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The lateral- and longitudinal-diffusion coe5cients for free electrons in weakly ionized gases {or in

intrinsic semiconductors) under a steady state and uniform electric Seld E and with elastic collision
frequency much larger than the inelastic one are obtained by the correlation function of the electron
velocities. The mean-free-path method is used, since it allows expansions without divergences in the
small number W2i(u~) where W is the electron drift velocity and (u ) the mean-square value of
the electron speed v. The obtained explicit expressions are particularly convenient when there are
Ramsauer elects which can produce up to 6% errors in the results obtained by the usual

Boltzmann-Legendre expansion. Moreover, the obtained expressions are immediately generalized
so as to give noise spectral densities including the "convective noise" found by Gurevich, which cor-
responds to the difFerence between the generalized longitudinal- and lateral-di8'usion coe5cients.

I. IIVxNODUt:rION

In the last thirty years the dISerences'between the
lateral- and longitudinal-diffusion coefficients for free car-
riers in a scattering medium under the accelerating
inffuence of an external electric field have been
discovered.

The authors' who have developed the theory of the
diffusion coeScients consider a stationary case and ex-
pand the relevant time-independent distribution function
f (r, v) for electrons in both spatial gradients and Legen-
dre polynomials and substitute the expansion in the
Boltzmann equation. The corresponding solutions are
used to obtain transport quantities. When the spatial
gradients are not parallel to the external electric ffeld one
must use expansions in spherical harmonics instead of in
Legendre polynomials, as exhaustively shown in the work
of Robson and Nesss or in that of Kumar, Skullerud, and
Robson, which can be considered as the most recent
treatise on this subject.

The present approach is completely dilerent. It ap-
plies the mean-free-path method to the velocity correla-
tion functions by which explicit expressions of the
diffusion coefficients can be obtained. This procedure, al-
though mentioned as an introduction by Skullerud, has
not been used by the authors who work in the Seld of ion-
ized gases, with the exception of a previous work by one
of us' which is here synthesized and corrected for a
second-order error in a normalization. On the contrary,
the correlation functions are always used by the authors
who work in the field of electric noise.

Besides giving a connection between the two Selds of
research, the method of the mean free paths applied to
the correlation functions has the following other advan-
tages.

(i) The position r of the electron does not appear in the

correlation function of the electron velocity (u(0)u(v))
so that the integration over r (in order to find average
transport quantities) reduces the distribution function
f (r, v) in the phase space to its marginal distribution
function f (v). Consequently, the density gradient expan-
sion is no longer necessary.

(ii) It gives an independent and radically difFerent ex-
pression for the difference between the longitudinal-
difFusion coefficient D„and the lateral-diffusion
coefficient D (or D, ). For the values of the ratio D„/D
there are discrepancies among difFerent authors, although
Penetrante and Bardsley" have shown that Lucas per-
formed a nonconsistent approximation in the first equa-
tion of the two hierarchical equations of the P, approxi-
mation to the Boltzmann equation, so that Lucas's results
are not reliable. Moreover the Monte Carlo simulations
of Lucas and Saele' are affected by statistical ffuctua-
tions and the results of Francey and Jones' are unreli-
able because it is not correct to apply the steady-state
theory of the Boltzmann equation to time-of-Bight experi-
ments. However, when the collision frequency v is of the
kind v=au", for n =—,

' (or ——,
' if we write v=Pu "), there

is a discrepancy of 3.5&o even between reliable au-
ors 2, 3,5, 11

(iii) D„and D» =D, are easily generahzed by the corre-
lation function so as to become D„(co) and D~(co), where
~ is the angular frequency, which are proportional to the
transversal and longitudinal spectral noises, respectively.
The most important result, shown in a future paper, is
that D„(co) contains the "convective noise" found by
Gurevich, ' and, we suppose, even the famous "excess"
noise with frequency dependence l/co, whose origin is so
far unknown. This noise, to which international confer-
ences have been devoted, is probably due to runaway elec-
trons.

(iv) The mean-free-path method, with the expansion of
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the exponentials in which the auxiliary term b is intro-
duced, ' ' is particularly convenient when there are
Ramsauer effects. In these cases the usual method can
give results diff'erent by up to 40% from those obtained
by the Monte Carlo method, as shown by Milloy and
%'atts, ' although the cross sections considered by them
were rather unphysical. However, also in real cases the
results given by diferent reliable methods and the Monte
Carlo one can difFer by 6% for the transversal-diffusion
coefficient DT D„——=D», as shown in Table I of Pitch-
ford, Oneil, and Rumble' who used a I.egendre expan-
sion up to and including eight terms. On the contrary,
the method here presented guarantees errors not exceed-
ing a factor of order unity times m/M, where m and M
are the electron and molecule mass, respectively. These
small errors are guaranteed even in the unphysical case of
a Ramsauer cross section reaching a zero value for
u =u0. Notice that in this case the usual method gives an
unphysical divergence in the calculation of the main term
(u /vo(u)), where vo(u) is the collision frequency which
vanishes for u =uo. By contrast, our main term turns out
to be (u vo/(vo+b) ) which does not diverge when
v0~0 because the auxiliary term b takes into account
that the electron velocity changes during a free ffight so
that the collision frequency is no longer zero. In practi-
cal cases vo(u) never vanishes but it can reach small
values comparable with b so that the errors in the usual
method can be of some percents. '9

(v) Explicit expressions are given for the diff'usion

coef5cients, expressed as integrals over a single variable
so that an experimentalist no longer has to solve systems
of coupled differential equations. The explicit expres-
sions are separately given for the lateral- and
longitudinal-difFusion coeScients, with and without a
Ramsauer effect. The inclusion of Ramsauer effects
represents the main improvement with respect to the
preceding quoted work of Ref. 10.

