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Polaron Landau levels in a nonparabolic conduction band are calculated within second-order per-
turbation theory restricted to the conduction-band eigenstates using a three-level band structure for
the unperturbed states. In the limit of a vanishing magnetic field, the results of Frohlich are
recovered, showing that the nonparabolicity itself does not affect the polaronic properties of the
bottom of the band. In the limit of resonant magnetic fields (cyclotron energy close to the LO-
phonon energy), resonant polarons are found to be shifted to a higher field and the coupling only
slightly modified by the band nonparabolicity. The calculations are in good agreement with the ex-
perimental data available on InSb using the physical parameters of the material found in the litera-

ture.

I. INTRODUCTION

Polaron coupling in weakly polar bulk three-
dimensional (3D) semiconductors has been extensively
studied since the pioneer work of Froéhlich.! Much
theoretical work has been devoted to the calculation of
polaron Landau levels’~> (PLL) in arbitrary magnetic
fields and special attention was paid to the resonant case
nfiw, =fiw o (fiw,=feB/m*, B is the magnetic field,
and m* the band-edge effective mass) where the energy
separation between the level n and the level O is resonant
with the LO-phonon energy, leading to the so-called reso-
nant polaron effect.? Polarons have recently gained revi-
talizing interest because of the ability to form two-
dimensional (2D) electron gases in semiconducting het-
erostructures. Two-dimensional PLL have been calculat-
ed by several authors.®~® Recently, Peeters and De-
vreese® extended previous theoretical works to arbitrary
magnetic field strength and arbitrary quantum number n,
both in three and two dimensions.

From the experimental point of view, 3D and 2D pola-
rons have been observed in several materials, including,
for instance, the narrow-gap semiconductors InSb (Refs.
3 and 9-13) and Ga, _, In As.'4~16

Most of the calculations mentioned so far have been re-
stricted to a parabolic conduction band with equally
spaced Landau levels in a magnetic field. Deviation from
this simple parabolic law, however, occurs in semicon-
ductors in a magnetic field such that fiw. is comparable
to the gap width E,. In this case, resonant polarons
should be affected in narrow gap materials (where typi-
cally #iw; o=E, /10). In fact, they are shifted to a higher
field due to the increase of the effective mass with energy.
However, as far as the magnitude of the effects (e.g., the
splitting of PLL at the resonance’) is concerned, one gen-
erally expects polaron effect and band nonparabolicity to
be simply “‘additive” since both are small. Such an intui-
tive procedure was justified in simple terms by Larsen®
for weak magnetic fields and essentially confirmed by
Zawadzki'? in resonant fields. Recently, Das Sarma and
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Mason'® developed a new calculation of the polaron bind-
ing energy and mass renormalization taking into account
the band nonparabolicity (within a two-band k-p model)
and found a modification of the above quantities. They
suggest that resonant polarons should be strongly
influenced by band nonparabolicity18 (enhanced by al-
most 50% in InSb). In a very recent comment of this
work, Larsen predicts smaller corrections.'’

We develop in this paper a calculation of PLL taking
into account the band nonparabolicity within the three-
band model of Bowers and Yafet,”’ and we apply it to
InSb. We restrict our discussion to the 3D case and we
essentially follow the method outlined by Peeters and De-
vreese in Ref. 5. In Sec. II, we derive a general expres-
sion for the polaronic shift of any Landau level in an arbi-
trary field (for energies below 7iw; ). In Sec. III, we focus
on the limiting cases of weak and resonant fields where
the calculated quantities are easy to compare to the para-
bolic case. In Sec. IV, we compare our results with the
available experimental data on InSb. The conclusions ap-
pear in Sec. V.

