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A theory for the response of a smaB spherical particle with a coating is developed using the semi-

classical in5mte-barrier model. Both the core and the outer layer are described by a nonlocal
dielectric function. The theory is apphed to an Al203-coated Al sphere and to an Sn-coated A1203
sphere, and we 6nd the coating to dominate the high-multipole response of the particle in either
case. The optical-absorption and scanning tunneling electron microscopy spectra of the above sys-

tems are discussed.

I. INTRODUCE;zxON

The interaction between a spherical particle and elec-
tromagnetic radiation was first treated in the pioneering
work of Mie. ' This classical solution has been extensively
used in the analysis of systems of smaH, well-separated
metal particles with diameters greater than about 30 A.
In principle, optical measurements in such systems pro-
vide a useful test of the theory but there are experimental
difficulties to produce samples with such ideal charac-
teristics as equally separated particles, spherical form and
unique radius, absence of oxide coatings over the metallic
core, etc. More recent techniques that use the scanning
transmission electron microscope (STEM) test the
response of individual particles by measuring the energy
distribution of the scattered dectrons. Experiments
done on single spheres show the accuracy of predictions
of the Mie theory. Results for two spheres also show the
importance of couplings of high-pole order between the
partic1es, as predicted recently. ' Detailed interpretation
of experimental results has not always been possible how-
ever and more theoretical work that treats the eff'ect of
clustering, oxide overlayers and nonlocal elects in the
metal is needed in order to get quantitative agreement.

The importance of an oxide overlayer on the far-
infrared response of a metal sphere has been recognized
since the work of Weaver et al. ' The oxide has a res-
onance in this region that is expected to produce at least
as much absorption as the metal. Also, recent work
shows thc importance of norllocal clccts ln cxplaln1ng cx-
pcrirncnts on photoemission. ' A nonlocal dielectric
function couples the surface cxcitations to bulk-plasmon
modes and may provide additional interaction mecha-
nisms through the creation of electron-hole pairs. Nonlo-
ca1 results for the polarizabilities of arbitrary pole order
using the hydrodynamical model and the Lindhard-
Mermin dielectric function were recently reported. A
cuto8 on cxcltatlons of high order' ls provMied by thc non-
loca1 nature of the dielectric function. A similar elect
has been found in the quantum limit of very small
spheres. 24

In the present work we study the nonlocal response to
an electromagnetic excitation of a smaH coated sphere.
The cases of oxide over metal as we11 as metal over oxide
are discussed. We are interested in the coupling of the
particle with the electric field and ignore magnetic effects.
The first case has been previously treated by several au-
thors using a local dielectric function. " The motiva-
tion has been the understanding of the anomalous low-

frequency absorption obtained in optical experiments and
most work is concerned with this region of the spectrum.
In this paper we discuss the multipolar response of the
nonlocal coated particle in a wide frequency range that
includes the plasma frequency of the metal and higher.
Our main Snding is that the coating, no matter how thin
it is, dominates the response at high polar order. The pa-
per is organized as foHows. In Sec. II a theory of the
electric polarizabihty of a sphere with one or more over-
layers is developed using the semiclassical infinite-barrier
(SCIB) model and the response of an oxide-over-metal as
well as metal-over-oxide sphere is discussed. In Sec. III
the theory is used to obtain the optical absorption of an
aluminum-oxide-coated aluminum core, as well as a tin-
coated aluminum-oxide core. Section IV treats the loss
of a charged particle moving uniformly past a sphere, and
finally in Sec. V our conclusions are presented.

II. NONLGCAL PGLAR~ASILxriES

%c begin by considering an uncoated sphere of radius
a composed of a material characterized by a nonlocal
bulk dielectric function e, (k, to), surrounded by a homo-
geneous medium with a local dielectric function ei, {to}.
%'e assume our sphere is under the inNuencc of an exter-
nal potential

V'"'(r}= V&r'P, (cos8),

where r=(r, e,p} are spherical coordinates whose origin
is at the sphere center, PI is a Legcndrc polynomial of or-
der I, and VI is a constant. This applied potential excites
in the sphere the multipole ql
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2I +1
a) VI,