II. DIra USION COKrrxCIKNTS EXPRESSED
SY VELOCE Y CORRELATION FUNCTIONS

The generalized, lateral-diffusion coefficient D» (co )

(where co is the angular frequency) is proportional to the
spectral density J»(co) =J,(to) of the lateral electric
diffusion noise when the particles have a charge e. They
can be expressed (see Appendix A) by the correlation
function

C, ( )=C,( )=&u, (0)u, ( )) =&u, (0)u, ( ))

of the diffusing-particle velocity u(t) taken at two sam-

pling times t =0 and t =r, respectively. In the case of a
wire section of length I. containing N charged particles,
we have

I. m
D»(to) = J»(col) = f d'7( u»(0)u»(r) )cos(co'r)

2e N

Similarly, the generalized longitudinal-difFusion
coeScient D„(u») and the spectral density J„(tu) of the
longitudinal electric noise can be expressed by (see Ap-
pendix A)

I. m
D„(tu)= J„(tu)

2e X

U„O Uz f' —v„cos coT . 2

The velocity correlation function implies two averages,
the first one is over the initial velocity v(0) =v; and has,
as a weight, the stationary probability density f(v(0), 0).
The second average is over the final velocity v(~)=v&
and has, as a weight, the transition probability density
f(v/, v

l
v, ) which gives the transition from v; at time

0 to vf at time t =v. Using polar coordinates so that
u„=up, where p =v E/uE, we have

(u„(0)u„(~))=f du;u, ' f dg; f dp; f(u;, p;)u;p;
Qo 2 217 1

X duIuI de dp/f(uf P'f 0f ~lu; P; 0;)ufIjf
0 0 —1

(3)

where, because of axial symmetry around U;, the station-
ary probabihty density f (u, ,p; ) does not depend on P, .
The correlation function for transverse velocities is ob-
tained by replacing u ( I —p ) for up in (3).

For ~~ oo the transition probability density (or propa-
gator) f tends to the stationary f. The diSculty for the
practical evaluation of D„consists of obtaining f.
Indeed, f cannot be obtained by a Fokker-Plane k
method, because, ovnng to collisions, p changes very rap-
idly. For the same reason the Boltzmann equation, in
which the expansion of f in Legendre polynomials has
been substituted, would require a truncation of the series
after a larger number of terms. Fortunately, this problem
can be solved by the mean-free-path method.

HI. CONVENIENT EXPRESSION
FOR THE TRANSITION PROSABILn Y DENSITY

and the inverse functions are

and

uo=(u +a t 2ulj,at)—

%e introduce the velocity vo immediately after col-
lisions, related to v by v=vti+at, where a=eE/m is the
acceleration and t the time of fhght. In scalar form,
Up=Uopo+Qt and

+2)1/2 u ( l 2)1/2
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go=(up —at)(u +a t 2—upat) n =no exp — dgvo[u(()]
0

Consequently, after a time of Bight t we have

d p=d"poexp f dg—vo(g)

uo duo dpodfodtX(uo j(lo)

(6a)

The probabihty d p (u, p) of finding the electrons in the
phase cell u du ( dp—.}d f is

d3p= —u dud@, f(u, p)dP.
If we introduce the collision source X(uo, po) defined as

the time derivative, calculated at t =0, of the probability
density d p/( —uoduodpodgo) in the "initial" phase
space cell, then we can write the probabihty
d po(uo, (uo, 0) of finding electrons in the generalized
phase cell (which includes dt) as

d po = —uo duo drModgodt X( uoefco)

These electrons maintain the same initial velocity
vo=(uo, (uo~ until they collide. The variation dn of the
number n of electrons surviving to collisions in the time
interval dt is given by dn = vo(u)nd—t where vo=vo(u) is
the collision frequency so that, upon integration, we get

&exp — vo u uo, p,o
0

Integrating over all the times of Bight, we obtain

d p = "o d"o dpodkoX(uoepo)
r

X f dt exp —f vo[u(g)]dg
0 0

Equating (5) with (8}and using (4) gives

f(e, (e)=X(ee,(ee) f d expe—J dtee[e(t)], (9(
0 0

which is the desired relationship between f and X to be
used in (3).

The advantage of the use of the "initial" quantities (im-
mediately after collisions) is mainly felt in the transition
probability density. Indeed during any fhght the quanti-
ties immediately after the last collision do not change so
that X(vo/, r

I vo, ) can be expressed by Dirac 5 functions
for each Bight (recall that t, is the sth time of fhght}

X(voI r
I vo( ) =X(uo/eisoI e fo/er I uo(ego(ego( }

s —1

s=1
5( u of uo )5(po/ po, )5( /of —t((o ) %f r g tj ——JV 1 —g t) (10)

where A, are normalization constants and %(r) is the Heaviside unit step function defined as Wr)=0 for r &0 and
%(r)=1 for r &0. If r falls in the nth time of liight, (10) says that the final velocity vo& is equal to vo„. Since, with the
use of (9),

1= f duu f dp f deaf(u, p)

"ouo, po uo po texp — vo u (11)

A, '=uo, f dt exp —f dg v[ o(ug)]
0 0

(12)

The vo, appearing in (10) depends on vo(, ~~ so that the
explicit expression of (10) expressed by the initial velocity
vo; at ~=0 becomes extremely complicated after few
steps. Fortunately the explicit calculation of the sth con-
tribution to the diffusion calculation turns out to be of
the order of ( W' /(u } )' (where W is the electron drift
velocity} with respect to the contribution due to the first
term of Eq. (10). Detailed calculations relevant to the
second Right (s =2) are reported in Appendix 8 of Ref.
10 (Cavalleri) (although with relative second-order errors
due to wrong normalizations}.

