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Density of states for an electron in a correlated Gaussian random potential:
Theory of the Urbach tail
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A detailed study of the density of states (DOS) p{E) in the tail for an electron in a spatially corre-
lated Gaussian random potential V(x) is presented. For disordered solids characterized by short-
range order extending a distance L, of the order of the interatomic spacing, we consider autocorre-
lation functions 8{x}=(V{x}V(0))of the form (i} V,exp[ —( ~x

~

/L}") for 1&m «e. For
short-range disorder characterized by two correlation 1engths L, and Li, we consider the model (ii)

8{r)= V [a exp{ —x'/L i )+(1—a)exp{ x'/L—i)] Final.ly, we consider the case of longer range

correlations (iii) 8{x}=Vi, [1+{x/L) ) ', which may be relevant to systems with topological
disorder or disordered polar materials in which the randomness may be modeled by frozen-in
longitudinal-optical phonons. %'e Snd that for reasonable choices of the correlation lengths and
rms potential Suctuation that the entire experimentally observable part of the DOS in three dimen-
sions lies in the crossover regime between the shallow energy Halperin-Lax tail
p{E)- )
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where the energy E is measured relative to the shifted continuum band edge. For systems with rap-
idly decaying short-range correlations (m &2) the crossover regime exhibits a linear exponential
(Urbach) tail which easily spans Sve decades in the DOS. The extent of linearity is highly sensitive
to the range of the correlation function 8(x). The screened-Coulomb impurity model (m =1) re-
quires a screening length considerably smaller than the interatomic spacing to give an Urbach tail.
These results are obtained numerically by saddle-point (instanton) evaluation of a replica-
functional-integral representation of the one-electron propagator. The instanton method provides
an asymptotic expansion for the band-tail DOS, which is nearly exact for a11 energies below the
shifted continuum edge. Comparison is made to the Feynman path-integral method and to a simple
physical argument which yields to a high degree of accuracy the results of the instanton method.
Our results provide a basis for understanding the extent, precision, and universality of Urbach tails
in disordered materials.

I. WTRODUCTION

A long-standing fundamental problem in the under-
standing of optical properties of disordered solids has
been a clear physical explanation of the nearly universally
observed Urbach optical absorption edge. The empirical
rule first proposed by Urbach' in 1953 states that the op-
tical absorption coeScient a(co) associated with electron-
ic transitions from the valence- to conduction-band tail
takes the form

a(co) —exp[(Ace —irtcoo) /lY],

where fico is the photon energy and %coo and W are fitting
parameters. Roo is comparable to the band gap, and
W= A +8(kite) has a temperature-dependent part as-
sociated with static disorder as well as a part arising from
the thermal excitation of phonons. In some recent pa-
pers ' it was suggested that the linear (Urbach) exponen-
tial behavior evident in the absorption spectrum could be
attributed to a corresponding energy dependence in the

one-electron density of states p(E) in a static Gaussian
random potential V(x) provided that a careful treatment
of short-range order on the scale of the interatomic spac-
ing was performed, this being the scale of the localized
wave function in the Urbach region. For an autocorrela-
tion function 8(x)=( V(x)V(0)) chosen to be of the

2/ 2
Gaussian form V,e " with I. the interatomic spac-
ing, it was shown3 by means of a simple physical argu-
ment that p(E) exhibits a linear exponential tail which
easily spans five decades. Although we do not attempt to
give a microscopic derivation of the Gaussian autocorre-
lation, we observe that both the extent and accuracy of
linear behavior are sensitive functions of the range of
correlations. For example in the model
8(x)= V~,e ~" ~/ studied by Halperin and Lax the
extent of linearity is considerably reduced. A true Ur-
bach tail in this model would require a correlation length
L considerably smaller than the interatomic spacing. In
this paper we present an extensive study of the sensitivity
of Urbach tails to the nature of short-range correlations.
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In particular %Pc consldcr correlat10n functions of thc
form 8(x)=V,exp[ —(

~
x

~
/L) ] for 1&m & 00.

It is shown that accurate linear behavior in the DOS is
characteristic of random potentials which are strongly
correlated for lengths up to the interatomic distance and
then rapidly lose correlation on longer scales. The case
m=1 is relevant to heavily doped semiconductors with
charged impurities. It is plausible that in amorphous
semiconductors that correlations decay even more rapid-
ly (III &2). This is supplemented by a study of correla-
tions having both a short-range and long-range com-
ponent. As a simple model we consider

8(x)= V, [ae '+(1—a)e '] .

Finally we consider a class of power law decaying corre-
lations 8(x)=V,(1+x /L )

' as may be realized
in systems with topological disorder or polar semicon-
ductors where it has been suggested that frozen-in
longitudinal-optical phonons may produce long-range
correlated random electric fields. Our results provide a
basis for understanding the universality of Urbach tails in
the one-electron DOS and how small deviations from
linearity may represent characteristic signatures of par-
ticular forms of short-range or long-range order. A com-
plete test of this hypothesis, however, would require an
independent probe of microscopic correlations in the
solid.

Theoretical eiforts to describe band tailing and the as-
sociated optical absorption edge have a long and rich his-
tory. For heavily-doped semiconductors with screened-
Coulomb impurities, Kane, Bonch-Bruevich, and oth-
ers developed semiclassical treatments for the density of
states which focused primarily on the probability distri-
bution of the potential 6uctuations. Taking advantage of
the long-range nature of the impurity potential, it was
shown that for a Gaussian probability distribution, the
deep tail forms a Gaussian density of states. This result
remains true 1Q an asymptotic limit for any corrclat1OQ
function 8 (x) having a finite correlation length L. For
band tail states of energy —

~
E

~
measured relative to

the conduction band continuum edge, it has been shown
that the density of states in d dimensions takes the form

p(E)- ~E ] cxp( —(E [ /2V, ), A, &&L (1.2)

provided that the electron deBroglie wavelength
~=—&/(2III'

~

E
~

)' is considerably smaller than the
correlation length L. Here m ' is the conduction-electron
effective mass. However, if L is close to the interatomic
spacing as in the case of an amorphous semiconductor
the asymptotic limit (1.2) is only realized at energies so
low that the presence of the valence band cannot be ig-
QOI'ed. Typ1cally, the crltcrion for asyIDptotlc vahdity of
(1.2) requires that the energy be more than one quarter of
the way into the band gap and that the locahxation
length be much smaller than the interatomic spacing.
Here, the efFective-mass approximation to the true band
structure of the solid is inadequate. On the other hand,
Halperin and I.ax" (HL) recognized that for shallow-
energy-tail states, for @which the efective-mass approxi-
111atloli 18 valid, thc ulldcrlylng physics Is clla11gcd coIIl-