4m

where al is the l-polar polarizability. A potential

PI {cos8)
V'" (r)= —al VI (3)

V'VD(r)=C(5(r a—)Y,o(8,$),

where PI(cos8) has been replaced by its corresponding
expression in terms of Ylo( 8,$ }and CI stands for an un-

known I-dependent constant. Equation (10) is solved by
first taking its Fourier transform

is induced in the region r & a. In order to get u&, we solve
the electrostatic equations with the usual boundary con-
ditions on the sphere surface: (i) continuity of the poten-
tial, and (ii) continuity of the normal component of the
displacement vector. Outside the sphere we solve
Laplace's equation by simply adding the external and in-
duced potentials,

—k Vn(k)=CI f5(r —a)Ylo{8,$)e '"'d r,

and next by expanding the exponential in terms of spheri-
cal Bessel functions and spherical harmonics. Using the
orthogonality relation of the latter we obtain the solution
in wave-vector space

IV(r) = V& r —,, P, (cos8) . (4)
Vn(k)= —

z CI( l) Jl—(ka)YIo(8k 0k)
4ma

(12)

The radial component of the corresponding displacement
vector D is

where we have used the notation k=(k, 8k, ((}l.). By tak-
ing the inverse Fourier transform of the above equation
we obtain

D„=—C„VI lr' '+(1+1), , P&(cos8), (5) VD(r)= — a CI YIo{8~$)f j I{«j)I{k"}dk.
m' 0

(13)

where we took advantage of the local dielectric properties
of the medium surrounding the sphere. %'e next define
the surface impedance

Using the formula

oo ~ 1 CE
I

JI (ax)j t(~x)dx =—,, ~ & a
0 2 2 +1 p~+l' (14)

V(a)
aD„(a)

(6) we finally get

a quantity that will prove to be useful, especially in the
case of a coated sphere because both quantities in
dcflllltloll (6) arc colltllluous 'tllrougll thc sphcrlcal bolllld-
ary and can be evaluated by using solutions at either side.
The following expression relating Z, to the l-polar polari-
zability is obtained by inserting the external solution
(r & a) given by Eqs. (4) and (5) into definition (6):

a —a"+'z-
e„[la"+'+(1+1)u, ]

CI I

VD(r)= — Ylo(8,$). . . r &a .
2l +1 (15)

This result has the usual coordinate dependence of
Laplace's solutions inside a spherical volume. This could
have been guessed at 6rst because the charge sources of
the potential VD are on the surface of the spherical
volume. The solution for the true potential V(r) inside
the sphere is obtained through the relation

VD(k)=e, (k, co) V(k) .

Inside the sphere we have to solve the electrostatic equa-
tions

7' D=O,

VIE=0,
(Sa)

with the field intensity 8 and the displacement D being
related through the nonlocal relation

D(r )= fe, (r —r', co )E(r')d 'r' . (Sc)

To get the solution inside we use the semiclassical in6nite
barrier (SCIB) model whose prescription is as follows:
extend the nonlocal response to all space, and solve in an
unbounded medium a Poisson-type equation for a poten-
tial function Vn(r) defined by

—V VD(r) =D(r),
with charge sources of the appropriate symmetry located
on the sphere surface. Then, the equation to solve is

Proceeding as with Eq. (12} and assuming the k depen-
dence of e, (k, co) to be isotropic, the electric potential in-
side the sphere is then given by

„jI(kaj)I(kr)
V(r)= ——a CI Ylo(8, $) f dk, r &a .

o e, (k, co)

The vector fields E and D inside the sphere are obtained
through the relations

E= —VV,

D= —VVD .

(18a)

(18b)

The final step is the matching of the internal and external
solutions through the boundary conditions on the sphere
surface. Two equations are thus obtained and they yield
the values
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C, = —(2/ + 1 )a' ' 1+
l

I {E,—e„}
a1 —— a

I (E,+e(, }+e(,

where

2 j((ka}
E( E(—(~)= —(2/+1)a f dk

1r o e, (k, o()

(19a)

(191}

(20)

origin the coating medium and we solve the equation

V' VD(r) =[A(5(r —a)+8(5(r —b)]Y;()(8,$) .