For free electrons in scattering media 8' /( u }
=m/M, where m and M are the masses of an electron

the normalization constants A, appearing in (10) turn out
to be given by

I

and of a scattering center, respectively. Since the max-
imum value of rn/M occurs for hydrogen and it is
-3&10, the contribution of each Bight with s & 1 is
less than 3X10 compared to that of the Srst flight.
However the series due to the successive flights gives a
contribution which can be of the same order as that of
s =1. (A posteriori one ascertains that this is the case for
D„, awhile for D =D, the contribution due to the series
remains small}. Moreover, after a fhght, the memory of
the direction of the initial velocity is lost to within the
small recoil of the collided molecule (or center of scatter-
ing). We can therefore consider in detail the first flight
only, i.e., we leave unaltered only the first term of (10).
For the rest of the series we do not consider the details of
the single flights but we summarize their effect by a slow
dilusion. In other words we take into account the rapid
variations of p=cos8 in the 6rst Bight and then use a
Fokker-Planck approximation. Consequently, by (9),



37 CONVENIENT EXPRESSIONS GF DIFFUSION COE~rICIPNTS. . .

(10), and (12), we can write for the transition probability
density f [it does not make any die'erence to use either i
(for initial) or 1 (for first fiight)]:

j(ufvPfv If)&I U; I lg Pl}

—Ul)f 5(Upf (vf ) Up'(v' ) )5(@of (vf ) po'(v' ) )

X5(gpf(vf )—gp;(v;))[gAr) —JWr —t, )]

+f(uf, pf, r
l u;, t; gf(r t; ),— (13)

where v; and vf are the initial and final velocities, respec-
tively, while uo; and upf are the corresponding velocities
immediately after the preceding collisions. Both vp, (the
initial velocity corresponds to the first fight} and vof can
be expressed as functions of v; and vf so as to have the
same variables as in the left-hand side.

Notice that the "smoothed" transition probability f
depends neither on ttlf, because of axial symmetry around
E, nor on p; and til; because the initial directions are no
longer remembered after one collision. On the contrary f
depends on (}()f, f;, and p;. In particular f changes
abruptly after any collision, while f changes appreciably
only after many collisions.

IP. QE+E~I,IZFD @II.FEJQQQN CQEj FICIENTS
EXPRESSED BYTHE ADDrrrONAL TERM b

Before using the transition probability density given by
(13) it is convenient to expand its slowly varying part f
around f- =0, l.e.,

f(uf, pf, r
l Uggtg)=f(uf, pf, r tg l

—Uggo)
r

8=f(uf, pf, r
l u;) —t; t;=0. (14)

u p =co po +at. ,

Uf luf =Up p p +a ( t +T),
(15a)

(15b)

substituting (14), (4), (9), and (13) in equation (3), and in-
tegrating over ))(; and t})f yields

Since f is a slowly varying function of r of the kind
f-exp( mvt/M— ) the contribution to D due to
second term of (14) turns out to be of the order m jM
compared to that due to the 6rst term, so that it can be
neglected. For the same reason [to obtain D in (1) and (2)
we integrate over r from 0 to g)0] we can neglect t; com-
pared to r in the second term of (13). By these approxi-
mations, putting

~u (0)u (&)}=2~f d"o Uo f dPo X(uo Po ).f dt; exP —f dgvo(f) (uogPo +at;)

X(uo;po;+at;+a~)[%(~) %(r t;—)]—
age J du vg f dg f(v, ,g, )vg; I d g gfvvdgg gf(vg (kg r)v, )vggf5Wr)

Let us expand f and f in Legendre polynomials

(16)

f (U;, p; ) = Q P, (Id,; )f, (u; ),
0

(17a)

f(uf, pf, r
l u; ) = g P, (pf )f,(uf, ~

l u; ) . (17b)

Substituting (17a) and (17b) in (16) and the result in (2), after integration over v in the first term, and over p; and pf in
the second term, recalhng the orthogonality of the Legendre polynomials and the fact that only P, (p)=p, appears in
(16), we obtain

ce 00

D„(io)=2m f dup Up f dpo; X(uo;, po;) f dt; exp —f dpvo(g)
0

(ufo, tuto;+3uo;Pp;at;+2a t; )sin(tot;)
GP

+ (U p, y p, a +a t; )[—co(sttu, }—1]

r

+fd~cos(u&) —96m f du; U; f~(u;) f duf Uffl(uf 'r
I

u. }—~u
0

Let us expand the exponential appearing in (18) with the introduction of an auxiliary term bt and the notation' '
d V0 d &0

&0= ~ ~0=
dU
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exp — d g vo(g) = [exp( —vot —bt)]exp(bt +8 )
0

v~+ —,'b t ——'abt vga+ —'a t v(gc

V0'a —t —volt, 'a —t —(1—p ) exp( vot —bt—) . (19)

(20)

where:

We have truncated after the second order in the acceleration a since we want the leading term and no more than the rel-
ative second order.

