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Empirical interatomic potentials permit the calculation of structural properties and energetics of
complex systems. A new approach for constructing such potentials, by explicitly incorporating the
dependence of bond order on local environment, permits an improved description of covalent ma-
terials. In particular, a new potential for silicon is presented, along with results of extensive tests
which suggest that this potential provides a rather realistic description of silicon. The limitations of

the potential are discussed in detail.

I. INTRODUCTION

Recently there has been intense interest in developing
simple model interatomic potentials, which would permit
direct calculation of the structural properties and ener-
getics of complex systems, in particular semiconduc-
tors.!~® Pair potentials have long been used to describe
rare-gas atoms, simple metals, and highly ionic systems.
However, such interesting materials as semiconductors,
ceramics, polymers, and refractory metals all exhibit co-
valent bonding, which creates serious problems for tradi-
tional empirical approaches.

This paper describes in detail a new approach to the
formulation of interatomic potentials for covalent sys-
tems. A brief description of the early stages of this work
was given elsewhere.* The central idea is that, in real sys-
tems, the bond order (i.e., the strength of each bond) de-
pends upon the local environment.” In particular, an
atom with many neighbors forms weaker bonds than an
atom with few neighbors. For more covalent materials,
this dependence is sufficient to stabilize structures with
low atomic coordination number (number of neighbors).
Including this dependence explicitly appears to solve
some of the most serious problems of describing covalent
systems without introducing any major increase in com-
putational complexity.

As an application of this general approach, a new
empirical potential for silicon is developed. Silicon
represents a particular challenge because it has many po-
lymorphs with qualitatively different bonding which, nev-
ertheless, have perversely similar cohesive energies. The
potential developed here is noteworthy in being able to
describe the polymorphous perversity of silicon. This po-
tential represents a considerable improvement over that
reported earlier.* In particular, despite its limitations, the
present potential appears to be sufficiently “global” to be
used in molecular-dynamics simulations.

This paper first reviews some relevant previous work in
Sec. II. Section III describes the new approach
developed here, emphasizing its general properties and
distinguishing features. An artificially simplified model
for silicon is developed and analyzed in Sec. IV, illustrat-
ing the important features of this approach. Section V
presents a more realistic potential for silicon, along with
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results of extensive tests, which demonstrate the accuracy
of this model while identifying its most important
remaining weaknesses. Finally, Sec. VI summarizes the
conclusions to be drawn from this work.

II. BACKGROUND OF THE PROBLEM

There are many problems in physics, chemistry, and
materials science which require for their solution a
knowledge of the total energy of a system of atoms as a
function of the atomic coordinates. A few examples are
determination of surface reconstructions, diffusion paths
and barriers, reaction coordinates and barriers, phonon
dispersions and interactions, and.mechanical and thermal
properties of materials.

In some cases, considerable progress has already been
made using quantum-mechanical calculations.?~? How-
ever, for problems which involve large systems or which
require statistical averages, quantum-mechanical calcula-
tions are at present not feasible because they are so nu-
merically intensive. Despite recent progress in this
respect,'> !4 it is clear that there will always be interesting
problems beyond the reach of ab initio approaches.

One solution to this problem is to construct an empiri-
cal interatomic potential E({r}), which gives the total
energy E of a set of particles, as an explicit mathematical
function of the set {r} of particle coordinates. If this
function is sufficiently easy to calculate, and if it gives a
sufficiently accurate description of the real physical sys-
tem of interest, then one can perform realistic calcula-
tions of the properties of quite large systems, or even of
statistical ensembles of such systems. Of course, such an
approach will inevitably involve a significant loss of accu-
racy, compared with ab initio calculations.

Until recently, most empirical interatomic potentials
fell into two simple groups. One group consists of pair
potentials, most notably the Lennard-Jones “6-12” poten-
tial and the exponential Morse potential. Such potentials
can be directly applied to a completely arbitrary
configuration of atoms but do not accurately describe any
but the simplest closed-shell systems. In particular, pair
potentials are completely inapplicable to strongly co-
valent systems such as semiconductors.

The other group of potentials are constructed to accu-
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rately describe small distortions from the ground state in
more complex systems such as diamond-structure semi-
conductors.! Perhaps the most famous of these is the
Keating model.!® Such potentials are useful for describ-
ing phonons and elastic deformations, but they cannot
describe the energy of states which differ qualitatively
from the tetrahedral ground state.

It is interesting to note that both these approaches cor-
respond to the leading term in a mathematical expansion
of the energy, viewed as a function of the atomic posi-
tions. The Keating model, and related approaches, are
roughly analogous to Taylor expansions of the energy
about its minimum. They can give rather accurate
descriptions of small displacements, but they become pro-
gressively less accurate for large displacements. A recent
review of such approaches has been given by Kane.!’
The pair potentials, on the other hand, take advantage of
a somewhat different expansion. The energy of N in-
teracting particles may be written as

E= 2 V,-(t,-)+ 2 Vz(l',-,rj)
i i<j
+ 3 Vilrprpr)+ -0, (1
i<j<k
where r, is the position of the nth particle and the func-
tion V,, is called an “m-body potential.” The first (one-
body) term corresponds to an external potential.

