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Elastic constants of sodium from molecular dynamics
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%'e have performed molecular-dynamics calculations of the adiabatic elastic constants of sodium

at three different temperatures, T =198, 299, and 349 K. Our method uses Auctuation formulas

appropriate for the microcanonical ensemble which contain the elastic constants. In the simula-

tion we have used a erst-principles potential to model the interaction between the sodium atoms.
The results, including the shear modulus C44, show good agreement with experiment at all three
temperatures. We have analyzed the contributions to the elastic constants from different types of
terms appearing in the fluctuation formula and compared these contributions to other model-

potential calculations. The volume dependence in the potential has considerable effect on the
values of elastic constants. In comparison to some earlier calculations which employed pair poten-
tials with no volume dependence, the 6uctuation contributions to elastic constants C» and C~ are

noticeably large (20% of the value of the elastic constants in soxne cases). %e Snd that the elastic
constants do not change by much for the different potential-cutoff ranges employed: 17.85, 23.27,
and 27.70 bohrs.

I. INTRODUCTION

The molecular-dynamics method together with proper
ensemble fluctuation formulas' has proven useful for cal-
culating the adiabatic elastic constants for a Lennard-
Jones system and for silicon. In these systems, the
model potentials used depend only on the spatial posi-
tions of the particles. It has long been known that the
interaction potentials and thus the properties of metals
depend strongly on the density. For a realistic and con-
sistent calculation of the elastic constants of metallic sys-

tems, the fluctuation method should be extended to in-

clude volume-dependent model potentials. In order to
achieve this goal, one should obtain the proper micro-
canonical fiuctuation formulas for elastic constants in
the case of volume-dependent potentials.

The primary objective of this paper is to calculate the
adiabatic elastic constants of metallic sodium from
molecular dynamics. In this study we have used a model
potential developed by Price and co-workers. %e
briefly describe this model potential in Sec. II. Earlier
theoretical studies of elastic constants of sodium include
the lattice dynamics calculation by Glyde and Taylor
and Monte Carlo calculations by Cohen et a/. Both of
these studies differ from the present calculation. The
Monte Carlo calculation in Ref. 8 neglected the volume
dependence of the pair potential which was pointed out
also by Schiferl and %allace. Schiferl and Wallace
presented a molecular-dynamics calculation of the elastic
constants of sodiufn using a potential developed by %'al-
lace. ' In their calculations, Schiferl and Wallace used
canonical ensemble fluctuation formulas and added
necessary correction terms in the spirit of Lebowitz,
Percus, and Verlet" to obtain the adiabatic elastic con-
stants. Schiferl and %allace take the full volume depen-
dence of the potential into account, and their method of
calculation is therefore equivalent to our calculational
method. In contrast to Ref. 9, we give and use the full

II. MODEL POTENTIAL

The model potential employed in this study was de-
scribed in detail in Refs. 4 6, and -has the following
form

U(r, r, ) =y(r, r, )+ Upo(r, )+ Uas(r, )+ UH(r, ), (2.1)

where r, is the density parameter de6ned as
r, =(3V/4nZ)'~ and Z is the valence. The first term in

Eq. (2.1) represents the pairwise interaction potential
and has a long-range oscillatory behavior. The last three
terms depend only on the volume; the electron-gas con-
tribution is given by

UEo 0 982lr, +(——0 4.07lg 0 91.6)lr, —.

—(0. 115—0.031 lnr, ), (2.2)

where g is related to the compressibility of the electron
gas. The self-energy of the band structure is given by

Uns ——Q(r =O, r, ) . (2.3)

The Hartree term represents the average interaction be-
tween the conduction electrons and the nonelectrostatic
part of the bare potential; this term is adjusted so as to
bring the lattice constant into agreement with the ob-
served value at 0 K and is given by

UH ——3ar, /r, . (2.4)

microcanonical fiuctuation formulas to obtain the adia-
batic elastic constants of sodium directly. In Sec. III we
present the microcanonical molecular-dynamics method
and give the statistical fluctuation formulas for the adia-
batic elastic constants. In Sec. IV we describe the
method of calculation and present the detailed results of
the calculations. Finally, in Sec. V we discuss the re-
sults.
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By choosing a =0.218, not only the lattice parameter,
but also the cohesive energy and the compressibility are
brought into agreement with their respective values at 0
K. The quantity r, in Eq. (2.4} is the core radius for the
pseudopotential which has the value 1.694 bohrs.

