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EfFects of an optical phonon on excitons in quantum wells
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Effects of the polar optical phonon on excitons in quantum wells are studied theoretically by cal-
culating binding energies, oscillator strengths, and virtual-phonon numbers involved in exciton
states. It is shown that the effects depend not only on the strength of the electron-phonon coupling
but also on the well width and the potential barrier: The result refiects the interrelation between the
degree of the exciton con5nement and the change of the polaron effects.

I. INTRODUCTION

The effects of the confinement of excitons in semicon-
ductor quantum wells have been attracting much atten-
tion. Because of quantum size effects in these semicon-
ductor structures a quasi-two-dimensional character ap-
pears as larger binding energies and larger oscillator
strengths in the optical absorption in the case of the
stronger confinement in the smaller well width. '

In various quasi-two-dimensional systems such quan-
tum wells and heterojunctions the effects of an optical
phonon on an electron, i.e., polaron effects on an electron
have been studied a great deal, both experimentally and
theoretically. ' A polaron in a magnetic Seld, for exam-
ple, ofFers interesting information about the effective-
mass correction and the resonant effect. The polaron
e8ects on a composite particle, such as an exciton in a
quantum well (QW), are expected to have a different as-
pect from those on an electron as in the case of the bulk.
In the present work we discuss the eff'ects of the interac-
tion of an exciton with the longitudinal-optical (LO} pho-
non in a QW, i.e., the polaron effects on a QW exciton. It
is well known that in bulk polar semiconductors polaron
effects affect excitonic properties a great deal: the effects
depend on the exciton states. If the exciton radius (r„)
is much larger than the sum of the electron polaron ra-
dius R, and the hole polaron radius Rh, both electron
a'nd hole reduce their energies by the so-called self-energy
shift and the electron-hole interaction is screened by the
static dielectric constant eo. In the opposite limit of
(r„)«R, +Rh, the polaron effects for the electron and

the hole cancel because of the opposite sign of the
charges of the electron and the hole, and net polaron
efkcts become very small; the electron-hole interaction is
screened by the high-frequency dielectric constant e„.

In a QW system, the exciton radius is different from
that in the bulk: the extension of the exciton in the z
direction, being perpendicular to the layer, is restricted
by the well width I.„and also a shrinkage of the radius in
the x-y plane occurs for smaller I., due to the two-
dimensional character. ' Because of this confinement
effect we may expect that polaron effects on QW excitons
have a different character from those in the bulk. In the
present work, we perform a model calculation of the

effects and will clarify the role of the exciton-LO-phonon
interaction on excitonic properties such as binding ener-
gies and oscillator strengths. In this connection, recently,
there have been publications which conclude that polaron
effects on the exciton binding energies in a GaAs QW are
quite significant. 'o" Our results for the effects on bind-
ing energies in a GaAs QW are not as large as those in
Refs. I() and l l, where the large polaron self-energy shifts
of the electron and hole subbands are neglected.

II. CALCULATION
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The first term of H,„and the third term of H,„describe
the kinetic energies in the x-y plane for the center-of-

Let us consider a QW exciton interacting with the
LO-phonon (energy t(ltu } via the Frohlich electron-
phonon interaction. The exciton consists of an electron
tron (position r„momentum p„and mass m, }and a hole
(position rh, momentum ph, and mass mh, in the z direc-
tion and mh in the x-y plane for the ellipsoidal hole
band). The Hamiltonian of the system is given by

H =H,„+Hph+H;,
where

(~x+~i )
H,„= +H,„,
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mass motion [position R=(m, r, +m„r„)/M=(R~~, Z),
momentum P=(Pt, P, },and mass W =m, +ml, ] and the
relative motion [position r=r, —rJ,

—(rt, z}, momentum

p=(p~~, p, ), and mass p, =(m, '+m» ') '], respectively.
The confinement potential VJ&(zJ } (j=e or h) is given by
0 for (z

~
&L, /2 and V. for )z ( ~L, /2, where L, is

the well width of the QW. a~ (a ) is the creation (an-
nihilation) operator of the phonon with momentum

q={ql,q, ). sJ (J =e or h) is given by mJ/M. For the
electron-LO-phonon interaction we use the Frohlich in-
teraction as in the previous work ' ' and then

u~ =(4na/0)'J (R/2mocu)'J /q, where 0 is the volume,

mo is the free-electron mass, and
a=(e„'—eo '){mue /2A'3')'~ is the dimensionless
Frohlich electron-phonon coupling constant. It is noted
that the use of the present Hamiltonian means that we
consider the barrier part only to yield the electronic po-
tential barrier and thus neglect the differences in masses,
dielectric constants, and phonon energies between the
well part and the barrier part.