The first term which describes interactions of the parti-
cles is the second (two-body) term, which when taken
alone constitutes a pair potential. Thus, in this expan-
sion, the pair potential is the simplest possible model for
the interaction of a set of particles. A general feature of
physically reasonable atomic pair potentials is that they
favor the formation of close-packed structures, so they
are unsuitable for describing covalent systems, which as-
sume more open structures.

For describing covalent systems, a natural first step
was to include the next term in the expansion (1), i.e., a
three-body potential. This additional term could stabilize
more open structures, e.g., by favoring bond angles corre-
sponding to those of the diamond structure. Recently
Stillinger and Weber! proposed such an empirical intera-
tomic potential, incorporating two- and three-body in-
teractions, and used it in molecular-dynamics simulations
of molten silicon. Another such empirical three-body po-
tential was proposed by Pearson et al.?

Both of these potentials were designed to describe a
relatively limited set of properties of silicon. While they
made an important contribution in opening up a new ap-
proach, and have already found applications, it is too
soon to tell what range of properties these potentials will
prove useful for describing. In particular, Biswas and
Harmann® have criticized these potentials, noting that
they do not describe even qualitatively the behavior of
nontetrahedral polytypes of silicon.

Biswas and Hamann® introduced a more ambitious
agenda, which in fact provided the original motivation
for the present work. They pointed out that the cohesive
energies of many real and hypothetical arrangements of
silicon atoms are known from reliable quantum-
mechanical calculations. Examples include polytypes?
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(especially high-pressure phases), surfaces,”~!! and point
defects.!> One may therefore use this database as a start-
ing point, and try to systematically construct an intera-
tomic potential which will correctly reproduce the
cohesion over a wide range of coordination and bonding
topology.

Those authors therefore chose a relatively general
parametrized form for their three-body potential, and
fitted the parameters to reproduce their database of
cohesive energies, primarily of bulk polytypes.® Initial
results were promising.’> However, after further very de-
tailed investigations,!” those authors concluded that they
are unable, with a three-body potential, to describe the
energetics of all the diverse bonding geometries which
they initially considered. Instead, by focusing on the
most critical set of bonding geometries (e.g., point de-
fects), they obtained a potential which should be useful in
simulating many relevant properties of tetrahedrally
coordinated silicon, but which to some extent retreats
from the earlier goal of also describing polytypes accu-
rately.

It is my suspicion that the inability of three-body po-
tentials to describe a wide range of bonding geometries is
a rather general result, and not merely a shortcoming of
the specific forms assumed in previous work. As an alter-
native, a new approach was introduced* going beyond the
three-body potential.

The specific form which was first proposed* for this
model potential had some serious shortcomings. Phonon
energies were quite high, and more important, the dia-
mond structure was not the ground state of the potential.
The potential was thus not suitable for molecular-
dynamics simulations. An improved potential, based on
the same ideas, is therefore developed here. Section III
introduces the central ideas behind the present approach
to formulating an empirical potential.

III. ANEW APPROACH

A. Role of bond order

The work of Biswas and Hamann!’ suggests that a

three-body potential is not adequate for accurately
describing the cohesive energy of silicon over a wide
range of bonding geometry and coordination. However,
a general form for a four- or five-body potential would
probably prove intractable, and would contain far too
many free parameters.

In attempting to construct an accurate and tractable
potential, it therefore seems natural to abandon the use of
a general N-body form. Instead, the present approach at-
tempts to identify the relevant physics and to build it
directly into the form of the potential. Before focusing
on silicon, it is useful to consider trends in the bonding of
elements in a more general way.

From simple quantum-mechanical arguments,’ the
more neighbors an atom has, the weaker the bond to each
neighbor will be. The bond strength, or bond order, in
general depends in a complicated way on the geometry;
for example, even-membered rings might be favored over
odd. However, as discussed further in Secs. IV and V,
the most important single variable appears to be the coor-
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dination number, i.e., the number of neighbors close
enough to form bonds. The discussion here therefore
focuses on coordination.

If the energy per bond decreases sufficiently rapidly
with increasing coordination, then the diatomic molecule
will be the most stable arrangement of atoms. (The addi-
tional weak cohesion of molecular solids due to long-
ranged intermolecular forces is not of interest here.)
Such low coordination is the rule for atoms at the far
right of the Periodic Table, especially near the top.
Fluorine, at the top right corner, is the extreme case.

On the other hand, if the bond order depends only
weakly on coordination, then one expects close-packed
structures to form, in order to maximize the number of
bonds. This extreme corresponds, roughly speaking, to
metallic rather than covalent bonding. Such behavior is
found for atoms at the left and bottom of the Periodic
Table. In between, there is a systematic trend from low
coordination at the upper right to high coordination at
the lower left.

This trend suggests a picture in which the bond order
is a monotonically decreasing function of coordination,
with the trade off between bond-order and number of
bonds determining the equilibrium coordination. In most
cases one effect or the other dominates the trade-off.
Only a small region of the Periodic Table provides the
delicate balance necessary to yield intermediate coordina-
tion.