III. EI.ASTIC CONSTANTS IN
MICRQCANONICAI. MOI.ECUI.AR DYNAMICS

In Ref. I, Ray and Rahman, in addition to discussing
constant tension HtN (H is the enthalpy and t the ther-
modynamic tension) molecular-dynamics methods, also
presented the constant size and shape EAR form of
molecular dynamics. E is the energy of the system, h is
a 3 X 3 matrix formed from the vectors a, b, and c which
span the molecular-dynamics cell, and N is the number
of particles in the cell. In the same paper, using the adi-
abatic differentiation method of Ray and Graben, ' they

I

where the first term,

4(r, z, r13, . . . , V)= g P(r,b, V),
a~b

(3.2)

is the total efFective pair potential and %' is the strictly
volume-dependent potential.

Since the method of derivation is by now standard, we
shall present the result. The fluctuation formulas for the
elastic constant have the form

also calculated the statistical fluctuation formulas for
adiabatic elastic constants. Using the same method, we
have derived the fluctuation formulas for a general
voluxne-dependent potential which has the form

U(rl, r2, . . . , rpl, V)=4(r12, r, 3, . . . , V)+%(V),

(3.l)

Vo~oim~ Ojnhokph 0iq~mapq 4( &MijMkl ) &Mij l ™kl) )/kB T+2+kB T(Gik Glj +Gil Gkj }++ijkl+ & @ijkl )

(3.3}

where the angular brackets mean the time average of the
term over the molecular-dynamics trajectory. The 6rst
term, —4(&M;,M„l)—&M; &&M«&)/kBT, we refer to
as the fluctuation term; we shall call the second term
2%kB T(G,k 'Glj '+G, l 'Gkj ') the kinetic-energy term
and the remaining terms: 1Ii; ki the pure volume-

dependent potential term and 4;kI the pair potential
term. These four terms together give the elastic con-
stants through Eq. (3.3). The quantity ho is the value of
11 matrix at zero stress, Vo=detho and G,j is the metric
tensor 6 =hh where the tilde denotes matrix transposi-
tion. The matrix M j =Wf/"rjG;, is related to the micro-
scopic stress tensor P;l by

M = —Vh 'Ph '/2, (3.4)

where P;j is defined by

2
ij XPaiPoj / a g 0 obi abj /"ab

a a(b

(3.5)

and the prime indicates rd/'dr while the asterisk stands
for VB/BV. The relation between strain tensor e and
metric tensor 6 is

e=(I1 0 'Gho —I)/2 .

=e"G-'G-' —~'(G-'G-'+G-'G-') (3.7)

while the pair potential term 4,"kl is

+,jki 4d 4/dG;i ——dGkl

= g ((( —2$ )(SobiSabjsobksabl /rob )
a gb

+ g ( (SobiSabj Gkl +Gij Sobksabl )/rob
a gb

yaaG —1G —1 iy ya(G —1G —1+G —IG —1)
a gb a&b

(3.8)

and s,b;
——s„—sb, is the scaled coordinate difference be-

tween particles a and b.
Recently, Pearson et ai., ' using Laplace transform

techniques, derived exact formulas containing the elastic
constants in the microcanonical ensemble. In the ther-
modynamical limit the formulas obtained by this method
are equivalent to the ones obtained through the adiabatic
differentiation method. For completeness, we present
the exact Auctuation formulas for the elastic constants
obtained by using the Laplace transform method

The explicit form of strictly volume-dependent term
%'; k] is

~,j„,=4a'e /aG, jaG„,

Voto jlo~ jtokpjlolq~C pq=p, vl+&+jkl &+&kBT[(Gk Glj +Gl Gkj )+Gj y'ki+Gkl ly;, G; 1Gki 1NkB/C .]— .
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where
4;.=284/BG;J,

or explicitly (3.10)