P I V{x}j cc exp — S I V j
1

y' (1 4a}

SIVj= Jd x V(x). (1.4b)

The averaged density of locahzed states at a particular
energy E is simply the number of potential fluctuations
V(x) capable of supporting a bound state at precisely this
energy and weighted by its probability of occurrence
(1.4a). Consider, for instance, an elementary class of such
6uctuations taking the form of square wells of depth —u

and linear extent I &L. Using the Heisenberg uncertain-
ty principle, the ground-state energy —

~
E

~
may be ap-

proximated by —u +R /(2III '12). In this case

2 12

S f V j =—S(I)= l~
[ E [ + (1.5)

For d &4, the density of states in the tail is dominated by
those potential wells of size

I2
Q2

2m' fE /

which minimize S(l). The Halperin-l. ax tail is then sim-

ply obtained as

p(E) —exp — S(I;„)1

y'

Thus result is valid provided I,.„~L,. For I;„~I. the lo-

pletely. Here the kinetic energy of localization plays a
dominant role in determining the scale of the most prob-
able potential Quctuation. In the asymptotic limit A, &~I.,
the density of states takes the form

p(E)- (
E

(

' '~ exp( —constX
)
E

(

I d~~),

A, »L . (1.3)

Despite the Srm mathematical foundation of the asymp-
totic forms (1.2} and (1.3), neither of these energy depen-
dences can account for the universally observed Urbach
tail in three-dimensional systems. This discrepancy may
be resolved by a careful consideration of the relevant en-

ergy and length scales. The required interpolation be-
tween the asymptotic limits {1.2) and (1.3) exhibiting the
observed Urbach spectral dependence was first reported
by Sritrakool, Sa'Yakanit, and Glyde. The underlying
physics of a broad range of linear exponential behavior is
the strong inhuence of the correlation length L on band-
tail states in three dimensions and the consequent pinch-
ing of the Halperin-Lax behavior (1.3) into an unobserv-
ably narrow energy window near the shifted continuum
band edge. In fact the breakdown of Hl. scaling occurs
for deBroglie wavelength A, substantially longer than L as
the spatial dimension d ~4. This may be seen by the fol-
lowing simple physical argument. ' For length scales
long compared to the correlation length L, the probabili-
ty distribution for the potential may be taken to be of the
form
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cal minimum (1.6) is not accessible and the density of
states approaches the value

T

reduces in the high-temperature limit to ( b,„b, ) r
=D 5„,where

ik r)~, = g VkQk&
k

(1.7b)

where a, is the creation operator for a Frenkel exciton at
lattice site i, Qk is an acoustic phonon normal coordinate
and for a deformation potential interaction Vk cck. On
the time scale of an optical absorption event, the modes

Qk are essentially frozen and satisfy the statistics of a
harmonic oscillator in thermal equilibrium. In particular
the "site energies" h„satisfy

—ik.(r —r )

k 269k

ficok
coth

where ( }T denotes thermal expectation value and sum-
mation is over the crystalline Brillouin zone. For an
acoustic phonon dispersion of the form ~k ~k, this

leading to the Gaussian form (1.2). It is apparent from
(1.6) that in high dimensions (d «4), l,„becomes small-
er than I. even for shallow band-tail states described by
small

~

E
~

. That is to say, in higher spatial dimensions,
the influence of the correlation length I. is felt even at en-
ergies for which the deBroglie wavelength A, &&I. and the
HI. tail is in fact pinched into a smaller and smaller ener-

gy window as d «4. This in turn leads to a very broad
crossover regime between the two limiting forms (1.2)
and (1.3) as well as a high degree of sensitivity to the
range of the autocorrelation function of both the extent
and linearity of the crossover regime.

The discrepancy between the limiting forms (1.2) and
(1.3) and the observed Urbach absorption edge has led to
extensive studies of alternative mechanisms. " The ac-
tual optical absorption coefficient a(ro) is determined not
only by the convolution of the valence- and conduction-
band tail density of states but also by the osciBator
strength of the associated transition. Although the
universality of Urbach tails in our analysis is apparent
from the one-electron DOS, there are many materials for
which the transition matrix element plays an important
role in determining the shape of the absorption edge.
The most notable of these systems have been described by
exciton models. In narrow-band molecular crystals the
optically excited electron-hole pair interact strongly to
form a tightly bound Frenkel exciton band below the con-
duction band. Sumi and Toyozawa' have described the
associated absorption edge in terms of the interplay be-
tween the narrow free exciton band and excitons momen-
tarily trapped by interaction with acoustic phonons. The
exciton-phonon interaction is written as

H= gb, ;ata;, (1.7a}

The k =0 part of the spectral density A ( k, E)
=(k ~(E H)—'~k) describing an exciton with zero
center-of-mass momentum exhibits a I.orentzian peak as
a function of E at the center of the narrow-exciton band
and a tail of lower energy localized exciton levels arising
from disorder. The underlying physics of the localized
exciton levels is the same as in our model of a single par-
ticle in a static Gaussian random potential. However, the
existence of a sharp exciton band modifles the nature of
the overall optical absorption edge. Abe and Toyozawa'2
and more recently Schreiber and Toyozawa' have per-
formed extensive numerical studies on the eft'ects of
Frenkel exciton line shape on the Urbach edge. It was
found that the density of states is the dominant cause of
the exponential tail in the optical absorption spectra in
the systems they considered.

In materials with high dielectric constant, the
electron-hole interaction is considerably weaker. For ex-
ample, in GaAs with a dielectric constant a=12, the ra-
dius of the lowest exciton orbit is almost 100 A. The
Snal-state interaction between the electron and hole again
appears as a large enhancement of the optical absorption
over the square-root continuum for the one-electron den-
sity of states and the effect of the enhancement is felt in
the absorption edge. Dow and Redfield have studied the
influence of the internal degrees of freedom of such
large-radius (Wannier) excitons on the absorption edge.
In particular, for ionic crystals and polar semiconductors
they argued that the dominant interaction is that of the
%annier exciton with frozen-in longitudinal-optical pho-
nons. In this case we may use (1.7a) and (1.7b) except
with Vk ~ 1/k and cok ——const which in the high-
temperature limit leads to long-range correlations of the
site energies. From Eq. (1.8) we obtain ( b,„b, }T-1/

