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Thermodynamic properties of Si-Ge alloys
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A combined electronic-structure and statistical-mechanical approach has been used to calculate
the thermodynamic properties of Si„Ge& „alloys. Since the long-range ordered structures are
found to be unstable, only the disordered alloys have been studied. The thermodynamic functions
such as entropy, enthalpy, Gibbs free energy, and others are calculated as functions of temperature
and concentration. The phase diagram is also calculated and the critical temperature is predicted to
be around 360 K. The tendency to clustering is found to be very small which provides further sup-

port for the instabihty of ordered bulk Si-Ge structures. We have studied the sects of hydrostatic
pressure on both the phase diagram and the thermodynamic functions. It has been found that by in-

creasing the pressure the instability region shrinks and moves toward the Ge side, while the critical
temperature increases.

I. INTRODUCTION

In spite of the technological importance of the semi-
conducting alloys the present understanding of their ther-
modynamic properties is far from satisfactory. Metallic
alloys have been studied more, and several calculations of
their thermodynamic properties, performed using a com-
bined electronic-structure and statistical-mechanical ap-
proach, have appeared in the literature over the years. '

Some work in the same spirit and concerning semicon-
ducting alloys has appeared very recently;~ state of the
art electronic-structure calculations are able to provide
very accurate energies, while they deal with both elastic
and chemical contributions on the same footing.

Previously, only phenomenological approaches were
undertaken. Balzarotti and co-workers have studied the
thermodynamic properties of some ternary semiconduct-
ing alloys, using elastic energies calculated by a valence
field method7 and chemical energies extracted from the
experimental values of the interaction parameter. This
approach gives a positive chemical contribution to the
formation energies of the ordered structures, contrary to
the present understanding. Other theoretical models
can be considered as incomplete. The most recent first-
principles work of Mbaye, Ferreira, and Zunger has
shown ' that proper accounting for the chemical energy
is essential and leads to new features in the phase dia-
gram.

In a previous paper, ' hereafter referred to as I, we
have introduced a model for the local atomic structure of
binary semiconducting alloys; in our model the basic unit
is a 6ve-site tetrahedron. Nine different ordered struc-
tures (each corresponding to different configuration of
tetrahedra) have been studied using the density-
functional theory' ' and norm-conserving pseudopoten-
ttals. ' For the disordered matexmls, the energy of aux-
ing and hence the interaction parameter have been calcu-
lated by assuming a completely random distribution of
the atoms at the lattice sites (Bernoulh distribution of
tetrahedra) which is temperature and system indepen-

dent, and the linear variation of the lattice constant
(Vegard's law).

Using the formation energies of the configurations cal-
culated previously, we calculate in this work the proba-
bility distribution of tetrahedra, as functions of concen-
tration (x) and temperature (T), in the framework of two
different approximations. The first is the modified quasi-
chemical approximation (sometimes referred to as the
third-order quasichemical approximation (QCA). ' The
second approximation we use is the cluster-variation
method (CVM). ' ' Since no ordered structure has been
found to be stable at T =0 and increasing the tempera-
ture is not expected to stabilize any of them, we will
study only the disordered Si,Gei, alloys. Due to our
structural model which distinguishes between the sites of
the two sublattices, only constrained CVM calculations
can be performed, while QCA calculations do not present
any problem. The enthalpy, entropy, free energy, in-
teraction parameter, and the tendency to clustering as
functions of x and T are calculated. The phase diagram
has been calculated and the critical temperature is pre-
dicted to be around 360 K at zero pressure. %e have per-
formed a similar study under hydrostatic pressure: our
main findings are that the thermodynamic quantities and
the phase diagram are strongly afFected by pressure.

The rest of this work is organized as follows. In Sec. II
we describe briefiy the main features of the structural
model. In Sec. III we give the basic equations and
definitions of the thermodynamic functions. In Sec. IV
we report and discuss the results obtained at zero pres-
sure. In Sec. V we discuss the effects of applying a hydro-
static pressure on the thermodynamic properties. Final-
ly, Sec. VI contains the main conclusions.