@,=+0'&./ s.s)/r'/+g0*G;, ' .
a, b a, b

C, is the constant-strain speci6c heat determined from

k /C, =l —(1—-', &)&&&&& (3.11)

and the "Griineisen tensor, "
y,J = V{dt; IBE)„is deter-

mined by the exact formula

h Ok J/ 0J/'y /
=Gk/ Nk J/ IC

+(3N/2 1)—
X[&@„&&1{." '& —&(@„X'&] . (3.12)

Equation (3.9) represents the exact fluctuation formula
for the adiabatic elastic constants.

Equations (3.3) or (3.9) are very general in the sense
that they can be used for anisotropic solids with any or
no symmetry (including amorphous solids), and a general
shape of the computational cell, and they are also applic-
able to systems under conditions of arbitrary strain. In
our calculations we have mainly used Eq. (3.3). We have
also tested the differences between the exact formula Eq.
(3.9) and the thermodynamical limit formula Eq. (3.3)
for one temperature. We shall discuss these results later.
If the elastic constant calculation is performed for the
zero-strain state, i.e., h =ho, then Eq. (3.3) reduces to
the following form:

V.C,',„=—(&&,J~„&—&~,J & &P„,&)V,'/k, T+2Xk, T(S,„SJ,+S„SJ„)
+q'"5~J&k/ —q" (5;/, 5J/+&~/5J/, )+ y (y"—2$')x,b;x,b x,s/, x,///r, /,

a gb

+ X '/ Ix b' +bj~kl+'~V+ hk+ bit ~b + X 0 ~i)~ l(kX 4*I~a~j(+~l~gk~)
a(b a(b a(b

(3.3')

which is obtained through multiplying both sides of Eq.
(3.3) by four ho's and setting G =Go. The zero-strain
form of Eq. (3.9) could also be obtained in a similar way.

IV. MOI.KCUI.AR-DYNAMICS RKSUI.TS

A. Method of calculation

As previously mentioned, we performed calculations
at three different temperatures: T =197.9, 298.8, and
348.6 K, for a system of 432 sodium atoms arranged in a
bcc lattice. The potential was truncated at a distance
R, =23.27 bohrs. With this cutoff range, the average
number of atoms interacting with each atom is 180, i.e.,
the 6rst 11 neighbor shells of the bcc lattice are includ-
ed.

To determine ho, we performed simulations with vari-

able size and shape HtN molecular dynamics with the
tension (or stress) equal to zero. At the end of these
runs (20 000 time steps with each time step being
6.85X10 ' s) the average value of J/, i.e., ho, was ob-
tained. However, the calculated value of ho in these
runs gave rise to densities lower than the experimental
densities for sodium. For instance, the difference be-
tween the calculated density and experimental zero-
pressure density is 2.3% at 299 K. This density
discrepancy at high temperatures was previously noticed
in the hquid-state studies. Eventually, we decided to
perform calculations at the zero-pressure experimental
density. This was arranged by adding a correction term
to the potential, namely I',„,V, which is a positive exter-
nal pressure applied to bring the system to the desired
density. Thus, we correct the potential in order to ob-
tain the experimental density. The size of the
molecular-dynamics cell, in other words, the density at
each temperature, is determined from thermal expansion
data for sodium by Aldhart et al. ' and Seigel and Quim-

I

by 16

Next we constructed a perfect bcc lattice within a cu-
bic molecular-dynamics cell, and the system was brought
to the proper temperature by scaling the velocities. Be-
fore starting the elastic constant calculation preliminary
molecular dynamics runs of 6-8 ps (of the order of
10000 time steps) were performed to equilibrate the sys-
tem at the temperatures T =197.9, 298.8, and 348.6 K.