We use a variational method to treat polaron effects on
excitons. ' The total momentum figl ——P~~+ g Aqta ~as

l

is the constant of motion. Thus me perform the
unitary transformation w'ith the operator
U&

——exp[i(Q~~ —g qtaqaq) R~~~] and obtain the
q

transformed Hamiltonian H= U, HU, . We set Q~~
——0

(the g& ——0 state is involved in the optical absorption) and

perform the second unitary transformation arith the
operator Uz ——exp[+ (Fqaz Fq—at )], where F is taken

to be ue [f~ exp( —ss, qual. rl) —f» exp(~s„qual. r(i)]. Here f
(j=e or J&) is assumed to be real and is determined varia-
tionally later. The present choice of Fs amounts to the
nonadiabatic-type approximation for motion in the x —y
plane and the adiabatic-type approximation for motion in

the z direction: this neglects the intersubband contribu-
tion for the pola ron efFect and is vahd when the
diSerences among subband energies are much larger than
the phonon energy. The part of the transformed Hamil-
tonian which does not include the phonon operator is

given by

Hes =Hex+~ V.s«}+XsE

where

J&Vs(r)= —gRco(uz [ [(e *"e & 1+cc.&f'+(e *'e t 1+c c)f" {e 1—&+c c )fg. ". ]

and XsE=XsE+Xsz. Here, X)E is given by

XkE= Q~ Iu, ( [(I+~J'ql)f', —(e ''+c.c.)]fJ, ,
q

where the polaron radius RJ =(A/2mJro)'~ . The follow-
ing variational wave function for an exciton is
chosen 3 '5

4„~0) =N„f,(z, )PJ, (z& )P„(rl)
~
0)

where f~(zJ ) is the subband wave function for an electron
(j=e) or a hole (j =h). $„(rN) describes the relative
motion in the x-y plane, N„ is the normalization factor,
and

~
0) is the phonon vacuum state. Then the varia-

tional condition 5(4„,0
~
H,s ~ 4„,0) /5f J~ =0 deter-

mines the form off~/as

(W p", }{1+&,'q~-~ )+(W' p', }p, -
(l+&,'q) )(1+&,'q(( )—(pq~ )'

if the wave function 4„ is known. It is noted that the ex-
citon energy without polaron efFects can be calculated
from E„=(4„i H,„ i 4„). Also we note that the usual
calculation for the QW exciton uses the static dielectric
constant eo for the screening of the electron-hole interac-
tion, i.e., uses E„=(4„~H,„~4„)with the replacement
of e„by eo. ' This assumes that the LO phonon can fol-
low the exciton motion completely, which is valid in the
very-shallow-exciton case.

Here we consider the lowest ionized exciton state (or
the exciton state in the shallow hmit) for which pN be-

comes zero. In this case

fJ=pJ /(1+8 ql )

X]E=—g M
~ ue ~

[2 cos(q, z, ) pJ]f,' .—
q

Then the energy of the lowest ionized exciton E„can be
calculated from E„=E'+E",where

j&j'=e,h, (10} E'=[&4J
I
JJ'/2 J.+V. { J}+Xi I eJ&]

(j =e, h} . (12)

pII = (@„~cos(qt rt) ~
4„&

p, = &a „( cos(q, z, &
~
e„),

and P~~ =pe p~ . Thus with use of Eqs. (6)-(10) the nth

exciton energy can be calculated from

E„=(e„
i H„i e„),

&& ~X& ~@ &= —X~I, I'Ip', , I'/{1+~,'q', &

is the contribution due to the polaron self-energy eff'ect
and can be also derived from second-order perturbation
theory for the electron (hole) state f (z )e ~ (' with only.
the intrasubband contribution. Thus, actually, the ener-
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gy E' (E") and the wave function i', (z, ) [fs(zs)] are
those for the electron (hole) subbands. In order to calcu-
late EJ and QJ, we choose the following variational sub-
band wave function for the lowest subband state:

N cos(k z ) for
~

z
~
~L, /2

i'/(zj. )= '

NC exp( —y, (z [) for [zj~pL, /2, (13)

The oscillator strength of the zero-phonon state of the ls
exciton is calculated in the usual way:s'

f» =8
~
$„(0)

~
(N „/L, )F(0) e

where

(15)

8 =2
i Mcv i

/m abc's,

F(0)= f dz i', (z)gq(z)

with C =cos(kJL, /2)exp(yjL, /2) and y =(2mfV /
A —k, ) ~z. Here N~ is the normahzed constant. Taking
k as a variational parameter and minimizing E in (12),
we obtain the subband energy E/ and wave function QJ
which include the polaron effect. It is noted that the en-

ergy shift of the subband state X$E, due to the polaron
effect, is given by the difference of EJ with and without
the polaron self-energy term X)E.