It is also convenient to express the collision source X as a function of the isotropic component fo(u) of the usual dis-
tribution function f (u, )v, ). Still with second-order accuracy we have' '

dfo 2 1 d u dfo v2 2u d 1 1 dfo
X(u, y, ) =vgo— P+Q +

vo —v, du 3v2 du vo —v, du vo —v2 3 du vo —v, u du
L

1 1

vo(u) =—f dp (vu))Li, v, (u) =—f dp v(u, )u)p, vz(u) =—f dp v(v, p)Pz(It ),
2 —1 2 —1 2 —1

(21)

v(u, )u) being the differential collision frequency and Pz()u) =(3p, —1)i2 the Legendre second polynomial. Substituting
(19) and (20) in (18) gives, still truncating the terms in a with s & 2,

D„(to)=D„i(to)+D,&(to)+D„&(to), (22)

where D„, is the contribution due to the main term vofo of (20) substituted in the first term of (18), D„2 comes from the
other terms of (20) and the first term of (18), and D„i is the second term of (18}. We get, writing u instead of vo for sim-

plicity,

D„i(to)= du u vj'o +2b + b + 6
—12 vo+ —a v'o k

4m ~ 4 1 k p 12a 3k —to 47 a . 1 2.. k —to

3 0 H H u' H' 1» '
»

' H'

5k4 10~2k2+~4 3a2 k2 ~2 a2 k2 3~2 3a2 a2

H' H co uH u tok ucok

(23)

where use is made of the integrals (23)—(28) of Ref. 10 (Cavalleri) in which

k =vo+b

and

H~=k2+to2 .

Moreover,

(24)

dfo 3 2 2 . 6k
D„2(to)= 4, n.a du u s(3k —to )vo—

0 v0 —v1 dU 50 UH'
1 k 1

UN H

4 vvz d 1 1 dfo
+

1» v0 —v2 du v0 —v1 U dU

1 d u dfo

3U dU V0 —V1 dU

D„i(to) is given by the second term of (18).
The expression for the transversal diffusion coefficient D =D, is obtained by substituting u cosg(1 —p, }'~ instead of

up, in (3). The integration over P cancels the contribution coming from the second term of (13}. By the same procedure
leading to (18) we get

oo 4 1

D =n. duo; uo; dpo;X(vo;, po; )( I —yo, ) dt sin(tot ) exp —— dg vo(g)
0 —1 0 CO 0

If we substitute (19) and (20) in (27}we get

D (co)=D, (co)=D i(to)+F2(to),

where, still writing u instead of u0,

(28)
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4m ~ 4 1 2kb z3k 0—) 3 2.25k —100) k +o) 4 z .. 4. k 0—)
Dyi 0) H' H" H'uuv o, + „+b, +—avo „——a vo+ —vo k

(~) 4 2
~ 4, vivo df0 3k —CO

Dy2 = KQ dU U
3 0 vp —v) dU

2 uv2 d 1 1 dfo
15 vp —v2 dU vp —v) U dU

1 d u df+
dU vp —v) dU

(29)

(30)

V. ORDINARY DIa.ELUSION COEFFICIENTS EXPRESSED SY THE ADDITIONAL TERM b

For o)~0 the generalized difFusion coefficients become the ordinary diffusion coeScients which we write here

D. =D ~+a.2+a.3

where

(31)

P

4 oa g 1
D„,= n—du u vofo +

0 (v()+ b)'

(v()+ b)'

2b 3 2 9+ b + a
(vo+b) (vo+b) u

79 a 2 6 9Q vp'o+ —a vp +
5 u 5 (vo+ b)6

(32)

9'a„2=—~a2 "
UU'

vo vi 5(v()+ b) u ( v()+ b)

df()
du

1 4 UV2 d 1 1 dfo
+

(vo+b)2 15 vo —v2 du vo —v, u du

1 d u dfo
dU vo —vi du

L

(33)

16m
D„3—— dr du; u;f, (u;) duf uff, (ufy1

~
U() —(U» )

Similarly

D~ =L'»+D»
where

(35)

4 ce ~ 1 2b 3b2 3a v()
Dy)= 1T dU U vofo 2 + + +

3 o (v()+b) (vo+b) (v()+b) (v()+b)6

4a' .. 4 .
Vp+ Vp

5(vo+ b) u
(36)

4 2 ~ 4 "ivo dfo 3 1 2 uv2 d 1 1 dfo
Dy2= 1ra du U

3 o vo —vi du 5(vo+b)4 (vo+b)2 15 vo vz du vo —vi u du

1 d u dfo+ 23U dU vp —v~ dU
J

(37)

We have thus the desired expressions (31)-(37) to within
the auxiliary term b which is explicitly obtained in the
next section.

As shown in Ref. 16, the terms multiplied by a are of
the second order in (m /M)' with respect to the leading
terms, given by (32) for the longitudinal diffusion
coefficient, and by (36) for the transversal diffusion
coeScient. Since m is the electron mass and M the mole-
cule mass, the maximum ratio m /M occurs for hydrogen
and it is equal to 2.72)&10, while for other gases (or
atoms in a lattice of a solid) the ratio is still smaller. It
seems that also D„3 is of second order because f, and f,
are each proportional to a. But the decay time of f, is of

the order (M/m )vo
' and the integration over time in (35)

introduces a factor M/m which is just the inverse of
what a2 introduces. Consequently, D„3 is of the order of
the leading term.

By our procedure and approximations, we estimate the
errors introduced in the second-order terms to 30%, so
that those ones relative to the leading terms are less than
one part in 10 . Moreover, in all the practical cases, v2

& v, «vo so that the first two terms of (33) and (37) can
be neglected without modifying the relative error of 10

The second-order terms are mainly due, in the integra-
tion over u, to the contribution of the integrals from zero
to a smail value compared to ( u ). This is due to the fact
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that, for u~O, the collision frequency vu=Nou is pro-
portional to u (because o tends to a constant value).
Now, if we neglected b, these second-order terms would
diverge for u~O and, with b&0, they give the largest
part of their contribution during the integration from 0
to a small value of the order b/¹r

We could even neglect completely the terms in a, but
we preserve them only to calculate b so as to develop a
correct expression (to within 10 ) for the leading terms.