H. THE MODEL

Recently we have proposed in I a model for the atomic
microscopic structure of binary semiconducting alloys in
the spirit of a previous model for ternary alloys, ' and
we applied it to calculate (at T =0 and I' =0) the micro-
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scopic atomic structure and the energy of mixing for
Si„Ge, „aBoys. The calculations are performed within
the framework of density-functional theory' using the
local-density approximation' and norm-conserving pseu-
dopotentials. ' Here we anil discuss brie8y the basic
features of our model.

The key assumption of our model implies that all of the
possible local structures can be reahzed in coherent
periodic structures. We assume that one of the sublat-
tices (arbitrarily chosen) is undistorted, while the other is
allowed to relax. In this way we perform only con-
strained energy mimmization; our building unit is a five-
site tetrahedron (an atom plus its four first-nearest neigh-
bors}, whose vertices belong to the undistorted fcc sublat-
tice; the inside atom is allowed to relax. Because the
direction of the relaxation is determined by symmetry,
the distortion of the inside atom can be determined by a
single scalar parameter; more details and figures are given
in I. Since the atom inside the tetrahedra can be either A

or B type (for A„Bi „alloys}, there are ten local
configurations. In the present work we denote them as
A„and B„,where A (B) refers to the inside atom and
n =0, 1,2, 3,4 is the number of A atoms at the vertices.
The present notations are not the same as in I, the reason
for the change being the simplification we get in the ex-
pression for the thermodynamic functions. The simplest
ordered structures which realize the local configurations
aie found to have very few atoms per unit cell (up to
eight). Considering the five-site tetrahedron as a basic
unit makes this model analogous to the central-atom
model of Lupis and Elhot 0 or the surrounding-atom
model of Mathieu and co-workers. ' Very recently a
similar model has been introduced to calculate the
frequency-dependent dielectric function of Si„C, „al-
loys 22

Our approximation of assuming one of the two sublat-
tices as undistorted (despite the physical equivalence of
the two sublattices in binary alloys} amounts to study re-
laxation at the level of the Srst neighbors only. This is
indeed a very good approximation, as is discussed in the
following. The energy of mixing can be unambiguously
split into two parts (see, e.g., Ref. 5): (i) the volume-
deformation contribution, which is the elastic energy
needed to stretch and expand the lattice constants of the
constituent materials to match that of the alloy, and is
model independent; (ii) the chemical contribution, which
is the remaining term, due to both charge transfer and re-

laxation of the bond angles and bond lengths. In I we
have calculated the charge transfer, which is pretty small
and independent of the local environment, while the local
geometrical relaxation gives very tiny contributions. The
first-principles theory deals with all the terms on the
same ground; our approximation, roughly speaking, ac-
counts completely for the elastic term and for the
charge-transfer part of the chemical term, whi1e the
remaining local relaxation is partly accounted for. The
numerical accuracy of our first-principle calculations, in
connection with the reliability of the results, has been dis-
cussed thoroughly in I. Our results compare favorably
with the experiment, while the virtual-crystal approxi-
mation gives energies of mixing which are wrong by one
order of magnitude.

IIL BASIC DEFINITIONS AND EQUATIONS

In the determination of t'he thermodynamic properties
of alloys the most difFicult part is the calculation of the
configurational entropy, which by definition is related to
the number of possible ways (g) of distributing the atoms
of the constituent materials at the lattice sites. The cal-
culation of this quantity is a very difficult task and exact
solutions are not possible; to proceed one has to make
some approximations. In our model described in Sec. II,
the basic unit or cluster is a five-site tetrahedron; using
this as a basic cluster approximate expression for the en-

tropy can be obtained by adopting a modified QCA of
Guggenheim' or using the CVM of Kikuchi. 's'9

Within the modified QCA it is assumed' ' that g is
proportional to the number of arrangements correspond-
ing to a random distribution of five-site tetrahedra (pairs
in the case of simple QCA), where the proportionality
constant can be obtained from the limit of complete ran-
domnesss i.e.,

