pronounced. The evident reductions in
capacitance and dissipation peak amplitude are an aspect
of the greatly broadened Debye curves. The dissipation
peak has begun to move toward lower frequency in ac-
cord with expectations mentioned in the discussion of
the histogram of Fig. 10. Qualitatively similar devia-
tions from scaling are exhibited in the computer-
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simulated voltage data at reduced voltages.
For the particular distribution of levels we have used,

the computer model suggests that quantum size effects
will begin to appear as deviations from scaling when
kT/5 or eV/5 are reduced below about 1005. The fac-
tor of a hundred can be regarded as the magni6cation of
QSE in this experiment due to the dominance of those
few states with large pj in determining the tunneling
rate of a small particle.

D. ExperimentIII evidence

In order to look for QSE in small particles there are
several considerations involved in preparing the sample.
First„ the particle size must be small enough so that
1005 is large enough to see with the available tempera-
ture range of the cryostat and voltage range of the ca-
pacitance bridge. As mentioned in the Introduction, a
100-A particle has a 5 of 0.1 meV, quite adequate for the
purpose. Second, to isolate QSE from superconducting
particle e8'ects the particles are best composed of normal
metal. Superconducting particles have quite high criti-
cal fields, ' which are broadly distributed in island films,
making it diScult to drive all of the particles normal by
application of a magnetic 6eld. %e used gold particles.
Superconductivity in the Al electrode is easily
suppressed by the application of a field greater than 100
G—we used a 6eld of 1 kG to ensure the Al was driven
normal. (Effects of a superconducting electrode are de-
scribed in Sec. V.) Third, the tunnel barrier should be of
the right thickness so that the Debye curves fall within
the frequency range of the bridge in the temperature and
voltage range of interest. This is a difficult requirement
to meet, since the tunneling rate goes exponentially with
the barrier thickness. Fortunately, we found that very
thin evaporated A1203 Qms could produce a barrier of
useful thickness, as described in Sec. II. Finally, the
sample must also satisfy the conditions previously men-
tioned: no dc in-plane conductance, no dc capacitor
conductance, and it must show a small memory effect.

Figures 12 and 13 show the set of temperature and
voltage data taken on a sample of the type of Fig. 1(b).
The data were taken in a He dilution refrigerator whose
lowest operating temperature in the run was 140 mK.
The data are presented as plots against co/T and co/V to
show the deviation from scaling.

The lowest temperature corresponds to an energy 0.01
meV —well below the estimate for 5 in a 100-A diameter
particle (0.1 meV). The lowest voltage shown in the
figures is Vz ——0.4 mV. Voltage amplitudes smaller than
this produce little change in C and D at this tempera-
ture. From the relationship for y, Eq. (3), we note that
the voltage V at the particle is about 0.1 rnV at this
value of Vz.

In this sample, for most of the measuring voltages and
temperatures, the loss peak appears within the frequency
range of the bridge. In the 140 mK voltage data and in
the temperature data we see that reductions in voltage
amplitude and temperature, respectively, result in a
reduction of the amplitude and the dissipation constant
peak. %e also observe some reduction in the low-
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FIG. 12. Temperature data taken on sample I plotted
against frequency/temperature.

frequency capacitance with reduced amplitude and tem-
perature, suggestive of the shifts of the tunneling rates of
many particles to lower frequency than that predicted in
the scaling model. The frequency ~indow of the bridge
precludes observation of the low-frequency side of the
curves at the lowest voltages. ' Note that in the temper-
ature data the curves for the lowest two temperatures
appear to the right (higher co/V) of curves for the higher
temperatures.

The deviation from scaling in the data are qualitative-
ly similar to, though less dramatic than, the computer
data of Fig. 11. If 5-0. 1 meV, then the deviations from
scaling occur at eV/5-30 and kT/5-10, values lower
than those obtained from the computer model—
indicating a narrower distribution of levels than the his-
togram of Fig. 10. As mentioned before, the extent of
the broadening of the curves, at a given voltage, will de-
pend on the distribution of level rates that one uses.
That we see deviations from scaling at voltages and tem-
peratures large compared to reasonable estimates for 5
indicates that QSE is indeed amplified in this experi-
ment. Note that in these samples the scaling deviations
are observed at voltages where sample 0 was obeying the
scaling laws. The difFerence can be explained if the
mean island size is larger in sample 0. Since one expects
QSE to go as the cube of the particle dimension, small
changes in island dimension can produce signi6cant
changes in the voltage and temperature at which QSE
will be observed. %e have not yet undertaken a sys-