Now, after determining the subband state, we calculate
the ls exciton state variationally. Using the 1s-type wave

function p»(rl)= exp( —a»rl) and determining the pa-
rameter n&, from the minimization of E„ in (11), we ob-
tain the exciton energy E„and then the binding energy
of the ls exciton from

E =E'+E"—E

for GaAs (ZnSe). For the Suite-potential-barrier part in a
GaAs QW, we choose A)0 3Ga07As: values of the poten-
tial barrier V, =22S meV and V&

——152 meV are used. It
is noted that values of the dimensionless Frohlich
electron-phonon coupling a are 0.275 for a GaAs QW
and 1.324 for a ZnSe QW, and thus electron-phonon cou-
pling in GaAs is rather weak. Calculated results are
shown in Figs. 1-6 and are discussed in the next section.

III. DISCUSSIQN

First we discuss the results for a GaAs QW, i.e., the
GaAs-A103Gao ~As QW in the FPB model and GaAs
QW in the IPB model. Figure 1 shows a diagram of the
energy E„ for the ls exciton and the energy
E„=E'+E"for the lowest ionized exciton in a GaAs-
Alo&Ga07As QW. With polaron effects, both Ei, and

E„change their energies as seen in Fig. l. Because the
energy shift for E„ is larger than that for E„,the result-

ing binding energy Ei, becomes smaller by the inclusion
of polaron effects. Binding energy as a function of the
well width L, in a GaAs QW is plotted in Fig. 2. Results
of the simpler calculation, i.e., those from the Hamiltoni-
an H~ itself and H,„with the replacement of e„by eo
are also shown. The results with detailed polaron effects
deviate only by (at most} several percent from those of
the simpler calculation with the static dielectric constant
a=co, which has been performed usually. ' This result is
due to the smaller exciton-phonon coupling and the shal-
low'ness of the exciton in a GaAs QW as seen in the rela-
tion of Ei, &&Ace. In a GaAs-Alo&Ga07As QW for the
very much smaller well vridth I.„the effect of the exciton
confinement becomes smaller and then excitons have a
large amplitude in the barrier region, which brings the
decrease of the binding energy as seen in Fig. 2. ' We see
also the change of the oscillator strength due to polaron
effects in Fig. 3. Effects seem to be a bit larger compared

Here Mcv is the interband matrix element and i}lai is the
photon energy involved in the optical transition. Also,
the oscillator strengths of one- and two-phonon states are
given by f„g„and f„g„/2, respectively, and thus gi,
governs the strengths of phonon side bands. In order to
see the largeness of the polaron effects, the virtual-
phonon number involved in the exciton state, (N~„), is
calculated from

(N~~ ) =(4„ga~a~ 4„), (16)

where 4„=U, Uz i
4'„,0).

Numerical calculation is performed for the lowest
heavy-hole excitons in two types of materials. One is the
GaAs QW, being a typical III-V compound, in the finite-
potential-barrier (FPB) model and in the in6nite-
potential-barrier (IPB) model and the other is the ZnSe
QW, being a typical II-VI compound, in the inSnite-
potential-barrier model. Material parameters used in the
calculation are as follows: m, /m 0 =0.067 (0.160},
ms, /mo =0.353 (0.755), ms /mo =0.090 (0.200),
e„=10.9 (5.6), so=12.9 (8.7), and Ace=36. 2 (38.6) meV
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FIG. 1. Energy diagram mth and vrithout polaron efFects for
the 1s exciton and the lowest ionized exciton, conSned in a
GaAs-AQ, GqTAs finite-potential-barrier QW with the well

width I.,=80 A.
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FIG. 4. Average virtual-phonou number (N„) as a function
of the well width L, for the 1s exciton and the 1owest ionized ex-
citon in a GaAs QW: the GaAs-A]Q 3Gso 7As QW in the FBP
model and the GaAs QW in the IPB model.

to those for the binding energy. We note that calculated
values of g„are rather small: 4.9)&10 (].4X]0 ) at
L, =40 (80) A. for a GaAs-A]e 3Gao 7As QW. This means
that phonon sidebands of the ls excitons in a GaAs QW
are rather small compared to the zero-phonon lines.
When the wel] width L, decreases, the average virtual-
phonon number (N») for the ls exciton in Fig. 4
changes very little, while (N») for the lowest ionized
exciton increases. This different behavior reflects the in-
terrelation between the exciton conf]nement and the pola-
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FIG. 3. Osci]]ator strength f„iB~as a function of the well
width L, in s GaAs-A]0 3Gso qAs QW with a FPB. Results are
due to the calculations with detailed polaron elects and the
simpler choice of e=&„and e= fEO as in Fig. 2.