NI

gÃ, !
i,j,k, l, m

where ij,k,l,m =1 or 2, 1 (2) referring to A (B) atoms;
z,jki is the concentration of the ijklm tetrahedra with in-
side atom i; the superscript B in the above expression
refers to the Bernoulli distribution. In Eq. (1) equivalent
eonSgurations are counted separately. The correspond-
ing entropy is

5 = —kii g x, inxi+ g (Zijklm~ijkim ZijklmlnZiJkl~ )—(@CA } (8)

l i,j,k, l, m

(2)

which at a given concentration is an explicit function of s;jk&

In order to implement a CVM approach to our material one has to consider also all of the possible subclusters of the
Sve-site tetrahedron. Those giving nonvanishing contributions are, in increasing order of complexity: points, first and
second nearest-neighbor pairs, and tetrahedra surrounding an interstitial site in zinc-blende structure. We call the con-
centration of each of these clusters x;, y,'~", y,.'zj', and w; ki, respectively. In this notation the CVM expression is given,
following the lines of Ref. 25, as

i,j,k, i, m i,j,k, l
ka g g xilnxi+ g Zijkimlnzijkim + g ioijkilnmjki —2 g yij lnyij —6 g yij !nyij

(cvM) (&) (&) (2) (2) '
(3)
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where x, and z,jk&m have the same meaning as in Eq. (2).
Both the QCA and CVM are members of a hierarchy of
cluster-variation approximation; the explicit appearance
in the latter of the concentrations of some of the subclus-
ters takes, so to speak, care of the cooperative nature of
the problem. Therefore it is a common belief among the
workers in the f1eld' ' ' that the CVM is in general
more accurate than the @CA. It is worth mentioning,
however, that a rigorous analysis by Schlijper has
shown that some supplementary assumption is needed to
ensure the convergence to the exact value at the thermo-
dynarnic limit, upon increasing the hierarchy of the CVM
approximations.

The tetrahedra concentrations and the entropy as func-
tions of x and T can be found by minimizing with respect
to the independent variables z the Gibbs free energy of
mlxlng

6(x, T)= g zjki (x, T)EE~k& —TS(x, T)
i,j,k, l, m

i,j,k, l, m
(n~jkim 5x)—z~)kim (x, T),

where b,E;Jk& is the formation energy of the ijklm
configuration. In the case of the @CA the minimization
of 6 with respect to z;Jk& is straightforward and gives

(n, kl
—Sx) SE, k(

—lk~ T
e

Zij klm ( )
~ Sn) Sg„yk Tijklm ijklm Be

where n; k&
. is the number of A atoms in the ijklm clus-

ter, which takes into account both the fixed concentra-
tion and the normalization condition (the sum of the vari-
ables z is equal to one). So, the free energy to be mini-
mized 1s

where hH is the enthalpy of mixing defined by

dH(x, T)= g zeal (x, T)AEJki (a(x)),
i,j,k, l, m

under the constraint

X ( ni klm 5X )Zi klm'
i,j,k, l, m

(4)
i,j,k, l, m

—A/k~T .
where g=e ~ is a positive and real quantity, which
can be determined by solving the fifth-order polynomial

ijklm
i,j,k, l, m

For the case of CVM minimizing 6 with respect to the
independent variables z;ki is more complicated and
gives

z;ski (x, T)=
/ 5/Syl/2y W 1.(,JkI. -5 ) -«,Jkl. «BT

g —5/8y)/2y W
—f ( j'kl +) «'jkl / B T

i,j,k, l, m

(10)

where

X=XiXjXkXlXm

I']) I1) (]) (&)
& t =1' ~ik 1' Jim

(2) (2) (2) (2) (2) (2)~2=3'Jk 3'ji IjmPkl 1kmÃm ~

and

W=m;Jkl .