37 DYNAMICS OF TUNNELING TO AND FROM SMALL METAL. . .

2240 '- *~
CL

2160 - x o 4 I+x

2080—
o o.amv a 6.smv&

o.s v * iz.a v
+ 1.6rnV 25.6mV

1 920 x $.2mV ~ 51.2mV 8 p
Q

1920—

1840—

o 't 760—

t 680—

Q 0
0

0 Al normol
& Al sup8rconductirlg

(a)
1Q 1Q 1Q 1Q 10

f requ e n cy/volta g e (H z/rnV)

10' 10'
frequency (Hz)

0.05
C
U

C0
O

C0
U
CLI
(f)

0.04
'Coo

0.02- o
k4 4

0.01
g~X

~ 0
0.00 '

* 0
b

Q

Q

0.05

0.04—U

0o 0.0$-
C

~ — 0.02—0
U
Q

0.01-
N

0.00

0 0

0 o o

10" 10 10 10 10

frequency/voltage(Hz/mV)b

FIG. 13. Voltage data taken on sample 1 plotted against
frequency/voltage.

10 10 10 10 1Q

frequency (Hz)
FIG. 14. Comparison of data from sample 2 vvhen the

aluminum electrode is normal and superconducting. The
measuring voltage is 0.2 mV at the sample.

tematic study of correlating mean island sizes with devi-
ations from scaling.

In the temperature data we see the curves shifted to
the right in the scaled plots at the lowest temperatures.
This indicates that the Coulomb suppression of the tun-
neling rate has stopped snd we are in the regime de-
scribed by Sec. IV A, where only a single quantum level
is involved in the tunneling process. Indeed, the nurn-
bers are reasonable: 0.26 K corresponds to an energy of
0.022 meV, which is smaller than the 0.1 meV estimate
for 5. These curves refiect the actual distribution of tun-
neling rates for the quantum states in a particle.

V. SUPERCONDUCTIVITY

%e now examine the case of transport between s small
particle and a superconductor. In the absence of
leakage-current processes, the zero-voltage tunneling
rate for a small particle wiB be reduced by the
Boltzmann factor e for quasiparticle excitations,
where 6 is the supe rconducting gap parameter. In
aluminum, 5 is about 0.17 rneV so that at 140 mK, the
Boltzmann factor has a value of e ' —about 6 orders of
magnitude. A suppression of tunneling current of this

magnitude is rarely seen in macroscopic
superconducting-normsl junctions due to leakage-current
effects. Novel to the small-particle experiment is the
suppression by the Coulomb barrier to rnultielectron
transport processes, commonly used to explain leakage
current in tunnel junctions.

Figure 14 shows data from sample 2, which has the
same sample geometry ss sample 1 but with a thinner
tunnel barrier, in which the superconductivity of the
aluminum is either present (triangles) or suppressed (cir-
cles) by an applied magnetic field. The data were taken
with a measuring voltage amplitude of 0.2 mV (0.05 mV
at the particle). Data at lower voltages give the same
data points. %e indeed observe a shift in the Debye
curve to lower frequency when the aluminum is in the
superconducting state compared to the normal state;
however, the shift is only about two decades. The volt-

age dependence is very weak below this voltage ampli-
tude rather than continuing to shift with reduced voltage
to the 6 orders of magnitude shift expected from the
Boltzrnann factor.

%e interpret the lack of sn enormous shift to leakage
current e8'ects. An example of a zero-bias conduction
mechanism between a superconductor and a normal rnet-

al is the Andreev process, in which an electron incident
from the normal metal is rejected as a hole awhile a
Cooper pair moves into the superconductor. A charge
of 2e is transferred into the superconductor. In tunnel
junctions, the process goes as the square of the tunneling
matrix element snd so is usually thought to be limited to
regions in the junction where the barrier is especially
thin. Vfhat is interesting about the observation of leak-

age current in this experiment is that because of the
large Coulomb barrier, a two-electron transfer process to
a single particle is forbidden at the voltage and ternpera-
tures we sre usmg.
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In our experiment, two-electron processes can only
occur if two small particles are used in the charge
transfer. Now the characteristic length scale for these
two electron processes is the superconducting coherence
length g. Recall that when V, kT/e ~&e/c only a frac-
tion of the particles, those with VD near the Coulomb
thresholds at +e/2c, are transferring charge. The fol-
lowing question may then be asked: at the temperature
of the data in Fig. 14, is it likely that each particle
transferring charge has a neighboring particle within a
distance g that is also transferring charge'?