FIG. 2. Binding energy E~&, of excitons as a function of the
well width L„con f]nedin a GaAs QW: the GaAs-A]0 3Gso 7As

QW in the Snite-potentia]-barrier (FPB) model and GaAs QW
in the infinite-potential-barrier (IPB) model. Sohd lines show
the result by the detailed calculation of polaron elects. Dashed
lines and dotMashed lines show the results of the simpler calcu-
lation with the eNective dielectric constant a= co and e=e„, re-
spectively.

ron effects: in the x-y plane, the ls exciton shrinks while
the lowest ionized exciton does not, when the well width
becomes small.

Here we note the recent publications by Erqe]ebi-
Ozdinger and Degani-Hipo]ito. ' " They calculated the
ls exciton energy E&, with the inclusion of polaron effects
by the adiabatic method. The adiabatic method yields
the zero-energy shifts X ]& for the lowest ionized exciton.
Then, usin the lowest ionized exciton energy
E„=E'+E without the polaron self-energy effect, they
calculated the exciton binding energy E„and concluded
that polaron effects yield much larger binding energies
compared to those of the usual simpler calculation with
&=co. As seen in Fig. I, X~sp+Xsp is large and needs to
be taken into account. This fault is also applied to the
very recent work on the exciton binding energy of the
quantum well wire. ' In passing it is noted that the
present nonadiabatic-type calculation for the motion in
the x-y plane is more suitable to the semiconductor QW
than the adiabatic calculation: in a GaAs-
A]0 3Gao 7As QW the present nonadiabatic method yields
lower energies by 3.2 (3.1) meV at L, =40 (80) A than the
adiabatic method. The importance of the polaron self-
energy effect also appears in the bound polaron problem
in a QW: this has been clearly shown by Mason and Das
Sarma in their elective-mass approach to obtain the
binding energy. ' On the other hand, some papers missed
the polaron self-energy effect and concluded that polaron
effects yield the large binding energy. ' 2o

On the binding energy of the lowest heavy-hole exciton
in a GaAs QW, magnetooptical experiment and photo-
luminescence experiments offer some information. '

The recent results of Refs. 3 and 4 agree reasonably well
arit those of the theoretical calculation arith valence-
band coupling and without detailed polaron effects 2'22

valence-band coupling effectively increases the heavy-
hole mass and thus produces larger exciton binding ener-
gy. The present model calculation, whose purpose is to
discuss the role of the polaron effects on excitonic proper-
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FIG. 5. Binding energy as a function of the well width I, in a
ZnSe QW with the IPB. Results are due to the calculations
with the detailed polaron effects and the simpler choice of
6=6 and 6=6'p.

FIG. 6. Average virtual-phonon number (N„) as a function
of the well width I., for the ls exciton and the lowest ionized ex-
citon, confined in a ZnSe QW with the IPB.

ties, uses the hole-mass value mz ——0.090mo by neglecting
the valence-band couphng: the binding energies obtained
are smaller than experimental values by 10—20%. Both
the valence-band coupling effect and the detailed polaron
effects increase exciton binding energies in a GaAs QW,
though the latter effect is smaller.

Next we discuss the results of the ZnSe QW in the IPB
model. Figure 5 and Fig. 6 show the binding energy E i,
and the virtual-phonon number (N~h ) as functions of the
well width L, . We see in Fig. 5 that, when the well width
becomes small, Ei, with detailed polaron effects deviates
much from that with @=co and becomes closer to that
with e=e„. This means that the larger cancellation of
polaron effects for an electron and a hole for the ls exci-
ton occurs for the smaller well width L„because of the
confinement in the z direction and the shrinkage of the
exciton radius in the x-y plane. The cancellation is clear-
ly seen in Fig. 6 where the virtual-phonon number (N h )
for the ls state decreases for the smaller L, . This behav-
ior is rather different from that in Fig. 2 and Fig. 4: this
is due to the larger electron-phonon coupling for ZnSe
compared to that for GaAs, as mentioned in Sec. II. The
result indicates that polaron effects in a QW depend sen-
sitively not only on the potential barrier and the well
width of the QW but also on the strength of the electron-
phonon coupling.

We have performed a model calculation of polaron
effects for QW excitons. It has been found that polaron

effects in a QW system have a rather different character
from those in the bulk, refiecting the exciton confinement
effect: the potential barrier and the well width as weB as
the strength of the electron-phonon coupling affect exci-
tonic properties of the binding energies and the oscillator
strengths. For materials with stronger electron-phonon
coupling such as I-VII compounds (like cuprous halides
and alkali-metal halides), the effect will be much larger.
In the present work we take account of only the intrasub-
band contribution of the polaron effects for motion in the
z direction. In a quantitatively better calculation the in-
tersubband contribution among electron subbands and
heavy (light)-hole subbands, based on valence-band cou-
pling, needs to be considered. Also, for a better calcula-
tion it is necessary to consider the effects of the interface
phonon and the form of the electron-phonon interaction
suitable to various QW systems. These are the prob-
lems to be considered in the future.
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