II. CALCULATION OF POLARON LANDAU LEVELS
IN A NONPARABOLIC CONDUCTION BAND

A fairly good description of the Landau states in zinc-
blende semiconductors may be obtained from the simple
model of Bowers and Yafet?® which treats exactly the in-
teraction between the close-lying I'y conduction band, I'y
heavy- and light-hole bands, and I'; spin-orbit splitoff
valence band, while the interaction with all other bands is
neglected. The effective-mass Hamiltonian 7, for the
Landau states is a 8 X 8 matrix operator acting on eight
components slowly varying envelope wave functions (see
Ref. 20 and for instance Appendix C of Ref. 21 where all
details can be found) which should be multiplied by the
corresponding Bloch functions from the I' point of the
Brillouin zone and summed up to obtain the total wave
function. The envelope wave function of the Landau
state n with the wave vector k (in the direction of B) and
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spin up (only this spin state will be considered here?) will
be denoted by ¥,,. The corresponding energy &,(k) is
the positive root of the cubic equation:?%?!

E(6+E )6 +E,+A)

(36+3E, +24)

)\‘2
T(Zn +1)+k?

2
_AA

5 (1)

In Eq. (1), A is the spin-orbit splitting of the valence
band, C=E,(E; +A)/(2A+3E;), and A =tiw, /fiw g is
the dimensionless magnetic field. Throughout the paper
we use polaron units where the energies are expressed in
units of f#iw;, and lengths in polaron radius
ro=[#/2m*w. )]

Within the multiband effective-mass approximation?
(EMA), the Hamiltonian of our problem—namely the
Hamiltonian of a slow electron interacting with its LO-
phonon cloud in a weakly polar zinc-blende semi-
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-7{=ﬂo+ﬂph+7{p ’ (2)

where 7, is the phonon matrix operator and # is a di-
agonal 8 X8 matrix operator, with all diagonal com-
ponents being the standard Frohlich Hamiltonian Hp.'
In writing (2), we assume Hy to be slowly varying in
space over the unit cell g, i.e., 7y >>a. As already stated
by Larsen,? this requirement is also necessary to comply
with the basic assumption of Frohlich,! that the crystal
be treated in the continuum approximation.

The polaronic shift of the nth Landau level (with k£ =0
and zero phonons) within second-order perturbation
theory” is

(Pisq | Hr | ‘ﬁno?o)z

‘_Ek % 6 (k)+1—6,00—A, ’

(3)

where the summations run over all valence and conduc-
tion states and over all phonon wave vectors q, respec-
tively. In Eq. (3), A, depends upon the exact perturba-
tive scheme employed.® Following the approach of
Peeters and Devreese (we are thus limiting ourselves to

conductor —reads energies below fiw; o), Eq. (3) is rewritten as

—(1—-A,)u

A, = f*‘”—lf du

-~ g

where the summation over q has already been converted into an integral, r(u) is the electron position operator at imagi-
nary time u =it,’ and a is the Frohlich constant. Knowing the expression of r restricted to the subspace of parabolic
Landau states,” we obtain those restricted to the subspace of Landau states in the nonparabolic conduction band (see
Appendix A). Intermediate states in the valence band are now excluded which means that the weak Frohlich interac-
tion cannot excite a hole in the valence band: this is a reasonable assumption (unless i, 5 << E,) for the materials con-
sidered here [note that in Eq. (4), the valence-band states as well as spin-down states?*?* are mcluded in the matrix ele-
ment]. The intermediate states which we omit should contribute to the order a/E, as was recently shown by Larsen.'’
This allows us to calculate the matrix element appearing in Eq. (4) and to perform the q integral (see Appendix B where
some details of the calculation are given). The nonequidistance of Landau levels makes the calculation of A&, here
more tedious and leads to a final expression including an infinite sum, while—due to the equal spacing of Landau levels
in the parabolic case—the results of Peeters and Devreese have only finite sums [Egs. (12)-(14) of Ref. 5]. A&, is ob-
tained as