The subcluster variables x, y'", y' ' and m are depen-
dent variables which can be written in terms of the in-
dependent variables z. The system of nonlinear equations
[Eq. (10)] can be solved self-consistently using the natural
iteration method of Kikuchi, starting with the guess
values for the dependent variables and solving a Mth-
order polynomial similar to Eq. (9) every iteration. Hav-
ing calculated the tetrahedral concentration z, the ther-
modynamic functions can be calculated easily. The
enthalpy of mixing is defined in Eq. (5). The entropy and
the Gibbs free energy are given as in Eq. (2) [or Eq. (3)]
and Eq. (4), respectively. The excess Gibbs free energy of
mlxlng 1s

6 (x, T)=6(x, T) ksT[x lnx+(1 —x—)In(1 —x)],

the second term being the free energy of mixing of the
ideal system; from 6 (x, T) the interaction parameter Q
is calculated

Q(, T)=
x(1—x)

X [(5—nijkl )zijkl
j,k, l, m

+n2jklmZ2jklm ]—X( —X) (13)

which is similar to the excess mixed second-neighbor pair
probability distribution used ' for ternary alloys.

The stability of the disordered alloys is investigated by
calculating the phase diagram (the miscibility gap and the
spinodal curve) from the derivatives of the Gibbs free en-
ergy of mixing. This is the subject of the next section.

In I we calculated a temperature independent Q(x),
where complete randomness was assumed. In this work
we have T dependence and an excess entropy contribu-
tion from the clustering efFects.

As a measure for the deviation from randomness (clus-
tering) we define the excess mixed first-neighbor pair
probability distribution as the difference between the cal-
culated distribution and the random one:
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Using the formation energy of diferent tetrahedral
configuration calculated previously in I, the tetrahedral
concentrations z;Jkr are calculated using Eq. (8} aAer
solving Eq. (9) for the case of the QCA, and solving Eq.
(10) self-consistently starting from a random distribution
of tetrahedra. The lattice parameter a(x) is assumed to
vary according to Vegard's Iaw. In principle it should be
calculated by a free-energy minimization, but this is a
very good approximation since the variation of u is exper-
imentally found to be almost linear in these alloys. From
the theoretical side, in I we have found that Vegard's law
is very well satisfied in the periodic structures at T =0.
Here we content ourselves by checking at x =0.5 that
the calculated a giving minimum G is 5.491 and 5.493 A.

at T equal to 100 and 300 K, respectively, compared to
5.494 A assumed by Vegard's law. The calculated proba-
bility distribution of the diFerent configurations of
tetrahedra (i.e., the concentration z times the multiplicity
factor} is shown in Fig. 1 as a function of x for difFerent
values of T. In our structural model we distinguish be-
tween the vertices and the inside sites of the tetrahedra,
and as a consequence the calculated mixed first-neighbor
pair concentrations are not symmetric (y', z'Qyz", ); this

does not give any problem in the case of QCA, but it does
in the case of CVM, since we need to calculate y" ' from z
to start a new iteration. To our knowledge, no solution
to this problem has been proposed before. %e found that
by simply taking the average of y",2' and y2,

' leads to un-

physical results (sudden and sharp decrease in the free en-

ergy at some x). We found reasonable and satisfactory
results by symmetrizing all the dependent variables when
they are calculated from the variables z, by allowing each
site of the basic cluster to be an inside site. In this way
we allow the sites which belong to the undistorted sublat-
tice to be inside sites.

The Gibbs free energy as a function of x at different
values of T, shown in Fig. 2(a), has a quasiregular solu-
tionlike behavior. z~ The concavity of the CVM free ener-

gy (solid curves) vanishes faster than that of the QCA
(dashed curves), leading to a lower critical temperature.
Even if the behavior of the CVM free energy is reason-
able, the relatively large deviation from randomness at
very high temperatures (see Fig. 1) could be an artifact
due to the symmmetrization of the dependent variables.
We finally calculated the CVM free energy in a non-self-
consistent way, using in its expression simply the QCA-
derived variables z. The results coincide with the one de-
rived completely at the QCA level, thus giving us
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confidence in the accuracy and the reliability of the QCA
in this system. All the results shown in the following are
strictly at the QCA level.