A fourth-order expansion in the acceleration would
give a better approximation even for the second-order
term because there is a kind of back Bow which slightly
modiffes the coefficients of the second-order terms. For-
tunately, without carrying out the extremely long calcu-
lation, the comparison with the rigorous expansion of
(18) in the case vs ~ u suggests such small modiffcations
because logarithmic terms have to vanish. This will be
done in the next section so that in the conclusions the
convenient expressions to be used by experimentalists will
be given.

we put b =0. However, errors are present which tend to
infinity for (u~O if we leave b =0. For nonzero molecule
temperature T the collision frequency never vanishes and
therefore no divergences arise in the diffusion coeScients.
However, for small T values big errors are present which
remain large even for T=300 I( . The divergences (or at
least the big errors in D„and D» =D, ) arise when vo van-
ishes. This occurs for u~0 because the collision cross
section o approaches a finite value so that

V0
——Nou =aU, (38)

where N is the molecule concentration and a =No a con-
stant.

We will therefore leave b in our expressions and evalu-
ate an explicit expression for it. In practice we can as-
sume (38) as the expression of v for u ~0, and calculate
the corresponding b value. Indeed, as shown in Ref. 16, b
can be written in the form

b =za/u, (39)
VI. CALCULATION OF THE ADDITIONAL

PARAMErKR 5 AND MODIFICATION
OF THE SECOND-ORDER COErraCIENTS

The generalized diffusion coefficients obtained in the
preceding section present no divergences for to+0 even if

I

where z is a dimensionless factor we evaluate by the fol-
lowing procedure.

We take the first term of (18) with co=0 and with X
given by the first term of (20), i.e., 7=v(A in which we
use vo ——au. We obtain

D~f =2@a f du u fo(u) f dp f dt{u p t+5upat /2+3a t /2)exp —a f dgu(g)
0 —1 0 0

(40)

The corresponding approximate expression to (40) is Eq. (32) in which the truncated expansion (19) has been used. If
we put b =0 in (32), the resulting expression is the most afFected by errors. That is why we chose (40), and the corre-
sponding (32), to obtain z.

For convenience we take fu =exp( —h u ). If we put a =0 in both (32) and (40) we obtain the same leading term. In
order to calculate the second-order term we put

x =hu, y =at/h, c =ah /a,
expand the exponent of the exponential appearing in (40},and subtract the leading term. We get

Df D„(x =0),"=
x f —dx x'xx)d —x')

ah'

(41)

p y x2p y exp —xy —i+exp —icy 2 —l —p c y 6x
0

+(5xy pc/2+3c y /2)exp[ —xy —icy /2 —(1—)u )c~y~/6x])

5 g3] 2 (42)

where the result has been obtained by a computer.
The approximate expression D„ti'is obtained from (32) by putting

b =za/u, x =h u, fo[u(x)]=exp( —x);
c =ah /a, S=x+zc .

%e get

D„'$=g 2%

3ah'
dx exp{ —x) x 2zcx 3(zz+9)c x 158c x 9c x

g2 g3 g4 5gs g6

(43}

The first two terms inside the large parentheses of (44) are
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x 2zcx 3z c 5z c 2z c
$'2 g3 g 5'2 g3

and the first term in the right-hand side of (45) gives the leading term.
The integrals appearing in (44) are calculated by the method shown in Appendix E of Ref. 16 and we get

D„'f= 4 1 —3z c ( —y —lncz)+5c z ——2z c i +3c (z +9)(——, —y —lncz)2~ 22 3 3 1 4 4 1 2 2 ll

3ah4 cz 2c z

(45)

——",'c ( —» —y —lncz)+9c ( —'~ —y —lncz) (46)

where y is the Euler constant.
The logarithmic terms, absent in (42), do not vanish ex-

actly in (46) (only those multiphed by z cancel each oth-
er exactly). This is due to our truncation of the expan-
sion and this fact is suggestive of what the successive
terms would give. We therefore change some coefficients
so as to obtain an exact cancellation of the logarithmic
terms. The modified expression which indirectly takes
into account a wider expansion and replaces (44), is

D„'f = I dx exp( —x)3ah'

X
xi 2zcx 3(zi+21)c x
g2 g3 g4

D„'f= q[l+c (18.34—1.5z )] .
3ah'

Equating D„'( D„,(a —=0) to (42) yields

z =ZI) ——0.751 .

(48)

(49)

t texp —0, v
0 0

The rigorous expression of the first term of the
transversal coefficient is obtainable from (27) by putting
co=0. Still using X=au exp( —h U ) we get

D Is =era du U'fo(U)

X p1 —p

5Oc2x4 13C2x'
g5 g6

An expansion like (46) gives, after simplification

(47) (50)

Again using (41) we transform (50) in the following
form convenient for the computer

D"is D, (a =0)—= dx x exp( —x )
h4 o

X p 1 —p yyexp —xy—1 0

X[—1+exp( —ycy /2 —(1—p )c y /6x)]

=(m'/ah )( —0.595c ) . (51)

The approximate expression D~[ is obtained from (36) by the use of (43)

l.6C2x4 3C2x'
5g5 g6

With the use of (45) and the method exposed in Appendix E of Ref. 16 we obtain

D~f'= 4 1 —3z c ( —y —lncz)+5c z ——2z c +3c z ( ——, —y —lncz)~ = 2~ 2 2 1 4 4 1

3ah4 CZ 2Z C

(52)

——"c ( ——"—y —Incz)+3c ( ——'" —y —'lncz)
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Here also the logarithmic terms do not vanish completely
and a small modiffcation of one coefficient is required.
Precisely we change the coefficient —", of the third term
inside the large parentheses of (53) by 3. However it is
still simpler and more convenient for the case in which a
Ramsauer elect occurs, to neglect the last two terms.
%e get

D„'f= &[1+c (18—1.5z )] .
3aIi"

Equating D„'$ D—„,(a =0) to (42) gives

z)i —0.581 .