~
r —r„~ . The resulting long-range-correlated ran-

dom electric 6elds cause 6eld ionization of the exciton.
The 6nal-state interaction determined by the overlap of
the electron and hole wave functions decreases exponen-
tially as one goes deeper in the tail. The energy depen-
dence of this oscillator strength plays an important role
in determining the overall shape of the optical absorption
edge. The importance of matrix-element effects for 1ong-
range correlation random potentials is also evident in our
calculation. We find that for an electron in a static ran-
dom potential for which the autocorrelation function
8 (x —y)-1/(x —y) at large separations the one-electron
DOS by itself does not exhibit an Urbach tail (see Fig. 5
and later discussion}. This is a consequence of the ab-
sence of a Halperin-Lax region for autocorrelation func-
tions for which I d x8(x) is infinite. For integrable
correlation functions, however, the band-tail density of
states by itself exhibits a linear exponentia1 energy depen-
dence, and we take this as our starting point from which
additional e8'ects such as those described above may be
incorporated.
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II. FIEI.D THEQRY: GAUSSIAN %AVE-FUMWION
APPROXIMATION

A single electron near the conduction-band edge may
be described in the elective mass approximation by a
Schrodinger equation

r

stanton amplitude. Assuming an autocorrelation func-
tion of the form 8(x)=V,exp( x—/I. ), the best
Gaussian wave function approximation to the density of
states follows from inserting (2.4) into (2.2b) and minimiz-

ing the resulting action

Q2

, V + V(x) (ttj{x)= —
i
E

i P(x) .
2p?l

(2.1)
S(dI,R)=

2

Here E is measured relative to the unperturbed band
edge. The averaged one-electron Green's function for a
Gaussian random potential V(x) characterized by a zero
mean value and autocorrelation function ( V(x)V(y))
=8 (x —y) has a replica field theory representation:7 s

1

8 m)s (1+2R2/I 2)d/2
(2.5}

with respect to the two variational parameters A and R.
Introducing the energy scale,

(G(x,x', Ex ))=))I —f Dd () (x)d'(x')x
n~0 Pl

I

where

(2.2a)

EL =
2m 'L2

the required local minimum occurs at
~ '

—ex+ IE I

2-2 d
' d/2

{2.6)

(2.7)

S=-,' f d~x P (x) , —E+ (I)'(x)
2m'

for the instanton amphtude, and the localization length R
is determined by

—
g f f d xd ) d (x)d fx')B(x'—y)

XP~(y)P(y) . (2.2b)

4) E ) /(4 —d}
16[E I

(4—d)2ez

(2.8)

Here (2.2a) is a functional integral over the set of replica
fields P, a=1,2, . . . , n in which the contour of integra-
tion for each P (x) runs from —exp[(in/4)ao] to
+exp[(i e/4) ~ ]. For sufficiently large negative energies
this integral is dominated by nontrivial saddle points of
the action S. These instantons determine the most prob-
able shape of the localized wave functions for a given en-

ergy —
I
E

~
and are solutions of the classical ~q~~ti~~

p(E) -exp( —S;„), (2.9a)

(2.9b)

The exponential part of the density of the states is then
approximated by

V'+ ~E
~ P (x)=-,' f d"y&(x y)P~(y)—

2m'

Xp(y)y (x) . (2.3)

(2.4a)

g(~)=— exp( —x~/2R z)1

(~R 2)d/4
{2.4b)

is a normalized harmonic oscillator ground-state wave
function of spatial extent R. Here 8 is the 0,th com-
ponent of the unit vector in rephca space and A is the in-

Before proceeding with a detailed numerical analysis of
this saddle point equation, it is instructive to obtain an
approximation to the density of states by means of an ap-
proximate analytical minimization of the action (2.2b).
This may be done by assuming that the localized wave
function for a particular energy takes the form of a
Gaussian:

It is straightforward to verify that this analytical form ex-
hibits the three regimes of physical interest suggested ear-
lier. For

~
E

~
&(1—d/4)~sr, the locahzation length

may be approximated by z„=2
~
E

~
/(4 —d) &&eL, . It

follows that (2.9b) may be approximated by
' d/2

4iE i
(4—d)si

2V', 4—d IE(

iE i & 1 ——
eL (2.10)

d

(2.11)

yielding the expected deep Cxaussian tail. The crossover
regixDc,

yielding the energy dependence of the Halperin-Lax den-
sity of states. If, on the other hand,
term 2eL, /sa appearing in (2.9b) may be neglected in
comparison to unity since in fhjs limit s& ()(: (e& ) E ~

)~~~.

It follows that

I
E 1»4eL,

2V
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1 —— « 4 (Urbach)
4 cL

(2.12)

for d =3 exhibits an essentially linear exponential behav-
ior characteristic of the Urbach tail throughout most of
the observable energy range. The Gaussian wave func-
tion approximation further exhibits the pinching of the
Halperin-I. ax regime into a narrow energy range between
(1—d /4) st and a shifted (extrapolated) continuum-band

edge. In three dimensions, for weak disorder, the
square-root continuum extrapolates to a band edge at
E= —V2, /2aL (see Appendix).

Our use of the Gaussian wave function approximation
in this section was primarily to make the physics of the
replica technique transparent. It is in fact an exact for-
malism from which a systematic, asymptotically exact re-
sult for the band-tail DOS may be obtained as will be dis-
cussed in Secs. IV and V. For the particular case of
Gaussian autocorrelations, the Gaussian wave function
ansatz reproduces to within a 3% error the results of the
more exact analysis.

which corresponds to an electron coupled harmonically
with oscillator frequency v to an infinite mass. Expand-
ing the true action S about this trial action yields the 6rst
cumulant approximation to the one-electron Green's
function which for x =x'=0 is simply

&G(0,0;t)&,„„,=J,„„p(A '&S —S,„., &)

where
~ —1

X(0)=X(t)=0
' d/2

m

2niRt
vt /2

sin( vt /2 }

(3.4a}

(3.4b)

and the angular brackets denote an average with respect
to S,„g..