Silicon in particular is notable for the fact that, with
modest changes of pressure, it can assume structures with
a large range of coordination. The differences in cohesive
energy among these structures are remarkably small.? As
discussed in Sec. IV A, this is because the decrease in
bond strength with increasing coordination number very
nearly cancels the increase in the number of bonds, over a
large range of coordination. Silicon thus provides a par-
ticularly stringent test of our ability to accurately de-
scribe the dependence of bonding upon coordination, and
therefore the dependence of cohesion upon structure.

B. Explicit form for the potential

Because of the crucial role of bond order and its depen-
dence upon local geometry, it seems attractive to include
an environment-dependent bond order explicitly into the
potential in the following way. The interatomic potential
is taken to have the form

E= ZE:':%Z Vii »
' ! @)
Vi=fclrilayfrlr)+b;f 4(r;)] .

Here E is the total energy of the system, which is decom-
posed for convenience into a site energy E; and a bond
energy V;;. The indices i and j run over the atoms of the
system, and rij is the distance from atom i to atom j.

The function fj represents a repulsive pair potential,
which includes the orthogonalization energy when atom-
ic wave functions overlap, and f, represents an attrac-
tive pair potential associated with bonding. The extra
term f is merely a smooth cutoff function, to limit the

range of the potential, since for many applications short-
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ranged functions permit a tremendous reduction in com-
putational effort.

The function b;; is the sole novel feature of the poten-
tial. It represents a measure of the bond order, and is for
now assumed to be a monotonically decreasing function
of the coordination of atoms i and j. Determining a satis-
factory form for b;; is by far the most difficult part of ap-
plying this approach. In addition, terms which act to
limit the range of interaction to the first neighbor shell
are included in b;; and are discussed in the following.

’} .,
The function a;; consists solely of such range-limiting
terms.

The form (2), which is based on physical and chemical
intuition, already represents an extreme simplification
from the most general mathematical form. For example,
although (2) includes implicitly a three-body interaction,
it might prove worthwhile in the future to include an ad-
ditional term, with an explicit three-body form.'® Also,
for some purposes it might be desirable to add a weak,
long-ranged pair potential, e.g., in treating molecular
solids or graphite.

The functions fy, f4, fc, a;j, and especially b;; still
need to be determined. As discussed elsewhere,*’ the
choice of exponential functions for fp and f,, as in a
Morse potential, has the very desirable feature of leading
automatically to the ‘“‘universal” bonding behavior dis-
cussed by Ferrante, Smith, and Rose.!® This provides a
compelling reason to take

Sfr(r)=Aexp(—Ar),
fa4(r)=—Bexp(—A,r) .

ij

(3)

The interested reader is referred elsewhere*’ for further
discussion of this choice.
Here the cutoff function is simply taken as

1, r<R-D
felr)=1{f—1Lsin —g—(r—R)/D , R—=D<r<R+D
0, r>R+D,

4)

which has continuous value and derivative for all r, and
goes from 1 to O in a small range around R. R is chosen
to include only the first-neighbor shell for most structures
of interest. The short range of the potential is numerical-
ly advantageous in many applications, and is important
for the applicability of the simple ideas about coordina-
tion discussed here.

In the present work, b;; is taken to have the following
form:

bij=(1+Bn§;;_)~l/2n ,

§ij= kg Selru )8 (0, ) exp[A3(r;; —ry )1, (5a)
ij

g(0)=1+c?*/d*—c?/[d*+(h — cosb)?],

where 6, is the bond angle between bonds ij and ik.
While b;;5b;, this fact has no significance other than for
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the (somewhat arbitrary) division of total energy into a
sum of site energies in (2). If, for aesthetic reasons, a
more symmetric form is desired, the sum over pairs of
atoms in (2) can be replaced with a sum over bonds
(i > j), and then b;; can be replaced with the symmetrized
function b;;=(b;; +b;;)/2.
The form proposed for a;; is
a;=(1+a"yf)~ 12"
= 3 fc(r,-,c)exp[?xé‘(r,-j—r,-,c »1,
ki, j

(5b)

with a taken sufficiently small that a;; ~ 1 unless 7,; is ex-
ponentially large, which will only occur for atoms outside
the first-neighbor shell. However, in most of the present
work, the cutoff a; is not actually used, i.e., a=0, so
a;;=1. Equation (5b) is included for completeness, be-
cause the potential can probably be further improved
with such a term.

In a previous publication,* a different specific form for
b,-j was assumed, which, rewritten to conform to the

present notation, was
bjj=exp(—§;;/a),

§1j= k; .[fC(rik)/fC(rij)]nexp[n)"Z(rij—rik)]g(eijk) ’
ij
(6)

g(6)=[c+ exp(—d cosf,)] " .

Initial results were encouraging, and several surface
properties were described better than with (5). Unfor-
tunately, for apparently reasonable parameters, (6) yield-
ed a formation energy of essentially zero for the
hexagonal-site interstitial. The existence of a zero-energy
defect in the diamond structure indicates that the dia-
mond structure is not the ground state for that potential.
Therefore that potential could not be used for molecular-
dynamics simulations, restricting its usefulness. More-
over, Dodson® has argued that this reflects a general
problem with the form (6), and does not just result from
the choice of parameters.

While the present work was in progress, Dodson in-
dependently proposed® a minor modification of (6) which
appears to correct the most serious shortcoming, making
diamond the ground state. However, that modified po-
tential has not yet been extensively tested. Presumably it
retains the rather high phonon energies of (6).