In Fig. 2(b) the phase diagram of the disordered
Si„Ge& „alloys is shown: the instability region is where
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which is bounded by the spinodal curve (dashed curve).
The miscibility gap (solid curve) is by deSnition the re-
gion where the disordered alloys are metastable and is
calculated here from the values of x at which 6 (x) have
common tangent at fixed T. The critical temperature
above which the disordered alloys are stable in the whole
range of x is predicted to be around 360 K [see also Fig.
2(a)]. It is evident that 6 and hence the phase diagram
shows a regular solutionlike behavior; this is also expect-
ed from the experimental solid-hquid phase diagrams
which demonstrates the rehability of our calculated phase
diagrams. It is worth to mention again that the shown
phase diagrams are calculated using QCA.

We show in Fig. 3(a) the excess free energy, enthalpy,
and entropy of mixing. The dominant feature worth not-
ing is the small values of the excess entropy, which give a
smaB entropy contribution to 6 (the difference between
the solid and the dotted curves). This fact is physically
due to the small deviation of the tetrahedral distribution
from complete randomness even at small temperature
(see Fig. 1). As a consequence both the excess free energy
6 and the interaction parameter 0 [shown in Fig. 4(a)]
have a weak T dependence.

In Fig. 5(a) we show the excess mixed first-neighbor
pair probabihty distribution 5(x, T): it has a negative
sign near the end points and a positive one around
x =0.5. This behavior is diff'erent from the one found in
Ref. 6 for ternary alloys which is always positive, swithin
tlic Blodlflcd QCA. Wc Bicllt1011 also thc fact tllat thc
simple (i.e., nonmodiSed) QCA (for ternaries) always
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FIG. 3. Excess thermodynamic functions of mixing at
T =100and 400K. At (a) P =Oand (b) I' =30. Solid curve, ex-
cess Gibbs free energy; dotted curve, enthalpy; dashed curve,
entropy.
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negative sign of 6 near the end points is explained. The
saxne arguments can be used to explain the positive sign
of b, around x =0.5. The small tendency to clustering (b,
is I order of magnitude smaller than the values calculated
for ternary alloys), i.e., small tendency to ordering in
these materials, provides further support to the con-
clusion of the instability of any coherent structure for
bulk Si„Ge1,alloys.

V. THE PRESSURE Ej.a aCTS
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gives a negative deviation. The behavior of b in our
case can be easily understood. For example, in the Si-
rich side the Si-rich tetrahedra have less strain (positive)
energy, which tends to increase their probability distribu-
tion [see Fig. (1)]. As a consequence the values of y&Is'; in-
creases on the expense of yz;z, and ytz~, . Therefore the

FIG. 5. Excess Srst-nearest-neighbor pair probability distri-
bution h as function of x at dilerent temperatures, at (a) P =0
and (b) P =30 kbar.

The results reported so far are obtained at P =0. In
this section we will study the effects of applying a hydro-
static pressure on the thermodynamic properties. The
lattice parameter a of Si and Ge at given P can be deter-
mined from the calculated equations of state. Here we
will also assume a Vegard's-law variation of a (x) between
the calculated values of Si and Ge at the same P. The
formation energies of each kind of tetrahedra at fixed T
are recalculated according to.

bE„(x,P)=Eg (a (x,P) )

Eg (P)+ Ea(P) (15)

and similarly for bE&, where Ez(P) and Ez(P) are the
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FIG. 6. The probability distribution of the tetrahedral con5gurations as functions of the concentration at difFerent temperatures
and P =30 kbar. Dotted curves; @CA results, compared with the Bernoulh distribution (solid curves).
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total energies of the end materials under fixed P .We
found that AE of the ordered structures decreases by in-
creasing the pressure, but this reduction is not enough to
stabilize them (e.g., bE for zinc-blende structure is 0.68,
0.66, 0.60, and 0.51 mRy/atom under 0, 50, 70, and 90
kbar, respectively}. Our prediction is therefore that iso-
tropic pressure does not make this compound stabl; we
comment at this point that uniaxial strain on the con-
trary has been recently found to stabilize ordered struc-
tures in these materials.

At given I' the calculations of the thermodynamic
properties are carried out as described before, using the
formation energies calculated at the same P As .a conse-
quence of the volume reduction by applying hydrostatic
pressure, the strain energy of the Ge-rich tetrahedra in-
creases. Therefore, the probability distribution of the Si-
rich tetrahedra will increase because they have less strain
energy.