&A &= f DX( ) A p('A' 'S,„„)/J,„„. (3.4 )

As discussed by Feynman, ' the first cumulant may be
evaluated by knowledge of the associated forced
harmonic-oscillator amplitude. A straightforward but
tedious calculation yields

III. RELATIONSHIP OF FIELD THEORY
TO THE FEYNMAN PATH IMR,GRAL

G(x,x';t)= &x'~e—'"""(x& .- (3.1)

An alternative representation of the averaged one-
electron Green's function in a random potential follows
from the Feynman path integral. Recently Sritrakool
et al. and Sa'Yakanitz have used this method to compute
band tails in disordered systems. In this section we ex-
phcitly demonstrate the equivalence of the Gaussian
wave function approximation to the introduction of a
harmonic oscillator trial action in the Feynman path in-
tegral. ~e define a time-dependent Green's function as
the matrix element of the evolution operator for the elec-
tron initially at position x and at a later time t at position

'& S S,„—„&=—I,(t)+I,„,(t),

where
I

d vt vtIo(t)= ——cot
2 2 2

—V2

o [1—(SieL /Rv)Q(r, t)]

and
sin(v~/2)sin[ v[(~—t)/2] jr, t =

sin( vt /2)

(3.5a)

(3.5b)

(3.5c)

& G(x,x', t) &,„b„——f DX(~) exp(is/R)

X(,t)=x'

in which the effective action

(3.2a)

f d~X (~)
0

+ '„ f 'd~ f 'de'B(x(~) X(r')) . —
0 0

(3.2b)

As discussed by Sa'Yakanit, ' an approximation to the
Green's function (3.2a} may be obtained by introducing a
trial harmonic-oscillator action

f drx (~)
2 0

di' f dT
(
X('r) —X('r } (

(3 3)
4t o o

The ensemble average of this propagator for the random
potential described in Sec. II has a path-integral represen-
tation

The averaged one-electron density of states is then given

by

,(E)= ' ddt. -&G(o,o;t)&.„„.„,, (3.6)

where the contour of integration is from —oo to + 00 in
the lower half complex t plane avoiding the singularities
along the real axis of the harmonic oscillator prefactor
J,„,]. It is convenient to distort this contour deep into
the lower complex t plane. For t = —iT and vT &~1 we

may replace Q(~, t) by —1/2i and the density of states
becomes

' d/2

p(E}= $ dt (ivt) exp[I(t)], (3.7a)

This integral has a saddle point to along the negative

where

I(t}= i-iEi +
2A (1+4e /A )~~i

(3.7b)
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imaginary-time axis for which

(3.8)

detailed discussion of numerical results is presented in
Sec. VI. The density of states in the single instanton ap-
proximation is given by

p(E) = A (E)exp[ —S(P„)], (4.2a)

If we now identify the harmonic-oscillator frequency v
with the spatial extent R of the ground-state harmonic-
oscillator wave function:

(3.9}

it follows that I(to) is identical to Sm;„[Eq. (2.9b)] ob-
tained from the Gaussian wave function approximation
to the ffeld theory of the previous section. The variation-
al parameter v may be chosen according to the Lloyd-
Best principle'6 which for the band-tail states corre-
sponds approximately to mininiizing the exponential part
of the density of states I(to). This minimization yields
precisely the result (2.8}. Keeping up to quadratic ffuc-
tuations about the saddle point to yields a density of
states

where A (E) is an energy-dependent prefactor and

S(P„)=—,
' f d x f ddy Pz(x)8(x —y)$2(y) . (4.2b)

As shown previously by one of us, . A (E) may be ob-
tained by evaluating fluctuations about the saddle point.
There is a degeneracy in the set of solutions to the saddle
point equation (2.3} since the instanton p,i(x)8 breaks
both the translational symmetry in coordinate space as
well as the rotational symmetry in replica space of the ac-
tion S. The method of collective coardinates may be used
to include contributions to the functional integral (2.2a)
from such degenerate saddle points obtained by global
translational or rotation af the instanton. Evaluating all
other fluctuations associated with distortions in the shape
of the instanton to quadratic order yields

(i vto)

Xexp[I ( to) ]
2m

I" to

' 1/2

(3.10)

llkdll~t-- I
~

I

where )) (( denotes the I.z Hilbert space norm:

llkall =— f d'x
I dd(x} I

'

(4.3)

(4.4)

identical to that of Sec. D. The Gaussian wave function
approximation to the ffeld theory is therefore equivalent
to the first cumulant approximation to the Feynman path
integral expanded about a harmonic-oscillator trial ac-
tion.

The harmonic-oscillator approximation yields an excel-
lent qualitative picture of the one-electron density of
states exhibiting the three energy regimes of physical in-
terest. The actual numerical coeflicients which determine
the slope of the exponential part of the density of states
as well as set the absolute magnitude of the energy-
dependent prefactor are, however„sensitive to the actual
shape of the most probable localized wave function. We
now proceed to relax the restriction to a Gaussian wave
function ss well as consider the elect of fluctuations
about the mast probable state.

(4.5)

Fluctuations in the instanton shape are incorporated in
the factor 4 which is a ratio of Fredholm determinants:

b =det'[Mr(1)/2n ]/det'[ML (1)/2~] .

Here, the operator

(4.6)

irt V
Mr(A, ) =5 (x —y) — + i

E
i2m~

——f d zB( xz)$2i(z) (4.7)

and the Jacobian associated with integration over uni-
form instanton translations is

IV. FIELD THEORY: INSTANTQNS

The form of the most probable wave function for a
given energy —

~
E

~
in the band tail is determined by

solving the saddle point (instanton) equation (2.3) associ-
ated with the replica-functional-integral representation
(2.2} of the averaged one-electron Green's function.
Writing P (x)=$„(x)R', these instantons are solutions
to the Hartree equation

( —V +
~
E

~
)y,t(x) ——' f d y 8 (x —y)y, ](y)y,)(x)=0 .

(4.1)

Sufficiently deep in the tail the solution P„ is identical to
the Gaussi. an wave function determined previously.
More generally, Eq. (4.1}must be solved numerically. A

describes ffuctuatians transverse to the direction R' of
broken symmetry in replica space and the operator

ML (A, )=Mr(A, ) —AM, „,h, (4.8a)

M,„,h —=P,~(x )8 (x —y)P,&(y) (4.8b)

describes the corresponding longitudinal fluctuations.
The prime on both determinants denotes the omission of
the zero eigenvslues of these operators since these Quc-
tuations have been calculated exactly by the method of
collective coordinates. MT hss one zero eigenvaiue with
eigenfunction P,&(x} corresponding to rotations of the in-
stanton in replica space and ML has d zero eigenvalues
with eigenfunctions (8/Bx, )P„(x), i =1,2, . . . , d corre-
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sponding to translations of the instanton in each of the d
independent Cartesian directions.