For DP it is sufficient to retain only the first three
terms of the integrand

3CX 3CX
S5 + S

[1—c (0.6+1.5z )] .
3ali'

Equating D'f' —D, (a =0) to (53) yields

z =z~ ——0.442 .

(54)

(55)

(1—1.5c z )g4

Equating DP D~i(a—=0) to (51) yields

z =z~ ——0.771 .

(59)

(60)

Still more compact and simple expressions can be ob-
tained which approximate in an excellent way the
rigorous expressions. For the longitudinal-difFusion
Coefflcleilt lt is

54c2x 2 x
1 ——

S3 S

VII. EVALUATION OF b
%HEN THERE IS A RAMSAUER EFFECT

With the aim of calculating b =za/u, i.e., z, when
there is a Rarnsauer effect at v =v', w'e schematize it as

vp(u)= 3 =const for v &0.9u' and u & l. lu',

vp(v)=a
~

v —v'
~

= loa
~

v —v'
~

/v'

for 0.9v ' & v & 1.1v' .

Its expansion to second order yields

(56) We take again the first term of (18) with pi=0 and
P=vpf p =vp exp( —hu ), thus obtaining, with the use of
(61),

D'(=2m' f du u e ""+f du u e
0 1.1U'

dp dt v p t+2. 5vpat +1.5a t exp —At + 20+A v'
—1 0

&& f '
duu'iu —u'ie

0.9u'

X p dt v p t+2. 5vpat +1.5a t
—1 0

t

Xexp —(103/u') f dg
~

(v +a g +2agvp)' —u'
~

0

The first two integrals are easily solved and we obtain, by the use of (41)
t

f ( ' ' ' )+ f ( )= q(15.9505+3467.7824c ) .
0 Ah

(62)

(63)

To calculate the contribution around the Ramsauer effect (i.e., for 0.9u' & u & l. lu') we put, similarly to (41) and with
the additional convenient assumption hv'= 1,

x =Iiu, hu'=1, y =10At, c =ah/10A .

%e get

f ( . . )= f '
dxx ~x —1 ~e "f dp f dy(x yp'+2. 5cxpy +1.5c y )

0.9u' 10Ah —1 0

Xexp —f dy'
i
(x +c y' +2cxy'p)'i 1i—

0
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1 20zc 300c z0+a+0
The approximate expression can be obtained by expanding the exponential in (62) and introducing the auxiliary term

b, and also by the use of (61}and (64). Here also we find a convenient compact expression which reads

1(} l.962

D„'$= — f dxx e "+f dxx e 2 7 4 038Ah' 1.1 84.038

zc 3c2z2 c1.962

dxx e "~x —1~ +, + —2.7
0 9 F2 p3 F4 p4.038 (66)

where

H =x +10zc, F=x
i
x —1

i +zc .

The «st two integrals of (66) give the same result as (63). The comparison of (65) with (66) regards only J ".The cal-
culations, performed by a computer, lead to

z„~~—0.5 .

For the transversal diffusion coeScient we get in a similar way

Dps=
8 f d)t8(1 —p2) f dy0. 01ye ~~' f dxx e '+ f dxx e

(68)

+O. i f '
dxx

~

x —1 (e *f dy(1 —p~) f dyy exp —f"dy f(c y' '+x +Zycxy')' —1~
0.9 —1 0 0

The compact, convenient expression of D»I' is similar to (66) and reads

4n 0.9d 8 „8„1 20zc 300c z
2 3

(10c)'982dxxe "+ xxe + +3&h' o i. i H2 H' H H

(69)

2zc 3c'z' c""' dxxse "~x —1~ 2+ 3+15&h' o 9 F2 F3 F4 F4 038 (70)

Here also the first two terms give the same result (up to c2 terms) of the corresponding terms of the rigorous expres-
sion. The comparison of the contribution I0'9 leads to

zzj.=0 5 (71)

VIII. GENERAL RESULTS FOR THE EXPERIMENTAKISTS IN THE CASE OF RAMSAUER Era.aCTS

We summarize our results to be used by experimentalists when V2 & V, «Vo, where Vo, V„and V2 are given by (21),
v(U, p, ) being the differential collision frequency. They are convenient because they are expressed by integrals over a sin-
gle variable which is the velocity U. When there is a Ramsauer eFect at a speed U' the integral is conveniently split into
three parts. The exphcit expression for the transversal diffusion coeScient is

O. 9u' 2b~ 3bj

(vo+bj. }' (vo+bi)' (vo+bi }'

1.1u' 2bg 3&@ voU
+ dUU Vofo 2+ 3+ 4

—2. 3
(vo+ba )' (vo+&z )' (vo+bz )

' 0.076
l.962

+b )4.038U2.038
&0

+ f dU U Vo f0[1+3a V0V0 —~a Vo (Vo+4V0/U)]
3 1.1u'

vo =d vo /dU, Vo
——d vo/du; bz ——0.771a/U with a =eE/m; b&

——0.5a/U . (73)

In the last integral, where divergences never occur, we have put b =0 and kept the original coeKcients appearing in
(36}. The explicit expression of the longitudinal-difFusion coefficient is



G. CAVALLERI AND G. MAURI

0 9 ' 1 2&I) 3h
(t

—54Q U 54g 2U

D„'f= f du u vpfo
(vo+bi ) (vo+bi ) (vo+bi ) vp(vo+bi )

4m' 1 1U' 4 2&@ 3&@ voU
+ f duU Vpfo 3+ 3+3 o, 9U (vp+ba ) (vp+ba ) (vo+ba )

0.076
a 1.962

( +b )4.038 2.03S
Vp

27a+ dU U vp fp 1+
1.1v' U Vo

12a 79 .
Vp+ Vp +

6U

gQ Vp

4
Vp

r

+ f"dr ' f "du, u, fi(u, ) f du~ujf~(u~, rIu, }—(U„&
0 9 o

' ' '
0

(74)

where IX. SOME NUMERICAL EXAMPLES

bi ——0.581a/u, ba ——0.5a/u .