(¢"0 | eiq~r(u)e —iq-r(0) | 1/}”0) , 4)

du_ —{(1_A,,)/A21u

Aé"”=_M/_ f 7a(,A2) (5)
where
A= S 3 Ay A (A 6)

p=0 m=0 [ =max(p,m)

with

2

nMNH2H /HE JH2)(V)) 2" Cn o0
A (4, AB)=(— 1) L m o~ (7a)

(n —m)n —pI —m)I —p)lp'm!
" V, #

anm,(u,)\z)zﬁ [——— Filp'+ 40"+ 1L,p"+3(u —V,B,)) /u) , (7b)
p'=n+l—-m—p, (7c)
B, =3[(n + DK} | —nK;+(I + VK7, —IKP], (7d)

H,= II K, (7e)
i=0
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2n —1 n+1

D= [1+Ca2 [N, N 7

Kaln 2 D=+ O e~ T E X6, 1 E,) | (6, 1+E, +ANG, 1 E,+B) not e
KO‘_I ’ (7g)

2n +1
N,=1+CA2 IR L. B i (7h)
(6,+E,) (6,+E;+4)

(6, +E, +8)(26,+E,)+6,(6,+E,)—3CA*(2n +1)

Vr C(36,+3E,+24)

In Eq. (6), the index / numbers the intermediate Lan-
dau states with one phonon. Note that for each inter-
mediate state, the q integral is already performed. In Eq.
(7, K, is related to the annihilation and creation opera-
tors of Landau states in the nonparabolic conduction
band (see Appendix A); N, is the square modulus of ¥,
(see Appendix C of Ref. 21); V, represents the increase of
the effective mass at the bottom of the nth Landau sub-
band: this is immediately seen by considering the limit
A— o which leads to the well-known two-band result
V,=1426,/E,;; ,F(a,b,c;z) are the hypergeometric
functions.?® It is worthwhile noting in Eq. (7) that in the
limit A— 0 and E; — o (i.e., in the parabolic approxi-
mation), one has B,;,=K,=N,=H,=V,=1 for any n
and A% so that A&, tends to its parabolic value AE, as
given in Ref. 5.

III. DISCUSSION OF THE LIMITING CASES

A. Weak magnetic field A% << 1

The first limit we consider is that of the weak magnetic
field A2 << 1, in order to point out some qualitative ideas
on the effect of the band nonparabolicity on the polaronic
properties at the band edge.

A6, is obtained by expanding &,(u,A?) in powers of
u.”” By inspection of Eq. (7), it is seen that the
coefficients K,, H,, B,;, and V, tend towards one for
small A2 and that &, tends to its parabolic value
&,=An +35—A/2(2A+43E,)], so that for any u, one
has

lim ¢,(4,A*)=G,(u) , (8)
20
where G,(u) is the function of Peeters and Devreese’

which enters Eq. (5) in the parabolic case. Since one has
for small u

2n +1 18n2418n —1 ,

G, (u)=1+ e ¢ 180 us4 -, 9
Eq. (8) gives, in our case, the following equation:
galu A =1+ 2Ly (140224 - )
18n2418n—1 , 20 .y ..
+ 130 u“(l1+bA*+ )+ )
(10)

with a and b being some coefficients whose analytical
determinations are tedious and of no fundamental in-
terest for our purpose. We will numerically show below
that a is nonzero. After integration over u, A&, is
rewritten as®’