For the purpose of displaying, all the following results
are shown at P=30 kbar. The probability distributions
at different temperatures as functions of x are shown in

Fig. 6; by comparing it to Fig. 1 we see the pressure-
induced change in the probability distributions of Si„and
Ge„clusters, which has a direct efFect on the thermo-

dynamic properties. In Fig. 3(b) we show the calculated
excess Gibbs free energy, enthalpy, and entropy of mix-

ing„ to be compared with the zero-pressure behavior
shown in Fig. 3(a}. The interaction parameter at different
values of T as functions of x is shown in Fig. 4(b) [notice
the difFerence in scale in Fig. 4{a}and 4(b)]. The dom-
inant feature to be noticed is the relatively strong T
dependence in the Si-rich side and the T independence in
the Ge-rich side, the same feature existing also in Fig.
3(b) for the thermodynamic functions.

The Gibbs free energy at difFerent values of T is shown
in Fig. 7(a); this quantity is in general lower than at P =0,
having a larger difference in the Si-rich side, and it is
mainly due to a reduction in the enthalpy of mixing. The
corresponding phase diagram is shown in Fig. 7(b}, where
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FIG. 8. The critical temperature as a function of the pres-
sure.

VI. CONCI. USIONS

the effects of the pressure on the phase diagram can be
seen: the main e8'ect is that the instability region moves
toward the Ge-rich side and its width decreases. We
show in Fig. 8 the critical temperature as a function of P.
The behavior is a monotonical increase of T, (P) with a
rather small derivative at pressure up to about 50 kbar
and a steeper increase beyond. This can be understood
since the total energy is fiat around the equilibrium
volumes.

In Fig. 5(b) we show b, at difFerent values of T as a
function of x. We found therefore that the pressure has
also a drastic effect on the clustering in these materials,
because b, is no more symmetric, and the tendency to
clustering increases [notice the change in scale in Figs.
5(a) and 5(b}]. This behavior can be explained as a conse-
quence of the change in the role played by the strain en-
ergy.
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FIG. 7. (a) Gibbs free energy of mixing as functions of x at
different temperatures at P =30 kbar. Solid curves, @CA re-
sults; dashed curves„CVM results. (b) The phase diagram of
Si„Ge, „alloys at I' =30 kbar. Solid curves, miscibility gap„
dashed curve, spinodal curve.

A combined electronic-structure and statistical-
mechanical approach has been used to calculate the ther-
modynamic properties of Si„GeI „alloys. The forma-
tion energy for each of the Sve-site tetrahedral
configurations have been calculate using the local-density
approximation and norm-conserving pseudopotentials,
whereas an approximate entropy of mixing is calculated
within the framework of the modified QCA and CVM.
%e draw the following main conclusions.

1. Because of our structural model which distinguishes
the inside site from the others, the calculated n1ixed Srst-
neighbor pair concentration is not symmetric. The GYM
calculations are carried out by symmetrizing all the
dependent variables; this leads to unphysical deviation of
the GYM probability distributions from randomness at
very high temperatures. IIowever, we found that the
QCA free energy coincides with that of CVM calculated
using the same QCA probability distributions, which
demonstrates the power and the reliability of the QCA.
The following conclusions are based on this approxima-
tion.
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2. The Gibbs free energy shows a regular solutionlike
behavior, and the critica1 temperature above which the
disordered alloy is stable for the whole range of concen-
tration is predicted to be around 360 K.

3. The interaction parameter shows a weak tempera-
ture dependence speciaBy around room temperature, in
addition to the weak concentration dependence previous-
ly found.

4. The tendency to clustering is found to be much
smaller than that calculated for ternary alloys, s which
provides additional support for the instability of ordered
bulk Si„Ge, „structures.

5. The pressure has a sizable elect on the thermo-

dynamic functions and clustering. The pressure tends to
decrease the width and to shift the instability region to-
ward the Ge-rich side; the critical temperature increases
by increasing the pressure.
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