The requirement for two-electron processes to be ob-
served in this experiment msy bc expressed by the in-
equality

CAl +
1 /2

e/c r
(24)

VI. MSCUSSIGN AND CONCLUSIO)NS

We have found in the tunnel capacitor structure a
fruitful means of studying the charge transfer process in-
volving a small metal particle. There are two features
that make the device advantageous for the study of this
process. First, the device properties are an ensemble
average of single-particle tunneling systems so that the
properties are readily descr'ibed by simple theoretical
models. Second, compared to the analogous dc experi-
ment, there is information about the distribution of tun-
neling rates in the system from the shape snd amplitude
of the Debye curves. On the other hand, like many
discontinuous Nm studies, quantitative results that de-

where r is a mean particle radius. For ihe parameters in
our experiment, this inequality is at best barely satisfied.
Furthermore, the fact that the magnitude of the loss
peak and capacitance signal is not reduced indicates that
the signal is not from just a few particles making espe-
cially good contact to the electrode. (We may also note
that this fact appears to be good evidence that local fluc-
tuations in b, are not responsible for the leakage
current. ) We suspect that multielectron processes are
not responsible for the signal we are observing herc„but
experiments at lower temperatures and voltages, so that
condition (24) is definitely not satisfied, are needed to ful-

ly test this conjecture.
We believe that, more likely, the zero-bias charge

transfer mechanism involves a single electron moving be-
tween a small particle and a localized state in the bar-
rier. If the trap-electrode distance is thin enough, equi-
librium between trap electrons and electrons in the Al
electrode can be maintained via tunneling —despite the
gap barrier. There are on the order of 10' particles per
square centimeter in the device, which is then the
minimum spatial density of localized states needed to ac-
count for the experimental results. Given the composi-
tion of the barrier in this device —an amorphous layer of
e-beam evaporated A1263—it would not be surprising to
have this, or a greater number of states in the barrier.

pend on the speci6cs of a particle's size, shape, work
function, etc. are not easily compared to theory
due to the broad distributions inherent to the method of
sample preparation. Analogous structures using
GaAs/Al„Ga, „Astechnology are now being made to
study charge transfer involving small quantum-well
discs, where electron-beam lithography provides a high
degree of control over the sample properties.

A notable property of the device is the way di8'erent
aspects of the charge transfer process come into play.
The Coulomb charging voltage causes a suppression of
the tunneling rate from a small particle when
V, kT/e ~e/c. In terms of the circuit model of Fig.
2(a), this implies nonlinear behavior for the resistor R.
An analysis of the consequences of this nonlinearity for
the ensemble of particles in a tunnel capacitor predicts
that the device capacitance and dissipation-constant data
will obey simple scaling relationships: co/'r in the zero-
voltage limit and co/V in the zero-temperature limit.
The scaling laws are obeyed by all particles with e/c
such that V, kT/e pe/c independent of the distribution
of particle size, shape, work function, etc. Experiments
con6rm these scaling predictions.

We expect QSE in this device to be magnified by a dis-
tribution of tunnel rates among the quantum levels of
the particles. A computer model using a distribution
based on the expected distribution for a macroscopic
particle yielded deviations from scaling at temperatures
or voltages corresponding to 100 levels. A more realistic
theoretical treatment may result in a diFerent distribu-
tion than the one we used. The results we have obtained
on two samples show deviations from scaling that are
qualitatively similar to though less dramatic than the re-
sults of the computer model, indicating that there is
indeed a distribution of tunnel rates in a small metal par-
ticle.

When the aluminum electrode is allowed to go into
the superconducting state, a gap-suppressed tunneling
model predicts a shift in the Debye peak of 6 orders of
magnitude. Instead, we observe a shrift of only two de-
cades. The difference is the leakage-current effect in the
device. There are two characteristics of the device that
make it useful for sorting out candidate leakage transfer
processes. First, due to the large Coulomb barrier
against the transfer of two electrons, multielectron pro-
cesses responsible for leakage current e6'ccts that occur
in macroscopic superconducting-normal tunnel junctions
are forbidden when the tunnel junction involves a single
small particle. Second, the device contains an ensemble
of 10' tunnel junctions, in which shorted-out junctions
do not contribute to the capacitance and dissipation sig-
nals. Since we observe the dissipation peak to have the
full magnitude it has when the superconductivity is
turned o8; we may thus exclude pinhole effects and local
fluctuations in the gap parameter from the list of possi-
ble explanations. We believe the most likely explanation
is a single-electron process involving a sma11 particle and
an electron trap in the barrier. We conclude that in
studies of leakage transport mechanisms, experiments on
tunnel capacitors may provide complementary results to
the usual J -V plots for macroscopic tunnel junctions.
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