2n+l 2
A, =—a |14+
= i
18n2+18n —1 2n+1 .
A oo |
+ 240 2 ¢MT

(11

The important result quoted in Eq. (11) is that, up to
the term A%, A6, is identical to its parabolic counterpart’
and in the limit A2—0 (i.e., at the bottom of the band) the
standard results! are recovered for the polaron binding
energy E,=—a and polaron effective mass m**
=m*(1+a/6) when the small contributions of the inter-
mediate states in the valence band are neglected. Larsen
has recently shown'® that the inclusion of these far-lying
states changes the expressions for E, and m** (see
below). Since the bottom of the band remains parabolic
within the three-band model (e.g., for A> << 1, one has the
following in the limit 6,=(n+1)A?
—1/E,(n +1)*A* to second order in the magnetic field)
and the above quantities are governed by the dispersion
law for small wave vectors,! our result is quite reasonable
from the physical point of view. Das Sarma and Mason'®
recently predicted the expressions E,=—a(1-3/2E,)
and m**=m*[14+(a/6) (1+11/2E,)] within a two-
band k-p model, which respectively lead to a reduction of
14% and an enhancement of 57% of the polaron binding
energy and polaron correction to the effective mass in
InSb. The summation over intermediate states was re-
stricted to the conduction band as was done here. It is,
however, worthwhile pointing out that not only the un-
perturbed energies enter the second-order perturbation
calculation, but also the unperturbed wave functions do
[see Eq. (3)]. This latter point was ignored in Ref. 18.

In a recent comment!” on the paper of Das Sarma and
Mason, Larsen found smaller but finite corrections,
namely E,=—a(l—-1/2E;) and m**=m*[14(a/6)
(145/2E,)], respectively. These results are obtained
through an approximate diagonalization of the multiband
(44 matrix) k-p Hamiltonian including Frohlich’s in-
teraction and intermediate states in the light-hole valence

A wo:
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FIG. 1. Cyclotron mass (m>) and polaron cyclotron mass
(mX*) in InSb vs the cyclotron resonance energy in the limit
A?<<1. Note the amplified vertical scale. The masses are in
units of m,.

band. The terms in order a/E, given by Larsen which
we do not find in our calculation are thus a direct contri-
bution of the valence band, i.e., they reveal a further
small mixing of neighboring bands due to Frohlich’s in-
teraction. It is shown in Sec. IV that they are not quanti-
tatively important for InSb.

In Fig. 1, we have plotted for the real case of InSb the
bare cyclotron effective mass m * versus the cyclotron en-
ergy in the region A2 %0.05 together with the polaron cy-
clotron mass deduced from the standard definition:

m2*=202/(6,+A6,—6,—AS,) . (12)
The band parameters (6, =235.2 meV, A=803 meV,
*=0.0137m,) are taken from Ref. 28. The low-

frequency dielectric constant €,=16.8 was measured in

Ref. 29 and we use the Lyddane-Sachs-Teller relation to-

gether with the phonon energies of Ref. 30 to obtain the

high-frequency dielectric constant. This leads to

a=0.022. A6,and A&, are calculated using Egs. (5)-(7)

with the computational cutoff /., =74 for the maximum

value of / in Eq. (6). It is confirmed that m** extrapo-
lates to m*(1+a/6) at zero field and it is seen that the
mcrease of m** with energy is slightly higher than that
of m}. This means that the coefficient a in Egs. (10) and

(11) does not vanish and that there is some interference

between polaron-induced and band nonparabolicity (i.e.,

this interference acts only from the term A%, thus leading

to unchanged E, and m**). Let us remember that the in-

clusion of the light-hole intermediate states changes E,

and m** in the order a/E,.

B. Resonant polarons

The second limiting case of interest, which can directly
be related to the experiment, is the resonant one where
the Landau level n is degenerate with the virtual level at
the energy of the level O plus one LO phonon. The un-
perturbed levels cross at a field such as 6, —&6y=1 (for
the real case of InSb and for n =1, this corresponds to
A?=1.16) and not nA?=1 as in the parabolic case. One
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may obtain information on the splitting of the interacting
levels at the resonance by replacing ¢,(u,A?) in Eq. (5) by
its asymptotical expression for large u.>3! This form is
obtained for p =m =1[ =0 and we see that the asymptoti-
cal form of A&, will then be identical to that obtained
within the so-called two-level model? where only the reso-
nant part to A6, is retained. We obtain?!