The evaluation of the ratio of determinants may be
simph6ed' by eliminating the continuous spectra of both
Mz and ML . Multiplying both operators by
( —fi V /2m'+

~

E
~

)
' leaves 6 invariant and reduces

the calculation to that of two discrete spectra. In partic-
ular,

A similar analysis holds for the longitudinal operator:

detML(A, )= g 1 — exp f dgpL(g)

detMz (A)[, eoL(A, )]e
6 =lim

detMI (A) , eu(A, )
(4.9) where the eigenvalues g~ are obtained from

(4.16}

I fi V /—2m'+g; [u,/(x) M—,„,h]Iy, = —
~

E
~ y, .

where

Mz(A, )=1+A( ft V —/2m'+
i
E

i
) 'u, i(x)

and

(4.10a)

ML(A, )=Mr(A, ) —A, ( —A' V' /2m'+
i
E

~

)

(4.10b)

Here, we have introduced the classical potential

u„(x)=——,
' f d zB(x —zhgi(z) . (4.11)

where g; are eigenvalues defined by the equation

Also, eo~(A, ) and eur()(, ) are the eigenvalues of ML (A, )/2n.
and Mz (A)/2n w, hich vanish as A,~ l. It follows that

detMr(A, ) = g 1— (4.12a)

(4.17)

Unlike the delta function correlated disorder considered
by Brezin and Parisi, ' the asymptotic behavior of the
density of eigenvalues pr(g) and pz (g) are identical as a
result of the nonlocality of the operator M,„,h. The effect
of M,„,h on eigenfunctions P whose scale of oscillation is
very short compared to the correlation length of the dis-
order and the spatial extent of ((}„is negligible compared
to the direct term. Although the individual determinants
(4.15) and (4.16) are divergent for d & 2, the ratio of these
two determinants is well de6ned. In the white-noise dis-
order model of Brezin and Parisi' this ratio was diver-
gent for d )2, and it was necessary to perform a one-loop
renormalization of these determinants. The existence of
a finite correlation length to the disorder removes this
divergence and the density of states in the zero-loop ap-
proximation is finite.

AV
+0,'u. i(x) 0,"=

I
E

I it", —
2m

(4.12b) V. BEYOND THE SINGI E-INSTANTON
APPROXIMATION

n (x)—
g~ co

The required density of eigenvalues pz(g) is simply the
derivative of total number of states with respect to g:

pr(g)= f d'x n(x) . (4.14)

The Fredholm determinant (4.12a) may then be written

For instance gu =1 and the corresponding eigenfunction
The computation of the determinant (4.12a)

may be simplified by knowledge of the asymptotic behav-
ior of g, for very large i The densi. ty of bound states in
the vicinity of —

~

E
~

for a very deep potential (large g, }
may be estimated using the Thomas-Fermi approxima-
tion. If, for instance, we consider Slling the potential well

gu, &(x) with electrons (neglecting spin degeneracy) up to
a Fermi level —

~

E ~, the local electron number density
n (x) at position x has an asymptotic behavior

u,~(x)
(d =3) . (4.13)

6m

The single-instanton approximation to the density of
states which we have described is the leading term in an
asymptotic expansion which becomes exact in the deep
tail and which is extremely accurate throughout the en-
tire band tail. The important corrections to this approxi-
mation occur only in the very shallow energy

~

E
~

~0
limit of the Halperin-Lax region for weak disorder. In
this limit, the scale of the localized wave function be-
comes large compared to the correlation length I. of the
disorder, and it is convenient to approximate the auto-
correlation function as 8(x)=yu5~(x). The action S ap-
pearing in (2.2b) may be simplified by rescaling all lengths
with respect to the de Broglie wavelength A,

—:fi/(2m '
~
E

~

)' and rewriting the field variables
((} (x)= AP (x/A, ). If the amplitude 3 is chosen to be
(

~

E
~

/yu)'~ then the action S may be rewritten as
S = 1/gS where the dimensionless coupling constant

1/g—:(
/
E

f
/yo)(2m'

/
E

/

/vari )

detM (A, )= g 1— exp f dgpr(g)

and S is expressed completely in terms of dimensionless
variables. j./g plays the role of a large parameter which
organizes the saddle point expansion. The single-
instanton approximation to the DOS described in the
previous section takes the form

(4.15)
po(E) = A (E)exp ——S(@,&)
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Here, the prefactor A (E) arises from considering quad-
ratic fluctuations about the single-instanton solution.
The higher-order Buctuations may be written as

(5.2)

VI. NUMERICAL RESULTS

In this section, we present numerical results of S(P„)
in Eq. (4.2b) by solving the Hartree equation (4.1) for
various autocorrelation functions in d=3. The auto-
correlation functions are assumed to be isotropic in space
and of a general form

where we have let g =Q„fl' +g . The exact density of
states is given by

B (z) =Bof I (6.1)

p(E)=p.(E)& -""'"&„, (5.3a)

where the angular brackets denote an average with
respect to the quadratic fluctuation matrix M'

I DIE( )exp — f d yI'M~I~
2g

+p~ p
2g

(5.3b)

The longitudinal and transverse components of the ma-
trix M were described in the previous section. An ex-
pansion in the small parameter g follows by evaluating
(5.3a) in a cumulant expansion. If we define

f (g}=in&exp( —aS/g) )

then it follows that

f(g}-a g+a g'+"
This constitutes an asymptotic expansion for the density
of states. For small g, higher-order terms in f (g) may be
neglected. For weak disorder this occurs already in the
Halperin-Lax region, and the single-instanton solution is
extremely accurate. Although the coefficients a, ,a2, . . .
are cumbersome to evaluate, a straightforward combina-
torial analysis reveals that hm „ia +, /a

i
=oo.

The expansion for f (g) therefore has a zero radius of
convergence and is only asymptotic in nature. Physically
this occurs because for shallow energy states the proba-
bility of occurrence of a potential well is relatively large
and a localized state in any given potential fluctuation
will interact with other nearby potential fluctuations cap-
able of supporting a bound state at approximately the
same energy. Mathematically this appears as an essential
singularity in the function f (g) which itself has contribu-
tions of order e ' as g ~0. This corresponds to the in-
creasing importance of multiple instanton conSgurations
in the shallow part of the band tail ( i E i ~0). In fact
the transition region between the band tail and the posi-
tive energy continuum is dominated by a st«ugly In-

teracting gas of instantons. A treatment of the statistical
111cchanlcs of tllls 111tcractlllg lllstaIlto11 gas ls bcyolld thc
scope of this paper. However it may be important for a
complete description for the DOS throughout the entire
energy spectrum and in particular for the behavior near
the electronic mobility edge.

r' r' u r'u r=0
2

(6.2)

with u (r)=rP,~(r). It is convenient to express Eq. (6.2) in
terms of the natural length unit L and energy unit
CI =fiz/2r—n'LI. The resulting dimensionless equation
becomes

d'
I u(t)+ u(t)

dt EL

4Ir f dt'F(t, t')u (t')u(t)=0,&0 I I 2, I

2EL

where t:r/L, u(t)=—L'~ II (r), and

F(t, t')= f dO, f( i
t —t'i ) .