In both (72) and (74) the distribution function of the
speed U is given by the Chapman-Cowling expression

f,= ~ ' exp f '—du
(kt/m)+ —,'Mm 'a (vo —vi)

where A' is a normalization constant, k the Boltzmann
constant, T the absolute temperature, M and m the
masses of the gas molecule and of the electron, respec-
tively.

In (74) f, (u) is the first anisotropic component in the
two terms Legendre expansion of the distribution func-
tion and is related to fp(u) by

becomes

fp(u T)=uo fo(x uo

with

(79)

%e consider the case of gas molecules behaving as rig-
id spheres, i.e., a collision frequency of the kind vp ¹——r u

This behavior is common to all gases for u ~0 as already
discussed in Sec. 6, Eq. (38), and for neon in an important
wide range of electron speeds where the cross section is
o =2&(10 ' cm . The relevant distribution function,
Eq. (76), with the use of the dimensionless field parame-
ters

up=kT/m, x =u/up, e =m/M, 6'=eE/(NerrkT),

(78)

Q 0f, (u)=-
VO —V1 dU

What remains to be calculated is the transition proba-
bility f, ( ui, r

I u; ) which requires the solution of the
Boltzmann equation in the Fokker-Planck approxima-
tion.

Consequently, the transversal-diffusion coefficient
given by (72) is completely explicit and needs no solutions
of other equations, while the longitudinal-diffusion
coefficient requires the Green function f, (UI, r I u; ) to be
obtained from the Boltzmann equation.

The last term of (74) gives the main difFerence between
the transversal- and longitudinal-difFusion coeIcients
and, when generalized, represents an additional noise
which we suppose can give the famous and still unex-
plained 1/f noise.

X3
fo(» Uo C)=duo 'exp — "dx

x +8/3

= 2 exp( —x /2)(1+3x /8 )
' (80)

where the normalization constant is obtained from

1=4% X X 0 X~U0, (81)

We calculate the transversal-difFusion coefficient by Eq.
(72} without Ramsauer effect, i.e., dropping the second
term. The limits of the first and third integral are rather
arbitrary and we use D. 1U0 since the use of the additional
parameter b is important for low speeds only. %'e also in-
troduce a dimensionless difFusion coeScient d~ which,
with the use of Eq. (78) and (79), reads

di =No (m /kT)'i Di

4no. & 7,.
@

1 1.542eb 1.7833(eh')
dX X 0 X, Ups 2+ 2 3+ 2(x +0.771eh)3 (x +0.77le@) (x +0.771et )

oc

dx x fp(x, uo, h) 1 ——
z0. 1 X'
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If we neglect the second order corrections, Eq. (82)
reduces to that used by SkuHerud and Parker and
Locke, vrhich is

di = dx x fo(x, uo, @) .
3 0

(83)

The numerical difFerences between the results obtained
from Eq. (82) by a computer and those obtained from Eq.
(83) are of order e =m/M=10, almost two orders
beyond the present experimental accuracy. Our simple
formulas are in this case ready for future more accurate
experiments.

X.CONCLUSIONS

By the method of the mean free path we have found ex-
plicit expressions for the generalized difFusion coefficients
D„(co) and D~(co). The application of these expressions,
given by Eqs. (18), (22), (23), (26), (28) and (30), to the
electric noise is left to a future paper. It is interesting
that the mean-free-path method, together with the use of
the velocity correlations, does not need the density gra-
dient expansion and can give directly D„(oi), from which
the ordinary longitudinal coefficient D, =D„(oi=0) is im-

mediately obtained.
In our method an auxiliary term b is introduced which

takes into account the variation of the collision frequency
I

vo(u) during a free path because of the electron velocity
variation due to the external electric field E. This term b
removes therefore the unphysical divergence that arises
in a hypothetical case of a Ramsauer minimum at a speed
uo such that vo(uo ) =0. Just in this extreme case we have
performed numerical calculations in Sec. VII by using the
rigorous expression (which never diverges) and the ap-
proximate expansion (in which b is introduced) which is
the useful, 6nal, explicit expression. By the chosen
b =0.5a/u (where a =eE/m), the difFerences between
the two expressions are of m/M order, where m and M
are the electron and molecule mass, respectively. Conse-
quently, in the real cases where v(uo )+0 although small,
we guarantee the same approximation of m/M order,
while the best values in the literature present discrepan-
cies with the Monte Carlo method up to 6%.

The explicit expressions for the diffusion coefficients
are given in Sec. VIII by Eqs. (72}-(75).

When there is no Ramsauer efFect, our results, al-
though less important, have been numerically compared
in Sec. IX with standard results as obtained by Skul-
lerud. The discrepancies are still of m /M order and it is
with this accuracy that we guarantee our expressions that
we still report here in the most compact form for the con-
venience of experimentalists.

By use of Eqs. (36), (37), and the more compact expres-
sion (59},we have for the transversal-difFusion coefficient

4 1 2b 3b ai dfo 3vivo
Dy= —1T dv v ~ vofo + i + 4 +

(vo+ b) (vo+b) (vo+b) 5 dv (vo —vi)(vo+b)

a 2vvi d 1 1 dfo 1 d u dfo
+

(vo+b)2 15(vo —v2) d»o —vi v du 3ui d»o —vi

where a =eE/m is the acceleration due to the external
field E, and

v2= v2(u) =— dp v(u, p)(3p —1),1 2

4

b =0.77la/u, (85) vo=dvo(u)/du . (89}

vo ——vo(u) =— dp v(v, p),
2

(86)

v, =v, (u) =— dp v(u, y)p,
2 —1

(87)

where p=a v/(au) and v(u, p, ) is the difFerential collision
frequency. Moreover

When the elastic collision frequency is much larger than
the inelastic collision frequency, the isotropic component

fo ——fo(u) of the velocity distribution function is given by
the Chapman-Cowling-Davidov expression (76).