HZ 1

A6 =——( )‘/2 .3
" ) (1—A6, +6;—6,)'?
The splitting between &, and 6,+ 1 is then
3 2 )2/3
H
= [* it 1/3
A6, | = |5~ n Vo™ . (14)

Since H,,, V,, and B, are close to 1 (in InSb), the split-
ting is only slightly modified (enhanced by 2%) relative to
the parabolic case where | AE, | =(a/2n)?/3. The term
V$/® gives the main contribution in Eq. (14) so that a
good approximation consists in replacing the mass m* by
the increased mass m* ¥, in the definition of a [a is pro-
portional to m *!/2 (Ref. 1)].

IV. COMPARISON WITH AVAILABLE
EXPERIMENTAL DATA ON InSb

In order to discuss in more detail the effect of band
nonparabolicity on the polaron effects, one has to deal
with the whole expression of Egs. (5)-(7), using the so-
called 1m?roved Wigner-Brillouin perturbation theory
(IWBPT),* where A, =A&, —AERSFT, with AGESPT the
polaronic shift of the zeroth Landau level calculated
within the Rayleigh-Schrodinger perturbation theory.
IWBPT gives here the best results for @ <0.1.32 This is
done in Figs. 2 and 3 where we have plotted the polaron-
cyclotron mass versus the cyclotron resonance energy
6,+A6,—6y—AG,, for the real case of InSb and for two
values of the hydrostatic pressure. The high hydrostatic
pressure increases E, (and thus m*) in an amount of 140
meV/GPa (Ref. 33) (the phonon energies remain un-
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FIG. 2. Cyclotron mass (dashed curves) and polaron cyclo-
tron mass (solid curves) in InSb vs the cyclotron resonance ener-
gy. Curves A are calculated within the nonparabolic model
while curves B are calculated within the parabolic approxima-
tion. The asterisks are experimental points at zero pressure tak-
en from Ref. 33. The masses are in units for m,.
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FIG. 3. Same as Fig. 2 for the hydrostatic pressure of 1 GPa.

Only the nonparabolic curves are shown.

changed in the pressure range considered here) and de-
creases the dielectric constants,> so that one has
a=0.029 at a pressure of 1 GPa. We show the results for
the maximum value /_,, =15 of the index ! in Eq. (6).
The calculated curves for 1</ ,, <20 are almost the
same as those for /., =15. This, together with the satis-
factory agreement between calculation and experiment,
indicates that the energy region of experimental
interest—close to the LO-phonon energy—is very well
described by a few intermediate states in the calculation
of A6, (and A&y). In fact, increasing I, ,, first increases
A&y and AG | by the same small quantity thus leaving the
cyclotron resonance energy almost unchanged. The con-
tribution of the nonresonant and far-lying (as compared
to the phonon energy) intermediate states in the valence
band should further improve this agreement. This con-
tribution is expected to be of the order of that given by
Larsen at zero field, i.e., it should thus be much smaller
than the resonant renormalization. One would rather ex-
pect this agreement to be more improved by the inclusion
of higher-order phonon corrections as demonstrated by
Becker et al.®®

The results shown in Figs. 2 and 3 lead us to formulate
the main limitation of our model. If one further increases
lmax from a higher value, A&, is found to diverge (the
divergence first occurs around A2~0.1 and for /,,, > 40).
This is an artifact of the three-band model of Bowers and
Yafet which gives unperturbed energies going like V'n
for large n (and like k for large k), leading to the same
logarithmic divergence of the final result as discussed by
Das Sarma and Mason in Ref. 18. As stated in Ref. 18,
this divergence does not affect the results in a crucial way
since they rapidly converge in a wide range of the I ,,
value. Note that no such problems arise in the parabolic
case or at zero field in the nonparabolic case since all in-
tegrals [or infinite sums like that of Eq. (6)] converge very
rapidly."*

Before concluding, we would like to point out more
precisely the differences between the parabolic case and
the nonparabolic one. In Fig. 4, we have plotted in both
cases the energy of the cyclotron resonance versus the
magnetic field. The nonparabolicity strongly bends
downward the PLL to lower energies so that the crossing
between the n =1 and n =0+ fiw,, occurs at a higher field
as mentioned in the preceding section. In such a graph as

25 1 !