Due to the cubic symmetry of the bcc crystal, there
are only three independent nonzero elastic constants
which, in Voigt notation, are

C11 C22 C33

C12 =C23 =C31

C44 =Css =C66

Using Eq. (3.3), we calculated these nine elastic con-
stants independently. Also, for a check of the calcula-
tion we calculated C43 which should be, and was to the
accuracy of our calculation, zero. Calculating all nine
elastic constants allows one to follow the convergence of
the calculation by comparing terms that should be equal
by cubic symmetry, e.g. , C», C22, C33. At the end of
the calculation, we used these independently determined
values to calculate symmetry-averaged elastic constants
and give an estimate of error for each independent com-
ponent.

B. Results

%'e present the results of our calculations of elastic
constants at T =197.9, 298.8, and 348.8 K with 432
atoms together with experimental values in Table I. In
these calculations, the cutoff' distance for the interaction
potential is taken to be 23.27 bohrs. In the table contri-
butions from the pair-potential term, pure volume-
dependent potential term, kinetic-energy term, and Auc-
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Ct& ~C&i —I ~ C)2~C)2+Ps Cm~C44 I s (4.2)

where I' is the added pressure. For these runs, the pres-
sure corrections are found to be 1.09, 1.36, and 1.58 kbar

tuation term are tabulated separately. These quantities
were calculated using molecular-dynamics runs of 12000
time steps (8.22 ps). Densities corresponding to these
temperatures are p=0. 989, 0.970, and 0.960 g/cm, re-
spectively. The experimental values are gathered from
measurements of Diederich and Trivosonno, ' Daniels, '

Martinson, ' and Fritsch et aI.20

The calculated values without pressure corrections are
observed to be lower than experiment by 3-10% with
the largest percentage di8'erences occurring for C&2. As
described earlier, performing calculations at the experi-
mental density implies a modi6cation in the potential.
Taking into account the efrect of the correction term
added to the potential, we have the following pressure
corrections to the elastic constants:

at 197.9, 298.8, and 348.6 K, respectively. Even though
the pressure corrections are small (1.4—2.3% for C»,
1.8—2.8% for C,z, and 2.2 —4.2% for C44, ) they are not
negligible. The percentage di6'erences between the cal-
culated elastic constants with the pressure corrections
and experimental values are 4—8% for all three moduli
at each temperatures. Note also that the results show a
softening with increasing temperatures very similar to
the experimental values. Especially the softening in the
shear modulus is noticeable as the temperature is elevat-
ed.

The major contribution to all elastic constants comes
from the pair potential. Pure volume-dependent poten-
tial contributions are negative for C» and C44 and posi-
tive for C&2, but all are of the same order of magnitude,
namely 10 kbar. Fluctuation contributions are large and
negative for C» and C~„andpositive and small for C&2.
Fluctuation contributions increase as the temperature in-
creases, implying a broader distribution of the micro-
scopic stress tensor.

TABLE I. Contributions to adiabatic elastic constants from di8erent terms in Eq. (3.3) and experi-
mental values of elastic constants at T =199, 299, and 349 K. The cutoff'range in these calculations is
23.27 bohrs. All entries are in kbar. The calculations were for 12000 time steps.

T=197.9 K
Pair-potential term
Strictly volume-dependent term
Kinetic-energy term
Fluctuation term
Subtotal
Pressure correction
Total theory
Experiment

90.38
—9.22

2.83
—9.01
74.98

—1.09
73.89 70.66
76.5, ' 81.2'

45.62
11.38
0.00
2.84

59.84
1.09

61.93 %0.48
63.9, ' 67.9'

63.60
—10.30

1.42
—5.79
48.93

—1.09
47.84 W 0.83
50.0, ' S0.9'

T=298.8 K
Pair-potential term
Strictly volume-dependent part term
Kinetic-energy term
Fluctuation term
Subtotal
Pressure correction
Total theory
Experiment

89.83
—9.63

4.19
—10.73

73.66
—1.36

72.305 2.27
73.8, 76 9'

42.51
11.06
0.00
3.12

56.69
1.36

58.05 T 1.52
62. 1, 64.7'

58.29
—10.34

2.09
—8.S6
41.48

—1.36
40. 12%0.59
41 9 43 4'

T =348.6 K
Pair-potential term
Strictly volume-dependent part term
Kinetic-energy term
Fluctuation term
Subtotal
Pressure correction
Total theory
Experiment

'Reference 17.
Reference 18.