Before discussing the more successful form (5) for the
potential, it is worthwhile to describe a highly simplified
potential, which gives considerable insight into the im-
portant physical features which an empirical potential of
the form (2) should embody. This simplified potential is
the subject of Sec. IV and provides the starting point for
the more accurate potential (5), which is discussed in Sec.
V.

IV. MOTIVATING THE FORM
OF THE POTENTIAL

A. A simple illustrative example

This section examines earlier quantum-mechanical re-
sults for silicon structural energies, and uses them to
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motivate an exceedingly simple form for b;;. That form,
while inadequate for many applications, demonstrates
how easily the overall behavior of silicon may be cap-
tured in an empirical potential of the form (2).

Figure 1 shows the cohesive energy per atom and per
bond of silicon, for a number of high-symmetry struc-
tures, based on the results of self-consistent pseudopoten-
tial calculations within the local-density approximation
(LDA) by Yin and Cohen.? In the spirit of Sec. III A, we
assume that it is justified to draw a smooth curve through
these data, at least for the purpose of making qualitative
arguments.

First, note that in Fig. 1 the energy per bond is a
monotonically decreasing function of coordination, con-
sistent with the ideas previously discussed. Second, note
that over the range of coordination from threefold to
twelvefold, the energy remains relatively constant. It is
easily shown that, for a Morse potential of the form (3),
with A;=2A,, and including only nearest neighbors, the
cohesive energy per atom is independent of coordination
when the bond-order parameter b,; is proportional to
2z~ 12 where z is the coordination number. Thus, to ex-
plain the relatively weak dependence of cohesive energy
on coordination in silicon for z > 3, it is natural to assume
that b;; <z ~1/2 in the limit of large z.

To yield an energy minimum at an intermediate coor-
dination, b;; must at first grow more rapidly than z ~'/2
with decreasing coordination, but then it must saturate at
low coordination. These two constraints are convenient-
ly accommodated by assuming a potential of the form

bij=(1+an§‘r_xj)—l/2n ,
gij= > felry) .

ki, j

)

Here §;; counts the number of other bonds to atom i be-
sides the ij bond. When only the first shell of neighbors
falls within the cutoff, §;; —»z —1.

Equations (2)-(4) and (7) together constitute a com-
plete form for a model potential. The simplifications in
(7) are, first, the neglect of bond angles, and second, the

LI e e o

cohesive energy (eV)
N

T

5 1 1 1 1 1 1
0O 2 4 6 8 10 12 14

coordination Z
FIG. 1. Cohesive energy vs coordination number for high-
symmetry structures: dimer molecule, graphitic, diamond, sim-
ple cubic, face centered cubic. Solid circles, energy per atom;

open circles, energy per bond. Lines are spline fits to guide the
eye. Cohesive energies taken from Yin and Cohen (Ref. 8).
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neglect of distance (except via f) in defining the effective
coordination §;;. These effects are included in the more
detailed form (5) of bu’ which is discussed in the follow-
ing section.

It is worth calling attention at the outset to the obvious
pathologies of this simplified potential. All structures
with, e.g., four nearest neighbors at equal distances have
the same energy for this potential, so silicon is entirely
stable in a two-dimensional square lattice. The shear
modulus of the diamond lattice is identically zero, be-
cause of the lack of angular forces. If there are neighbors
at distances comparable to the range of f, it becomes
somewhat arbitrary whether they should be counted in
§ij» and so nonphysical values for b; and for the energy
could result in such cases. Nevertheless, if we exclude
obviously nonphysical structures, this almost trivial po-
tential provides a remarkable description of the bonding
properties of silicon.

Fixing A,=2A, for simplicity, as in the traditional
Morse potential, the five remaining parameters are
chosen to fit the cohesive energy, lattice constant, and
bulk modulus of diamond-structure silicon, and the cal-
culated cohesive energy of the hypothetical graphitic and
simple cubic phases. The resulting values are A,=1.4654
A-1 4=2280.4 eV, B=154.87 eV, a=0.3685, and
n=10.797.

Since (7) gives a potential which depends only upon
coordination (for structures where a single neighbor shell
contributes), the results are conveniently summarized in
Fig. 2, which is valid for any structure where all neigh-
bors inside the cutoff are at equal distances.

Since this potential is only illustrative, the results will
be sketched rather briefly. Bond lengths for the struc-
tures in Fig. 2 are described very well, except that the
shortening for very low coordination is underestimated.
[The accuracy is comparable to that of the potential
(2)-(5) discussed in Sec. VB.] The energy of the zone-
center optical phonon is correct to within 20%. The en-
ergy of the vacancy is found to be 2.9 eV, and of the
tetrahedral-site and hexagonal-site interstitials, 4.5 and

cohesive energy (eV)

0O 2 4 6 8 10 12 14
coordination Z

FIG. 2. Cohesive energy vs coordination number for the
simplified model potential (7) of Sec. IV. Solid line, energy per
atom; dotted line, energy per bond. Circles represent results of
Yin and Cohen (Ref. 8) as in Fig. 1.
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2.6 eV, respectively. These defect energies are roughly
consistent with results of LDA calculations,'? to within
the 1 eV accuracy typical of such calculations.