The longitudinal-difFusion coefficient is given [as can be
obtained by Eqs. (31)-(34) and the more compact expres-
sion (56)], by

4 1 2b 3b 54a 1 1D»= K duv ~ vofo 2+ i+ ~+3 o (vo+b) (vo+b)' (vo+b) v (vo+b)' vo vo+b

+a
V) 9vo 5 dfo

5(vo+b) u (vo+b)

d 1 1 dfo
+

15(v +b) (v v ) du vo —v, u du

1 d u dfo

( vo+ b) du vo —vi du

(90)
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where, in the last integral, f, is given by

APPENMX A: CONNFA:I. CION SET%KEN Mr@USION
COEiixCIENTS AND NOISE SPEtmaAI. DENSITIES

The difFusion coefficient expressed by the velocity
correlation function has been given by Kubo, in the
case of zero drift velocity W=(v&. For reader's con-
venience we will here report the complete treatment
when %+0, moreover showing the connection between
the generalized dimusion coeScient and the noise spectral
density.

An electric field E=Ei is parallel to the x axis so that
W= W„i= (U„&i. The longitudinal-diffusion coefficient

D„ is defined as the position's mean-square spreading of a
charge-carrier ensemble initially prepared in the position
xo, divided by 2t. The so-defined D„ is independent of
the time t provided t is much larger than the mean free
time of ffight of the charge carriers. In particular we can
take the limit for t-+ oo, i.e.,

D„= lim —([x (t) (xo+ W—t}] &

t~m 2t
(Al)

Now it is

x —(xo+Wt)= f dt[U„(t) ~= f dt U„„l(t), (A2}

where U„„l is the velocity relative to the mass center of
the ensemble, i.e., the velocity measured by an observer
having the velocity 8'with respect to the laboratory.

Substituting (A2} in (Al) gives

D„= lim —f dt, f dtz( „„U,(t,l) „„U,(t )&i. (A3)
t~m 2t 0 0

Let us put v.=t2 —t& and change the variables in the
following way

Btl Btl

dtl Bt
dt, dt2 dedt, ——

t2 t2

dt l d'T

0fl(U)= —~(vo —vl)
dU

and f, (U&, ~
~

U, ) can be obtained from the P, approxima-
tion to the Boltzmann equation.

In the large majority of real gases, v2 ~ v& gg vo so that
Eqs. (89) and (90) can be strongly simplified.

Substituting (A4) and (A5) in (A3) and therefore chang-
ing the limits of integration gives

f —fl
D» = llin f dtl f d1 C»(1 )

1 2t 0 f]

Since (A6) is the limit of the ratio between two diver-
gent expressions (for t ~ oo), we can apply Hospital's rule

dD„= lim f dt, f d~C„(~)
2dt 0

1 r= lim —f 1r C„(~)+—f dt, c„(t—t l )
)~cd 2 —t 2 0

(A7)

Let us perform the limit in the 6rst integral and let us
put g=t t, in t—he second. Since dt, = —dg, by chang-
ing the limits of integration we get

~ '

D„=— d~C„v + lim — — C„
1 o o

2 —oo taco 2

f dgC„(r)+ —' f"dye„(g)= f"d&C (&) .
0 0

(AS}

The two transversal diffusion coefficients D„and D, are
equal because of axial symmetry around E. By the same
procedure —and the simplification (U~&=(U„&=0,
which implies U~„,=u„and U„„=U,—we get

D, =D, = f "d~C, (~)= f drC, (~). (A9)

The generalized difFusion coefficient is defined as

D„(to)= f dr C„(~)cos(to~)
0

and coincides with D„ for co~0, i.e., D„(0}=D„.Be-
cause of (A2) and (A5), (A10) is equal to (2) of the main
text. In a similar way (1) is obtained.

Let us now consider a wire section of length I, having
plane parallel ends, containing N carriers each of charge
e and with a velocity U,„along the x axis of the wire.
Ramo's theorem~' gives, for the current i (t) induced on
the end planes,

e
i (t)=—g U,„(t) . (Al 1)

s=1

The mean value of the current is

(A12)

=dtdt) (A4)

If E is constant or if b,E/E && 1 during a time of ffight,
the process can be considered as stationary and the corre-
lation function C„ofu„„&depends only on ~= t2 —t» i.e.,

and the current fluctuation is

b,i =— g U,„(t) N(U„&-
s=1

(A13)

C„(tl, t2 )= ( U„„l(tl )U„„l(tp ) &

( U»rel{tl )U»~el(ti +t) &

= & U„„,(0)U„„,(7.) &

=C„(w) .

bi =hi(t) is a stochastic variable y(t) whose spectral
density is de6ned by

G(co) =—f dt (y (0)y (t) &cos(cot ) . (A14)
0

(A5) Ify(t)=hi(t), (A13) in (A14) gives
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2e2
, J «y„y [&u,„(0)up„(t)&

—N&u, „(0)&u,» —&&u,„(t)&u, » +X'& u„&']cos(Nt)

t U OU t + U OU t —X U —X U +X u cosmt
mI. ' s=1 s =1 p&s =1

2e I dt(N & u„(0)u„(t)&+X(N —1)& u„& —X & u„& )cos(cot)
~I.'

N t v„o U„ t —U„cos ~t
~I.'

By comparing (A10) with (A15) we obtain the second step of (2) of the main text.
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