'Reference 19.
Reference 20.

90.83
—9.82

4.83
—13.81

72.04
—1.58

70.46 T- 1.68
74.3

40.70
11.91
0.00
3.71

55.32
1.58

56.90+ 1.80
60.6"

S5.50
—10.37

2.42
—10.36

37.19
—1.58

35.61+0.57
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TABLE II. Calculated adiabatic elastic constants at 299 K for three different cutoff distances. The
calculation with cutoff range 17.85 bohrs was run for 25000 time steps while the other two calcula-
tions were run for 12000 time steps. All entries are in kbar.

%=432, R, =17.85 bohrs
Pair-potential term
Strictly volume-dependent term
Kinetic-energy term
Fluctuation term
Total without pressure correction

87.23
—9.63

4.19
—11.02

70.77

42.41
11.06
0.00
3.24

56.71

57.24
—10.34

2.09
—8.72
40.27

X =432, 8, =23.27 bohrs
Pair-potential term
Strictly volume-dependent term
Kinetic-energy term
Fluctuation term
Total without pressure correction

89.83
—9.63

4.19
—10.73

73.66

42.51
11.06
0.00
3.12

56.69

58.29
—10.34

2.09
—8.56
41.48

X =686, 8, =27.70 bohrs
Pair-potential term
Strictly volume-dependent term
Kinetic-energy term
Fluctuation term
Total without pressure correction

90.56
—9.63

4.18
—14.11

71.00

42.87
11.06
0.00
4.26

58.19

57.75
—10.34

2.09
—8.44
41.05

C. Range deyendence
As pointed out in Sec. II, the model potential we are

employing for sodium shows an oscillatory long-range
behavior. In molecular-dynamics simulations using po-
tentials with long-range behavior, a concern is the choice
of a reasonable distance to truncate the potential. %ith
this in mind, we have repeated the elastic constant calcu-
lation at 299 K for two adcHtional cuto8' distances,
R, =17.85 bohrs and N =432 atoms for 25000 time
steps and R, =27.70 bohrs and N =686 atoms for 12000
time steps. In Table II the results for these three ranges
are given. As seen from Table II, the difFerences in the
values of elastic constants at the different ranges are

small. These di8'erences are caused by the changes in
the pair-potential term and Suctuation term. When the
cutofF distance is changed from 23.27 to 17.85 bohrs the
decrease in the pair-potential contribution to C», 2.6
kbar, is significant in comparison to the accuracy of cal-
culation. The changes in the pair-potential contributions
for C, z and C~ are not as large as in C» for these two
calculations. This point is further clari5ed in Table III,
where we present different type of terms which make up
the pair-potential contribution to elastic constants. Even
though the changes in the terms which make up pair-
potential correction are large from one range to another,
the sum remains almost the same. Comparing the re-

TABLE III. Contributions to the pair potential term at 299 K for three different cutoff distances.
These are for the same three runs given in Table II. All entries are in kbar.

N =432, 8,=17.85
r derivatives
V derivatives
Mixed derivatives
Total pair-potential term

80.84
5.06
2.33

8'7.23

50.24
—9.95

2.33
42.41

50.24
7.00
0.00

57.24

X =432, R, =23.27
r derivatives
V derivatives
Mixed derivatives
Total pair-potential term

84.6S
3.90
1.27

89.82

51.30
—10.06

1.27
42.51

51.30
6.99
0.00

58.29

N =686, R, =27.70
r derivatives
V derivatives
Mixed derivatives
Total pair-potential term

85.05
2.32
2.19

90.56

50.95
—10.28

2.19
42.87

50.95
6.80
0.00

57.7S
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TABLE IV. Adiabatic elastic constants and diferent contributions to elastic constants at 299 K
calculated for 25000 time steps run with a cuto6' range of 17.85 bohrs, using exact fluctuation formula
for elastic constants, Eq. {3.9). All entries are in kbar.