To show the importance of the choice of cutoff, the
tetrahedral interstitial was recalculated with an abrupt
cutoff at 2.5 A, which excludes interaction with the six
atoms at roughly 2.7 A from the interstitial. This change
drastically lowers the formation energy, from 4.5 eV to
1.1 eV. However, excluding the second neighbors is
clearly unphysical in this case, since their distance is
comparable to that of the first neighbors in a close-
packed structure (e.g., 2.74 A in fec silicon).

For the Si(100) 2X 1 surface,” both the bond contrac-
tion of the dimers and the energy gain from dimerization
are well descrlbed For the hypothetical V3% V3 Si ada-
tom geometry'! on Si(111), which is relevant to the
Si(111) 7X 7, the geometries are well described for ada-
toms in both the ‘“hollow” and ‘“top” threefold sites,
despite the quite large relaxations, and the nonintuitive
fact that the top site is favored by about 0.6 eV is ob-
tained correctly, albeit with a somewhat exaggerated gain
of 0.9 eV.

Because of its surprising accuracy in a wide range of
configurations, this simplified potential provides a good
starting point for developing a more general potential.
The form (5) used below was motivated largely by a
desire to stay as close as possible to the form (7) while
avoiding its pathologies.

B. Form of the potential

The results above provide convincing evidence that
atomic coordination number is the main variable deter-
mining the bonding properties of silicon in different
structures. Moreover, the form (7) seems to describe the
dependence on coordination rather well. It is therefore
convenient to keep the form (7) for b;;, while altering the
definition of the effective coordination §;; in two ways.
First, the relative distance of different neighbors should
surely be taken into account in defining the effective coor-
dination number. Second, some bond-angle term is need-
ed to stabilize the diamond structure against shear, at
least if the potential is to be kept short ranged.

Regarding the first point, we imagine that if atom i has
two neighbors j and k, these atoms compete to form
bonds with i. Both bonds are weakened, relative to the
two-atom case. However, if the bond rij is much shorter
(stronger) than the bond r;, it seems reasonable that the
ij bond will not be appreciably weakened by the presence
of the ik bond, whereas the ik bond will be drastically
weakened.

Such an effect was already included in the earlier po-
tential (6). However, the effect of small differences be-
tween the two bond lengths may have been exaggerated
in (6), giving, for example, rather high phonon energies.
In (5), therefore, §;; is defined so that the effect is zero to
first order in the difference between bond lengths, and
only becomes large when the bonds differ by a length of
order 1/A;. One implication of this is that there is negli-
gible bonding to atoms whose distance exceeds that of the
nearest neighbor by more than a few lengths 1/A;.
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A similar cutoff on the repulsive interaction with rela-
tively distant neighbors may be included, as in (5b). This
is motivated primarily by a desire to minimize the effect
of the (rather arbitrary) cutoff f. in (2), while insuring
that the interaction does not extend to the second-
neighbor shell.

To introduce bond-angle forces into the potential, §;; is
modified in (5) so that other bonds ik to atom i weaken
the bond ij more or less, depending on the angle between
the two bonds. There is no reason, other than conveni-
ence, to restrict the dependence upon bond angle to the
§;; term, and it might be possible to further improve the
potential by relaxing this restriction.

In (5), the parameter h is formally the cosine of the en-
ergetically optimal angle, although 4 is actually permit-
ted to lie outside the range from —1 to 1. The parameter
d determines how sharp the dependence on angle is, and ¢
determines the strength of the angular effect.

Unlike the earlier potential (6), the dependence on an-
gle is no longer required to be monotonic. A prime
motivation for this change was the desire to be able, in
the future, to describe materials such as arsenic, which
favor a bond-angle distribution which is not consistent
with monotonic bond repulsion.

V. ANEW POTENTIAL FOR SILICON

A. Choice of parameters

The potential (2)-(5) is intended to be applicable to a
wide range of elemental systems. Its usefulness in any
particular application depends critically upon the choice
of values for the parameters in the potential. Here I fol-
low the approach introduced by Biswas and Hamann® of
systematically fitting the parameters to reproduce a data-
base of known properties of silicon. It is worth stressing
that, even for silicon, the uncertainties in the database
(i.e., in calculated energies of silicon surfaces,”!! de-
fects,'? and/or polytypes®) represent an important limita-
tion here. For other materials, the dearth of data makes
this procedure more problematic at present. Neverthe-
less, it is feasible for workers to generate their own data
for the fitting procedure,’ so the application of this pro-
cedure is limited primarily by the considerable effort in-
volved in generating an adequate database and fitting the
parameters.

Applying this approach is unfortunately not straight-
forward, but rather requires a number of judicious
choices based on physical intuition. This necessity arises
because the potential will never be able to reproduce the
entire database perfectly. One must therefore decide,
first, what weighting to assign to the different data, i.e.,
what importance to assign to different atomic
configurations. This choice depends in part upon what
physical systems one intends to apply the potential to,
e.g., small clusters where all atoms have low coordina-
tion, or high-pressure phase transitions where all atoms
have high coordination.