(6.3)

(6.4)

The function F(t, t') is listed in Table I for the various
autocorrelation functions we studied. For any given

i
E

i /SL, Eq. (6.3) is solved self-consistently for u(t)
The operational procedure is to write u(t)=Aw(t),
where w (t) is a properly normalized function and A is
the instanton amphtude. Equation (6.3) may then be
written as

I w(t)+ w(t}
dt FL

—gL t'I' tt'm t'u t =0, 65

where the parameter

4@803
gl. :—

is to be determined for every
i
E i /SI, , and the normal-

ized function w (t) is subject to the boundary conditions
w(0}=0 and w(co)=0. An initial guess, w;„(t), is first
used to determine the "elective" potential

I dt'F(t, t')w;„(t') in Eq. (6.5). With this efFective poten-
tial, we then obtain both gL and an output w,„,(t) satisfy-
ing Eq. (6.5). The output function w,„,(t) is again used to
construct the effective potential and the whole procedure

where L is the characteristic correlation length and f is a
dimensionless function with f(0}=1. For d=3 we ob-
tain a radial Hartree equation

d2
u(r)+ iE i

u(r)
2III dr
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TABLE I. The angular average and the ratio between et and Eo (see text) for general autocorrelations functions f:
F(t, t') = ( I /4') J d0;f (

~

t—t'
~

}and a:—eL, /Eo.

f(fz [)

exp( —[z /
)

—f
e '[(r, +l}sinht& r, co—sht, ]tt'

(,2+,.2] sinh(2tt'3f +f
2tt'

(f+f') „2
e "dx

4tt' {f- f')2

1

(n —134tt', ([1+{t—r')']'-" —[1—(t+r')']' "]

(n & 33 (n+13

0.2466

(2n —5)

f2
S= L 1

0
(6.6)

The energy dependence of S comes implicitly from the
energy-dependent functions gz and to (t).

The first set of the autocorrelation functions we have
examined takes the form

O

40
cu~

O
fO

C

lO

C
O
C
~ 20

LU

0.5 10 $5 2 0
Energy ( units of ~,)

3.0

FIG. 1. The calculated S (exponent of the density of states) vs

energy for the autocorr elation functions of the form
8(x)=80exp[ —( ~X

~
/1. ) ]. The energy unit is eL

=A /2m L and S is in units of et /80. Curves shown are for
m=1, 2, and 4.

is repeated until the difFerence between the input and out-
put to (r) becomes sufftciently small.

With both gi and to(t) determined for a given

~
E

~
/sL in Eq. (6.5), we are ready to evaluate S(P„),the

exponent of the density of states. By using (6.1)-(6.5),
Eq. (4.2b) can be rewritten as

B(x)=B,exp— (6.7)

I x B(x)d x
I 2

J B(x)d"x
(6.8)

In»g. 1, the calculated S, in units of ez~/Bo, is plotted as
a function of the dimensionless energy ~E

~
/eL for

itt = 1, 2, and 4. The case of m =2 corresponds to the sin-

gle Gaussian autocorrelation function which has been
used in previous studies, while m= 1 originates from the
screened Coulomb potential with l. being the screening
length. All of the three curves do exhibit

~
E

~

'/ be-
havior for sufficiently small

(
E

(
and

~

E
(

behavior for
sufficiently large

~

E
~

in their respective asymptotic lim-
its. On the linear energy scale used in Fig. 1, however,
the

~
E

~

' behavior is inconspicuous (almost invisible in
the m= 1 case) while the asymptotic

~

E
~

behavior is
approached only very slowly as

~
E

~
increases. For the

intermediate energy region S is well fitted by a straight
line over a large energy range. The slope and range of
the straight line together with the root-mean-square devi-
ation of the fit are hated in Table II for m= 1, 2, and 4.
Here the linear fit is performed with an energy grid of 0.1

(in units of eL } for the m=2 and 4 curves in Fig. 1 and
0.02 for the m=1 curve. We have chosen the largest
linear region possible with a root-mean-square deviation
of the fit from linearity being approximately 0.2 (in units
of sL /Bo) in all cases. Some estimates of the parameters
eL and Bo and comparisons with experiment will be dis-
cussed in the next section.

To analyze the data further, we have plotted in Fig. 2
the logarithmic derivative n(E):d(logS)/d—(log

~
E

~
)

for the three curves of Fig. 1. It starts from 0.5 at
(E (

=0, passes 1.0 as
~

E
(

increases, and eventually
approaches 2.0 at large

~

E
~
. However since the experi-

mentally observable energy range relevant to band tailing
is located in the neighborhood of n=1, the exponent of
the density of states appears as a straight line.

Comparison of the three curves in Fig. 1, also reveals
the inhuence of the range of the autocorrelation function
on the linear behavior. We can define a "range" I.o of
the autocorrelation function by
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TABLE II. A list of the slopes, root-mean-square deviations, and range (E;„and E,„)of the 5tted
straight lines for curves in Figs. 1 and 4. The logarithmic derivatives n (E)=d [lnS(E)]id (ln

I
E

I
) at

E;„and E,„are also listed.

f(l& I)

exp( —Iz I
)

Pf = 1

Pl =2
m=4

(1+ Iz I')-"
Pf =3
n=4
n=5

Slope

9.6
14.6
15.1

31.2
44.6
58.2

fIQS

devlatlon

0.18
0.21
0.21

0.20
0.21
0.22

Emin

0.02
0.1

0.1

0.1

0.3
0.6

1.02
1.9
2.6

2.0
2.6
3.2

n(E;„)

0.69
0.65
0.60

0.66
0.68
0.71

n (E,„)

1.21
1.07
1.03

1.00
0.96
0.94

E(x) o
(e x2IPL +p4e—Px /L )—

1+
(6.9)

where P is the ratio of these two correlation lengths. The
coefficients of the combinations are chosen in such a way
that the resulting autocorrelation function in Eq. (6.9) has
the same range [defined in Fq. (6.8)] as the autocorrela-
tion function of one Gaussian with a correlation length L.
In Fig. 3, the calculated S for p= 1, 2, 4, 9, and 16 is plot-
ted as a function of

I
E

I
/eL. As p increases, the curve

changes from concave to convex and the linear behavior

As m decreases, the autocorrelation becomes relatively
long ranged. In the reduced energy scale

I
E

I /eL, the
effect of decreasing m is to push the

I
E

I

' behavior at
low

I
E

I
into a smaller and smaller energy region and

make the
I
E

I

s behavior appear sooner. Consequently,
the extent of the approximate hnear behavior becomes
the smallest for m=1 and also shifts toward smaller

I
E

I
/eL. In the opposite limit m ~ m, the autocorrela-

tion function becomes a step function. Here the extent of
linear behavior appears greatest.