Potential term
Pure volume-dependent term
Kinetic-energy term
y-dependent term
C,-dependent term
Fluctuation term
Total

87.23
—9.63

2.09
2.62

—0.32
—12.66

69.33

42.41
11.06
0.00
2.62

—0.32
1.65

57.42

57.24
—10.34

1.05
0.00
0.00

—8.74
39.21

suits for the 23.27- and 27.70-bohr calculations term by
term using Tables II and III, we observe the changes are
small for almost all types of terms with the only excep-
tion being the change in the fluctuation term for C».
Thus we feel that our elastic constant calculations per-
formed by using a cutofr range of 23.27 bohrs give satis-
factory results.

D. Comparison of exact and thermodynamical
limit formulas

In order to compare Eqs. (3.3) and (3.9) we have used
the data saved during the 25000 time-step run with 432
atoms at 299 K with the cutoF range R, =17.85 bohrs.
We calculated C, /Nka and y;J by using Eqs. (3.11) and
(3.12), respectively. Due to cubic symmetry there is only
one independent nonzero component for y... i.e.,
y;J =y5;, where y is the Griineisen parameter. We
found C, /%k~ =3.278 [experimental value 3.264 (Ref.
21}]and the symmetry-averaged value for Griineisen pa-
rameter y = 1.251 [experimental value y = 1.27 (Ref.
15}]. Using these values for C, /Nkz and y, the elastic
constants calculated from Eq. (3.9) and the difFerent con-
tributions are tabulated in Table IV. Comparing these
results with the results obtained from the thermodynam-
ical limit formula for the same run, Table II, we con-
clude that the difFerences are small in comparison to the
accuracy of calculation for the system under considera-
tion.

V. CONCLUDING REMARKS

The elastic constants calculated using Eq. (3.3) and the
sodium potential constructed by Price et al. show good
agreement with experimental data at T =198, 299, and
349 K. The difFerences between calculated and experi-
mental values are within 4-8% for all the elastic con-
stants.

An important feature of this calculation is the agree-
ment of the calculated values of the shear modulus C44
with experimental values. In a previous molecular-
dynamics calculation the calculated values for C«
showed similar softening with increasing temperature,
but the values compared to experiment were too small.
For instance, from Ref. 9, the results for C~ were 41.7,
35.4, and 30.2 kbar at 199, 297, and 340 K, respectively.
The difFerences between these calculated values and the

experimental values for C~ are considerably larger than
the differences found in our calculation. Schiferl and
%'allace suggest that this large discrepancy in C44 is due
to the use of only second-order perturbation theory in
the derivation of interaction potential. It is necessary to
point out that the potential employed in our calculation
is also obtained by using second-order perturbation
theory. %e also observed that the magnitudes of the
pair potential and pure volume-dependent potential con-
tributions to elastic constants in Ref. 9 are much larger
than the ones obtained in this study. For example, the
pair-potential contribution to C» at 297 K is 121.11
kbar in Ref. 9, whereas it is only 89.83 kbar at 299 K in
our calculation. As for the pure volume-dependent po-
tential contributions to C», they are —9.63 kbar in our
study and —38.92 kbar in Ref. 9. We feel that further
study is necessary to clarify the large difFerences between
the results obtained from these two potentials.

Other important characteristics of our calculation are
the large contributions from Auctuation terms and the
terms involving volume derivatives of pair potential. As
an example at 349 K, the fluctuation contribution for
C~ becomes almost 20%%uo of the pair-potential term
while for C„it is 15%. The neglect of volume depen-
dence of the pair potential in calculating elastic con-
stants of sodium may introduce substantial error to the
results as can easily be seen from Table III.

Our investigation of range dependence has shown that
the calculation of the elastic constants is not very sensi-
tive to the potential-cutofF ranges employed. We find
essentially the same values for the elastic constants at
the three ranges that were used.

Finally, the comparison of the exact Eq. (3.9) and
thermodynamic limit Eq. (3.3) fluctuation formulas for
elastic constants gave the same results within the accura-
cy of calculations.
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