In addition, one might choose to fit, not energies, but
rather those differences in energies which are expected to
be important. For example, it might not be worthwhile
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to attempt to fit the cohesive energies of carbon in either
the diamond or graphite structure to better than 1-2 eV,
but the difference in cohesive energies must be accurate
to much better than 0.1 eV if one wants to obtain the
correct ground state.

Because the energies of the configurations used in
fitting the parameters must be calculated a very large
number of times from the model potential, the database
used here includes only very simple structures, mostly
bulk polytypes, instead of making the fullest use of
known energies of point defects, surface reconstructions,
etc. The resulting values for the parameters are summa-
rized in Table I.

Another factor in determining the parameters, which
has been stressed by Dodson,® is the desirability of per-
forming a global search of parameter space to obtain the
best fit to the database. Such a procedure was not at-
tempted here, but it represents an attractive approach for
future work. Unfortunately, techniques for performing
global optimizations are inherently difficult, and Dodson
implemented one such technique only with an exceeding-
ly limited database. The use of a small database during
the fitting is only justified if the resulting parameters are
subsequently tested against a much larger database to
verify their suitability, as was done here.

Finally, one serious limitation of the present study is
that certain crucial parameters were not systematically
optimized. Specifically, the two parameters R and D
which define the cutoff function f were simply chosen
so as to include the first-neighbor shell, but not the
second, for several high-symmetry bulk structures. Some
indications that this is not an optimal choice are de-
scribed below. Also, the parameter A; plays the role of a
cutoff of sorts, and that parameter was simply taken
equal to A, because this seemed like a physically reason-
able length scale. Results for A;=A, (which has no such
physical rationalization) were also checked as a crude
test. Similarly, investigation of the effects of including
a0 has barely begun.

While a more systematic determination of R, D, a, and
A; is both possible and desirable, there are some
difficulties in this. In particular, these parameters be-
come most significant in rather complex low-symmetry
geometries, with neighbors distributed over a range of
bond lengths. Thus the database used in the present
study is probably not adequate to provide a physically
meaningful determination of these parameters.

As a result of the several limitations previously dis-
cussed, the parameters presented here are certainly not
the best set possible for describing silicon with the form

TABLE 1. Suggested parameters for silicon, to be used in
Eqgs. (2)-(5). See text for discussion of expected accuracy of this
potential, and for alternative values of R, D, @, and A;.

A=3264.7 eV B=95.373 eV
A,=3.2394 A ! A,=1.3258 A !

a=0 B=0.33675 n=22.956
c=4.8381 d=2.0417 h =0.0000
A=A, R=3.0A D=0.2 A
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(2)-(5). Thus, the tests described in the following do not
necessarily reflect fundamental limitations of (2)-(5).
They may, in part, merely reflect the fact that an optimal
set of parameter values has not been determined.

B. Tests and results

It is impossible, with a finite set of tests, to fully
characterize such a potential, or to guarantee its success
in any complex application such as a dynamical simula-
tion. However, a serious attempt has been made here to
test this potential more thoroughly than any other to
date, at least insofar as is possible using static tests. The
resulting catalog of achievements and shortcomings
should be helpful in evaluating the appropriateness of
this potential for any specific future application.

As a first test, the energy was calculated as a function
of volume for several bulk structures, using the parame-
ters of Table I. The results are shown in Fig. 3. (Similar
tests applied to several previous model potentials are de-
scribed in Ref. 3; see also Ref. 17.) One dramatic
shortcoming of the present potential arises with S-tin,
which is experimentally the first new phase to appear
with increasing pressure. This structure is shown as a
dotted line in Fig. 3. The energy is somewhat too high,
the equilibrium volume too large, and the bulk modulus
too large. As a result, this structure would not be even a
close competitor for the high pressure phase, according
to the model.

Some tests revealed that the problem arises from in-
teractions with the second neighbors in B-tin, which has
six atoms in the first-neighbor shell. A similar problem
arises for bcc, although that structure is of less mterest
here. Reducing the cutoff parameters to R=2.75A and
D =0.1 A results in the solid curve in Fig. 3, which is m
much better agreement with the LDA calculations.®
(Other structures shown in Fig. 3 are unaffected by this
change, except bcc, which is somewhat improved.) A
similar improvement can be obtained by choosing
@=0.001 and A;=4 A ~!. Other effects of these alterna-
tive parameter choices are discussed briefly in the follow-
ing.

Since a plot such as Fig. 3 is not appropriate for sys-

-3.8
—4.0r
—4.2+1

4.4+ 1
-4.6 1

energy ( eV/atom )

-4.8 . :
10 14 18 22 26

atomic volume ( &2 )

FIG. 3. Calculated cohesive energy vs volume per atom of
silicon in the diamond, simple cubic (sc), B-tin (B), simple hex-
agonal (sh), bee, and fce structures. For B-tin, the dotted curve
shows the result of the potential as given in Table I, while the
solid curve results from taking R =2.75 A and D=0.1 A, as
discussed in text.
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tems with very low coordination number, Fig. 4 gives the
energy versus coordination number for the present mod-
el, just as in Fig. 2. From a chemical viewpoint, the bond
length is a particularly crucial property, which is inti-
mately related to the bond order. Figure 5 shows bond
length versus coordination number for the same high-
symmetry structures as in Fig. 4.