The nature of the deviation from exact linearity may
also be adjusted by introducing two correlation lengths to
the disorder. As an example, we studied the double
Gaussian autocorrelation function

region moves toward higher energy.
The third class of autocorrelation functions we have

studied has the form 8 (x)=Bc(1+x /I. ) ", describing
polar materials and systems with topological disorder. In
Fig. 4 we plot the corresponding exponent S versus the
dimensionless energy

I
E

I /eL for n=3, 4, and 5. The
results are similar to those of Fig. 1. Both of the high-
and low-IE

I
li~iti~g cases exhibit the IE I' and

I
E

I

'/ asymptotic behavior, and an apparent straight
line dominates in the crossover energy region. The linear
behavior extends over a larger energy range going beyond

I
E

I /eL ——3 in the dimensionless scale.
The case n =-,' actually corresponds to the model of

band tailing considered by Dow and Redfield (see Sec.
II). Our calculated S for this case is plotted in Fig. 5.
Compared with the results in Figs. 1, 3, and 4, the
present curve does not exhibit the

I
E

I

'/ behavior at
small

I
E I. Consequently, there is no crossover energy

0
N
CV~

th
~~r

CO

20.0
C0
CL

Ill

4.0

0.5—
P

0.0
l i I

2.0 3.0
Energy ( +nits of rL)

5.0

FIG. 2. The logarithmic derivatives n (E)=d (logS) i
d (log

I
E

I ) for the three curves in Fig. 1.

00I
0.0 0.5 &.0 4.5 2.0

E&++y ( units of F,)
3.0

FIG. 3. The calculated S (exponent of the density of states) vs
energy for the autocorrelation functions of the form
8(x)=[8 /(10+p')](e " ~a +p e s' ~~ ). The energy unit
is az =A /2m I. . Curves shown are for P= 1, 2, 4, 9, and 16.
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200IO [ }
)

I

160.0

Af~
4)

120.0
CO

~~
C

fh
80.0

C
C0
CL.

LLl

40.0

0.0
0.0 0.5 1.0 1.5 2.0 2.5

Energy (units af EL)

3.0

FIG. 4. Same as Fig. 1, except that the autocorrelation func-
tions have the form of 8(x)=80(1+x~/I. 2) ". Curves shown
are for x =3, 4, and 5.

region with a linear behavior as found in previous cases.
The values of d (logS) ld (log

~
E

~
) range from 1.5 to 1.6

for the energies plotted in Fig. 5. The lack of the
Halperin-l. ax tail is attributed to the fact that the in-
tegral f 8 (x)d "x does not exist. A similar result holds

for any power-law correlation function which falls off'

more slowly than Ijr for large r in three dimensions.
Although the results of Figs. 1-3 are obtained from

difFerent autocorrelation functions, the overall behavior
exhibits certain similarities. To understand the universal-
ity of these results, we express Eq. (4.2b) in terms of new
variables R—= —,'(x+y) and u—:x —y:

+2Y2 R cl R ~+ '' (6.11)

where

y0—= 8 u u and y, =— g'9 g dg .
l

limit, where the charac«rustic wave
functions do not change appreciably over the correlation
length of the potential, the autocorrelation function is
usually approximated by a delta function and one has
only the first term left in Eq. (6.11). In this case P, ~

scales
as (

~

E
~

/yo)' and consequently S scales as
(1/yo)

~

E
~

. As
~

E
~

increases the potential corre-
lation length becomes non-negHgible compared with the
electron wavelength. In this case, the actual form of the
autocorrelation function has to be considered and thus
higher terms in Eq. (6.11)need to be included.

The next step is to choose the scaling factor for both
the energy and the exponent S. It is found that the
"range" defined in Eq. (6.8) is related to the ratio of yi
and yo:

(6.12)

Therefore it is natural to de5ne an energy scale Eo by

(6.10)

Next we expand b«h p,i(R+u/2) and p,',(R—u /2)
around R and arrange the terms in ascending order of g.
With the assumption that 8 (u) is isotropic, the first two
terms in (6.10) become

P

s yo 41 R dR

i
f

l
}

I
t

i | I

2 I. (6.13)

15.0

0
N
Al~
4J

0
10.0

C

40

C
c 5.00
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lLJ

0.0
0.0 0.5 1.0 1.5 2.0 2.5

Energy (units of EI)
3.0

FIG. 5. The calculated S (exponent of the density of states) vs

energy for the autocorrelation function of the form
8(x)=80(1+x /L~) '~2. The energy unitisez =fi /2m L . —

By evaluating Fqs. (6.12) and (6.13), we can find the ratio
between sL and Eo for the diff'erent autocorrelation func-
tions discussed above. These values of u = sL /Eo are list-
ed in Table I. With the energy scale Ee, the scale for S is
then chosen as Se= 1/yDEO

" in order to be consistent
with results of the low-

~
E ( limit.

The normalized S versus
~
E

~
Plots are shown in Fig.

6 for all the autocorrelation functions considered above.
In the low-

~

E
~

limit, all the curves coincide as required
in our scahng. When

~
E

~
increases slightly ( 50.2E&)

the first two terms in Eq. (6.11) are still sufficient to
represent S and all the curves remain almost identical.
As

~
E

~
gets larger, higher-order terms in Eq. (6.11) be-

come more significant and the curves depart from each
other. However, all of them show a hnear behavior in the
energy range plotted. The slopes of these linear regimes
differ by no more than a factor of 2 in these reduced
scales. Since are have kept the ranges of all the auto-
correlation functions to be the same, the differences
shower n in Fig. 6 arise from more detailed shape
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differences. The universality of linear exponential behav-
ior is manifest by this rescaling of energies whereas the
relation between the actual experimentally measurable
energy range and the scaling energies ez and E0 depends
on the material to be modeled.