ENERGY (meV)

P-0
10 l il L 1
2 3 4

MAGNETIC FIELD (T)

FIG. 4. Cyclotron resonance energy vs the magnetic field for
InSb at zero pressure. Solid curves show the polaron cyclotron
resonance, and dashed curves the unperturbed cyclotron reso-
nance. A nonparabolic; B parabolic. The asterisks and the
solid circles are experimental points taken from Ref. 33 and
Ref. 10, respectively.

that of Fig. 4, nonparabolicity and polaron effects are
thus obviously nonadditive. However, in a graph such as
that in Fig. 2, namely of the cyclotron effective mass
versus the cyclotron energy, (i.e., on a graph which elimi-
nates the parameter A%), nonparabolicity and polaron
effects are found to be essentially additive, even in the
resonant case. They are additive in the sense that at a
given energy, the polaronic contribution to the cyclotron
mass is almost the same in the parabolic case and in the
nonparabolic one, as seen on Fig. 2. The latter point is in
accordance with the simple limiting case discussed in Sec.
III [Eq. (14)].

It would be interesting to extend the present calcula-
tion to the 2D case. Up to now, the nonparabolicity has
only been included in the resonant part of A&, (Refs. 8
and 36) which leads to unphysical results in the limit
A?<<1 (Ref. 37) or in the resonant part, but within a lo-
cal parabolic approximation.’’ Since electric subbands in
semiconducting heterostructures are located relatively
high in the band (typically 100 meV) where the effective
mass already increases (for instance, the ground-subband
effective mas in accumulation layers in HgCdTe can be
seven times higher than the bulk band-edge mass®®), one
may expect polaronic effects to be enhanced by nonpara-
bolicity. A rough estimate of this is to replace the band-
edge effective mass by the subband effective mass at the
Fermi energy in the definition of @,*® which is supported
by Eq. (14). The spatial confinement is also expected to
allow resonant polaron coupling between states with
different spin as the k terms in the 3D case do.”® The
presence of k-linear® terms in band structure of 2D elec-
tron gases might well also affect the band-edge quantities
E, and m** since the electron energy possesses a ring of
parabolic minima® rather than a simple parabolic edge.

V. CONCLUSIONS

We have calculated the energies of PLL within a
second-order perturbation theory using a three-band
model to describe the unperturbed conduction states of a
(3D) weakly polar zinc-blende semiconductor. We have
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demonstrated that in the limit of vanishing magnetic
fields, there is no change of the polaron-binding energy
and mass renormalization due to nonparabolicity of the
conduction band itself. This is in accordance with the in-
tuitive physical picture that the conduction band still
remains parabolic at its bottom. The small terms in
a/E, given by Larsen are due to a direct mixing of
valence and conduction bands through the Frohlich in-
teraction. In nonvanishing magnetic fields (e.g., in reso-
nant fields), the polaronic shifts of the Landau levels are
found to be slightly enhanced by the nonparabolicity in
such a way that the polaronic correction to the energy
difference between two successive Landau levels (e.g., the
fundamental cyclotron resonance) remains almost
unaffected. We thus conclude that the main effect of the
nonparabolicity in 3D systems is to shift the resonant po-
larons to a higher field. Our results are important not
only because they compare favorably with the experiment
(within IWBPT) but also because the effect of nonpara-
bolicity on the weak coupling polarons was still contro-
versial>!"~!® and partially enigmatic up to now, thus re-
quiring a more rigorous treatment. They can also give us
some insight into the case of 2D systems which

are currently the subject of considerable de-
bate.!213.15,16,36—38
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APPENDIX A: ELECTRON POSITION IN THE
THREE-BAND MODEL OF BOWERS AND YAFET

In this appendix, an expression for the conduction-
electron position is calculated from its matrix elements in
the subspace of the I'q electron states | ¥, ). The | ¢, )
vectors are given in the symmetric gauge by Egs. (C3)
and (C4) of Ref. 21. Using Eq. (6) of the same reference,
the (¥,x | X | ¥ ) and (Y, | Y | ¥, ) matrix elements
are calculated within the effective-mass approximation.
By inspection of these matrix elements, expressions for X
and Y operators are given by

X=X0———}}\—(CK +KChH4F, (Ala)

Y=Y,—~(CK —KC")+iF .