The model here is seen in Figs. 4 and 5 to describe
rather well the variation of bonding and bond length with
coordination. Even the dissociation energy and vibra-
tional frequency of the Si, molecule are in reasonable
agreement with experiment. Thus, in contrast to other!-?
empirical three-body potentials, the two-body part of the
present potential gives a good description of the real
two-body system. The hypothetical graphitic structure is
also described rather well except for the complete ab-
sence of long-ranged interlayer forces in this model. For
both graphitic and molecular silicon, the bond contrac-
tion relative to the bulk is qualitatively correct, though
somewhat underestimated.

Another natural test is the calculation of elastic con-
stants and phonon energies in the diamond structure.
Such calculations have been performed by Heggie,?® and
his results are simply quoted here. The elastic constants
are ¢, =121 GPa, c;;=86 GPa, c4=10 GPa, and
£=0.83 which should be compared with experimental
values of 166, 64, 80, and 0.54, respectively. The only in-
dication of a significant problem is the exceedingly small
value of c,, which reflects the very weak bond-angle
forces in this potential.

The calculated?® phonon dispersion curve is shown in
Fig. 6, along with experimental data. The overall agree-
ment is rather good, considering that no phonon data
were included in the fitting procedure. Again, the weak
bond-angle forces are reflected in the low energies of the
zone-edge transverse acoustic phonons. While these soft
bond-angle forces are no doubt acceptable in many appli-
cations, anyone using this potential should certainly con-
sider whether an accurate description of shear displace-
ments or other strictly angular distortions is essential to
their problem.

per atom

cohesive energy (eV)
w N
S e M

LA a Ly

S:IIIIII
0 2 4 6 8 10 12 14

coordination Z
FIG. 4. Cohesive energy vs coordination number for poten-
tial (2)-(5). Solid line, energy per atom; dotted line, energy per
bond. Lines are spline fits to results for high-symmetry struc-
tures as in Fig. 1. Circles represent ab initio results (Ref. 8).
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FIG. 5. Bond length vs coordination number for potential
(2)-(5) (circles) compared with ab initio results (Ref. 8) (trian-

gles) for high-symmetry structures as in Fig. 1. Lines are spline
fits to guide the eye.

A particularly stringent test is the calculation of ener-
gies of point defects. Reliable experimental data is not
available in this case, so one must rely on calculated for-
mation energies. Several groups have reported LDA cal-
culations of defect-formation energies,'? with an accuracy
of around *1 eV. In obtaining results of the present
model for comparison, the atomic relaxations were calcu-
lated with a relatively crude scheme, so the formation en-
ergies reported here represent an upper bound, with a nu-
merical accuracy of typically 0.1 or 0.2 eV in highly dis-
torted cases.

The calculated vacancy-formation energy here is 2.8
eV, which compares reasonably well with the value of
3.6-3.8 eV in Ref. 12. For the interstitial geometries
denoted'? T, H, and B, the respective energies calculated
here are 5.8, 4.5, and 4.5 eV, which should be compared
with LDA values'? of around 5-6, 4-5, and 4-5 eV.
Note that the trends are described exceptionally well, ex-
cept for the vacancy. On the whole, these tests are very
encouraging.

However, the simple vacancy was found not to be the
vacancy configuration of lowest energy in this model. A
“split” vacancy had an energy 0.6 eV lower than the sim-
ple vacancy for a 54-atom cell with periodic boundary

frequency (THz)

X r L

FIG. 6. Phonon dispersion curves calculated by Heggie (Ref.
20) with the present potential. Circles are experimental phonon
energies.

J. TERSOFF 37

conditions. Because of the large strain field of the split
vacancy, the energy might be even lower for a truly iso-
lated defect.

While such a split geometry has in fact been pro-
posed?! as the ground state of the vacancy, experimental
evidence? suggests that the actual ground state is the
simple vacancy. Since the split geometry avoids dangling
bonds at a high cost in strain energy, the underestimation
of bond-bending forces in the present parametrization
could easily cause an underestimation of the formation
energy of the split vacancy.

While many calculations of defect energies have been
motivated by the problem of self-diffusion in silicon, Pan-
dey® recently proposed a “concerted exchange” mecha-
nism for self-diffusion which does not require the pres-
ence of defects. The energy of the saddle-point
configuration in that process, i.e., the barrier for self-
diffusion, is calculated here (for a 24-atom cell) to be 4.5
eV, in fortuitously good agreement with Pandey’s ab ini-
tio result of 4.3 eV. When a shorter cutoff is used, as sug-
gested above for B-tin, the barrier here is reduced to 3.7
eV. This is still a very satisfactory agreement. On the
other hand, for either cutoff the energies along the pro-
posed diffusion path are substantially distorted, leading to
a grossly inaccurate entropy for diffusion.”

In a very different test, Metzler and Sabochick?* per-
formed zero-pressure molecular-dynamics simulations
with this potential up to a temperature of 1200 K. They
found that the system has a negative coefficient of
thermal expansion. Relative to T=0 K, the linear con-
traction was roughly 0.03% at 300 K, and 0.5% at 1000
K. However, the contraction disappeared upon steepest-
descent quenching, and so it did not represent any change
in bonding topology. Moreover, the bond lengths in-
creased upon heating, as expected, and fourfold coordina-
tion was maintained, even while the volume per atom de-
creased.