Universality of the deep tail can also be shown for
correlations functions 8(x} with a Taylor expansion
about x=0 and following similar procedures as discussed
above. Physically this is because the electron wavelength
is much smaller than the correlation length of the poten-
tial as

~
E

~
~00. Therefore, the autocorrelation func-

tion changes only slightly within the range of the wave
function. In this case, the Hartree equation is reduced to
a Schrodinger equation of a simple harmonic oscillator
and can be solved analytically. It has been shown that S
goes to

I
E

I
'/2&0 as

I
E I gets suf6ciently large. ' In

our numerical study, ~E ( /eL has to be as large as
10 -10' in most cases to reach this limit to within a few
percent. This lies far beyond the energy region measured
experimentally. In fact the entire band gap of real ma-
terials is many orders of magnitude smaller, with the ex-
ception of certain molecular crystals or glasses. Real
band-structure effects will invariably modify the nature of
the deep tail. However, we expect that the results of the
continuum effective-mass model which we have used are
quite accurate for band-tail states one quarter of the way
into the energy gap, since in this regime the localized
wave function spans at least a couple of lattice sites.

FIG. 6. Results in Figs. 1 and 4 are replotted in the new di-
mensionless scales Eo and So to examine the universahty. Eo
and So are deSned as 0 /2m 'L02 and (1/yo}Eq "~„repsecti v-e

ly, where I.o is the range of the autocorrelation function {see
text) and yo= f d3x 8 (x).

VII. DISCUSSION

The universality of linear exponential band tails is evi-
dent from experimental studies of a variety of disordered
systems. ' In the transient-photocurrent measure-
ments ' the accurate power-law relationship between
the photocurrent and time delay requires an exponential
density of tail states as the results are interpreted by a
multiple-trapping model. This hnear exponential be-
havior has been observed for as many as Sve decades in
the DOS. As described in the Introduction additional
indirect evidence comes from the optical absorption
coefficient in the tail which varies exponentially with the
photon energy (known as the Urbach rule). Urbach's rule
has been observed in a large variety of glasses and amor-
phous semiconductors subsequent of the original studies
in silver and alkali halides. In many of these latter sys-
tems oscillator strength effects and exciton mechanisms
do not provide strong enough variations of the absorp-
tion coefficient with photon energy. The linear exponen-
tial behavior must therefore be a measure of the convo-
luted density of states between the valence and conduc-
tion band tail.

In order to compare our calculated results with experi-
ment, we need to have an estimate of the parameters 80
and sz in the inodel. The correlation length L is usually
of the order of the interatomic distance. With L in the
range of 2-5 A and the effective mass m' taken to be
that of an electron in the corresponding crystal,
sL =—{R /2m 'L2) is then in the range 0.3-1 eV for many
materials. Alternatively sL may be regarded as a fitting
parameter which is of order 1 eV to be physically reason-
able. ~ 80 is the square of the variance of the potential
ffuctuations and is also expected to be of the order of
—1 {eV} for the materials under consideration. There-
fore, the hnear energy regions in Figs. 1 and 4 are con-
sistent with the experimentally observed Urbach-band
tails. One exception is found for the case with an auto-
correlation function of exp( —

~
x

~
/L}, where the linear

behavior only exists for a considerably small energy
~
E

~
/sz (see Fig. 2). If this correlation function is used

as a model of screened Coulomb impurities, it would re-
quire a large sl and therefore either an unusually small
screening length L or effective mass m* to produce an
Urbach tail over many decades.

The magnitude of the variations in the density of states
associated with the linear region can also be extracted
from Figs. 1 and 4. Since p(E)-e s' ', the number of
decades of linear behavior in the density of states is equal
to the change in S divided by log, 10 (=2.3). From the
results in Figs. 1 and 4, it is clearly seen that even a small
portion of the linear region would correspond to a change
of many decades.

Comparison of the slope of the observed Urbach tail
with those obtained by the mogels we have described pro-
vides insight into the actual form of disorder present in
various materials. The slopes we calculated for various
autocorrelation functions range from 9.6 to 58.2 in units
of ez /80 (see Table II). With the estimates of eL —eV
and 80-1 eV, these slopes are in the range of (0.1 eV)
to (0.02 eV) '. The typical value in the optical absorp-
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tion experiments for a-SiH„ is about (0.05-0.08 eV)
Likewise in the photocurrent measurements the slope is
about (0.02 eV) ' for glassy As2Se1, 2 and (0.03-0.04
eV) ' for a-SiH„. It is evident that the models which
~e have considered can provide accurate descry. ptions of
both of these materials. Moreover, we anticipate that a
very large class of materials may be modeled using physi-
cally reasonable choices of length and energy scale pa-
rameters entering the autocorrelation functions which we
have presented.

The primary conclusion is that the shape of Urbach
tails in disordered materials provide a sensitive measure
of the microscopic spatial autocorrelations in the random
potential. The observed linearity of Urbach tails in a
variety of materials suggests strong short-range order on
the scale of the interatomic distance but correlations
which decay more rapidly than exponentially on longer
length scales. An independent, microscopic investigation
of shape of the autocorrelation function would be of con-
siderable importance in testing our hypothesis, which we
leave to future investigation.
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APPENMX: THE SHIFI'KD CONTINUUM
BAND EDGE

For large positive energies E, the density of states in
three dimensions approaches the well-known square-root
conttnuum: p(E) ~E (E~+ Do ). Tllls colltlllllulll ex-
trapolates to a small negative energy-band edge which is
now estimated for the weak-disorder limit.

The averaged one-electron Green's function may be
calculated in perturbation theory for extended nearly
plane-wave states. The Seld theory representation of

Secs. II and IV yields a simple effective medium approxi-
mation:"

Gt(k)= f d' ."*&G(,0,E, }&. .„.
1

%2k 2/2m ' E+—+Q (k)

where the self-energy correction

Q(k)= f q 8(k —q)G (q),d g

(2n )

(Ala)

(A lb)

and we have introduced the Fourier transform of the au-
tocorrelation function

g(k)= f d x e'"'*8( x)

y2 ( L2)3/2e —k L2/4
nas (A2b)

The location of the extrapolated continuum edge occurs
at E=Reg(0) in this approximation. For E~O and to
leading order in the scattering strength V2 „

y2 L 2e L2q /41.
Reg (0)= — — f dq

2 rr(E A, o 1+q2

(A3)

where we have rescaled the integration variation in (A2a)
by the deBroglie wavelength A, :—fi /(2m ~E

~
). For

weak disorder, near the band edge A, is much larger than
L so that the dominant contribution to the integral (A3)
comes from the region 1 &~q g 2A, /L. Replacing
q /(1+q ) in Eq. (A3) by unity yields

p'2

Reg(0)=—,sl =
2 (A4}

2mL

for the location of the continuum edge. The actual densi-
ty of states remains smooth at this energy. However, this
energy represents a crossover point below which the den-
sity of states is dominated by nonperturbative contribu-
tions (instantons) and above which perturbative correc-
tions in V, give rise to the high-energy square-root con-
tinuum.
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