X (A1b)

X, and Y, are the center of orbit coordinate operators
which have the commutation relation [X,, Yy]=2i /A%
Cand C'are lowering and raising operators in the | ¢, )
ladder. In these equations, K and F are two new opera-
tors dealing with nonparabolicity, their action on the
| ¥, ) states is given by the following equations;

K|y )=KS|¢u), (A2a)

where + and — mean spin-up and spin-down state, re-
spectively (for the sake of clarity, only the spin-up state
was considered in the text, and the signs were removed),

1 AY2n F1)42k2 AAntl)
Kf=————114C , (A2b)
Nf NE (6E_\+E )65 +E,) (65 |+E,+ANE;+E,+A)
N,E is the norm of | ¢ ) states [see Eq. (C5) of Ref. 21 or Eq. (7) here];
FYm)=F,|¥m) (A3a)
F, = —iCkA L _ L . (A3b)
N NS [(EF+ENE; +E,) (6, +A+E NEF+A+E,)

Here the operator F flips the spin, and its action vanishes in the parabolic case. However, it will be ignored in the fol-
lowing since the electronic states on which perturbative calculation is made have a zero kK momentum (i.e., F, =0).

The electron position operators at imaginary time u =it are

X(u)=XO—%UT(CK +kchu ,

Y (u)= Yo—%UT(CK—KCT)U :

Z(u)=Zy+ fO"[Z,ﬁo]dr :

(Ada)

(A4b)

(Adc)

where U is the evolution operator. Using the Bowers and Yafet equation [see Eq. (1)] the Z (u) operator is calculated:

2C(3Ho+3E, +28)P,u

Z(u)—2Zy=

(Ho+Ey +A)2Ho+ E, )+ Ho( Ho+ Eg)— 3C[AH2n +1)+2P] (A5)

In the calculation of {4, | /9™ e ~/970 |y ) we made use of [Z (u),Z,] which is
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[Z(4),Z0] | ¥p0) = =5~ | ¥no) >

(A6)

where V, represents the increase of the effective mass at the bottom of the nth Landau level and is defined in the text by

Eq. (71).

APPENDIX B: DEVELOPMENT OF MATRIX ELEMENT

In this appendix, the matrix element {1, | e/d™*e ~1a7® |y 3 is developed. Using Eq. (A1), the operator e ~/4™?

is written as follows:

e —iaT0) _

. N . 1 .
—ilg, Xy+a, Y(,)e ~:qzze —i(q_ /MKC . —ilg, /MCKe { —(qf/xz)[CK,Kc*]/zl

> (B1)

where g+ =g, tig, and q2 =q3+qy2. Here, the assumption was made that (1/3! )[KC*,[KCT, CK 1]=0, which is reason-
able since K, is close to unity for a wide range of n and A? (e.g., K ;o =0.98 in InSb for A’=1.16). All exponential terms
dealing with the Cand C ' operators are expanded into infinite series. The matrix element is then

n n a

n\HZHH(—1)P +™e

—u(6,—-6)

(g €400 y,) = 3 3

0 0 I=magtm,p) MPHLHXn —m)(I —m)I —p)i(n —p)!

g}

}\'2

where H,, B,;, and V, are defined in Eq. (7).

(n+1—m—p)

q%Bnl
- v

4q;

Vi

exp | — exp , (B2)
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