Silicon does in fact exhibit thermal contraction over a
substantial temperature range, roughly from 20 K to 120
K. This contraction is associated with excitation of
transverse acoustic modes.?> Since the energy of these
modes is underestimated in the present model, due to the
soft bond-angle forces, it is perhaps not surprising that
they should dominate the thermal expansion over a wider
range of temperature than in the real material. It appears
that this thermal contraction will not represent an impor-
tant shortcoming in most applications. The correct
description of bond topology (energy for under- and
over-coordinated atoms, etc.) is more important than an
accurate description of bond-angle forces. Nevertheless,
it is important to be aware of the implications of the
overly soft bond-angle forces in the present parametriza-
tion.

In a final set of static tests, the potential was applied to
calculate the energies of several surface reconstructions.
For both (111) and (100) surfaces, the energy gained by
surface relaxation was negligible, while the first interlayer
spacing decreased by approximately 0.1 A. The 2X1 di-
mer reconstruction of Si(100) gave a gain of 2.4 eV per di-
mer, with a dimer bond length of 2.31 A, i.e., shorter
than the bulk bond length. Both the bond length and en-
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ergy are in rather good agreement with LDA calcula-
tions.” However, for the 2X 1 reconstruction of Si(111)
proposed by Pandey,'° the model gave an energy 0.15 eV
per atom higher than the relaxed 1X1 surface, in con-
trast to an energy 0.2 eV lower found by LDA calcula-
tions. o

For the hypothetical V'3X V'3 Si adatom geometry'!
on Si(111), the top and hollow threefold sites were both
about 0.1 eV per adatom more favorable than the 1X1
surface. The 0.6 eV difference between the two sites
found by Northrup'! is not well described by this poten-
tial. However, the geometries, which involve substantial
distortions, are described quite well.

In general, the present potential did not perform as
well in describing surfaces as the earlier potential (6). Re-
sults for that potential were described in Ref. 4. Some
rough tests (not described here) indicate that the results
for surfaces here could be improved somewhat by taking
A;=A, instead of A;=A,. That change is not recom-
mended for general simulations, since it is ad hoc and not
well tested, and leads to a less accurate description of
point defects.

As previously mentioned, the potential was also tested
with alternative values for the cutoff parameters. With
R=2.75 A and D=0.1 A, the B-tin properties were
dramatically improved, as shown in Fig. 3. Properties for
the bce structure were also somewhat improved. Other
polytypes were little affected. Properties for point defects
and surfaces tested here were slightly worse, but not
enough to be very significant in the context of the overall
accuracy.

Using the values of R and D in Table I, but with
a=0.001 and A;=4 A ~!, led to similar improvements in
polytypes, but to slightly more severe worsening of point
defects, than with the reduced cutoff distance. For exam-
ple, the formation energy of the tetrahedral-site intersti-
tial fell to 3.3 eV.

Finally, preliminary dynamical simulations of molten
Si have been carried out by several workers.?® The liquid
state is not very well described by the present potential,
which appears to impose too strong a tendency to four-
fold coordination. It is not yet clear whether this behav-
ior can be improved by a different treatment of the cutoff.
It is worth remarking that others®”?® have found it con-
venient to intentionally alter earlier potentials so as to
impose fourfold coordination in the melt, in order to
achieve a better description of the amorphous state ob-
tained upon subsequent quenching.

To summarize, the potential performed quite well in
describing many properties of silicon, and the main
shortcomings found during testing could be attributed to
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two problems with the potential.

The first problem involved the somewhat abrupt and
arbitrary nature of the cutoff of the potential with dis-
tance. Besides leading to a poor description of the B-tin
phase, tests which were not described here indicated that
the energies of certain defects could vary by almost 1 eV
with reasonable changes in the cutoff. Also, when the en-
ergy was studied as a function of some atomic position
(e.g., in order to determine an energy barrier for
diffusion), the cutoff could sometimes introduce spurious
energy minima or maxima. Probably these problems
could be solved by an improved treatment of the cutoff.
However, this remains to be demonstrated.

The second problem involves the overly soft bond-
bending forces in the present model. In many situations,
including defects and surface reconstructions, the favor-
able geometry is determined by a trade-off between the
number of dangling bonds and the strain energy. By un-
derestimating the strain energy, the present potential can
easily favor the wrong geometry, as appears to be the
case for the split vacancy. Thus while the potential is
certainly adequate for many purposes, an improved treat-
ment of the bond-angle forces [which are included in a
somewhat ad hoc way in (5a)] is highly desirable.

VI. CONCLUSIONS

There has already been considerable work on develop-
ing an empirical interatomic potential for silicon.!~®
While the specific parametrization proposed here may be
more accurate than previous potentials, this is by no
means certain. The ultimate test is the usefulness of the
potential in simulating properties of interest for silicon.

The central contribution here is, however, not the
specific parametrization for silicon, but rather a general
approach to constructing interatomic potentials, which
goes beyond the usual three-body form. It is my hope
that this approach may form the basis for developing in-
teratomic potentials for a wide class of materials. In par-
ticular, the relatively good transferability of the present
potential makes it appropriate for cases where the data-
base of known properties is very limited.
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