A similar procedure to that followed in the case of an un-
coated sphere leads to the following potentials VD(r) and
V(r}:

a' rl
V~(r)= — A(a, , +8(b (, Y(o(8,$),

(24a)
As is apparent in Eq. (191), the quantity E( has the role
of an efFective I-dependent dielectric constant for the bulk
material of the sphere. In the local limit of a k-
independent dielectric function one has E((to)=e, (co)
and Eq. (191) assumes its usual form. The result (191)
was obtained previously for the case e&

——1 by Fuchs and
Claro. Form (20) for the dielectric constant describes
the response of a medium in a basis of excitations of
spherical symmetry. Introducing the result (191) in Eq.
(7) we further get the simplest expression

Z ~

1

1

(21}

Now we assume that a coating of material characterized
by a nonlocal dielectric function eb(k, co) and thickness t
is added to the sphere. The procedure to get the sphere
I-polar polarizabilities is similar to the previous one. The
analysis of the external solution is just the same so we just
get Eq. (7) in the form

l 21+1

e(, [lb '+ '+ ( I + 1)a(]

where a1 is the coated-sphere polarizability and 6 =a + t
is the new radius. The previous analysis of the internal
solution is also valid here and the results given by Eqs.
(20) and (21) for E( and Z„respectively, are the same
without change. Naturally, Eqs. such as (19a} and (191}
that depend on the matching of solutions at the surface
r =a are not valid here, and we have to solve the electro-
static equations in the coating region (a & r & b) to make
a new matching with the previously found solutions.
Indeed, to get the sphere polarizabilities we only need a
relation between Z, and Z(„which together with Eqs.
(20), (21), and (22) will give us the desired a(. Getting Z(,
in terms of Z, is almost equivalent to solving completely
the electrostatic problem in the coating region, and we
proceed once again by following the SCIB prescription.
We add source charges of the potential Vt( on the sur-
faces at r =a and r =b, we extend to in5nity and to the

V (r)= —a—'Y(o(e, y)

A(j((ka)+B(j((kb)fx "j((«) dk,
0 Ebk, c'o

both results being valid in the region a & r & b. The un-
known constants A1, 81, C1, and a1 could be found by
matching the solutions at surfaces r =a and r =b, but in
order to obtain a1 only, we follow a different procedure.
We first get the surface impedance by use of the results
(24a) and (24b} together with Eq. (181}in the definition

(6),

Zb

1 —]
a

F~b+F
' I —1 ~

F,Fgb l + 1 —l
b A1

'1+2 ~bFb+F b a A(
' 1+2 ~b

FbF b l+1—l
a

(25a)

(25b)

p &q (26)

where x can be either a or b. Notice that our former E1
of Eq. (20) is given here by E( E('(a, a). The d——esired re-
lation between impedances Z, and Zb is obtained by
eliminating the ratio 8(/A( between Eqs. (25a} and (25b).
The result is

Here F, =E((a,a), F(, E((b,b), and ——F,(, =E, (a, b),
where

2 J'((kP )J'((kq)
E("(I(,q)= —(2/+1) +

q f" dk
p o e(ko()

(/+1)F,F,(,Z, F,(, +F,F(,(F,(, '+—/Z, )(a/b) '+'
Zb

F,F F, [IF, ' —/(/+ l)Z, +(/+1)(F, '+/Z, )](a/b) '+' (27)

Finally, by combining relations (21), (22), and (27) we get the I-polar polarizabilities of a coated sphere characterized by
two nonlocal dielectric functions e, (k,o(}and e(, (k, o(), corresponding to the core and coating, respectively:

F (, (1 e(, /F(, )[IE(+(/+1—)F, ]+F,[(/+1)(E( F(, )+Ie(, (E(/F—
(,
—1)](a/b) '+'

b h b 1 u 1 b II 1 b
(28)F (, [1+(/+ I )e(, /IF(, ][IE(+(I+1)F,]+F,(I +1)(e(,+E( F(, e(, E(/F )( (/b—)a'+'—
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&2I+ &

1+1~s+ e's

(29)

a result that is independent of the core dielectric func-
tion. Comparing this expression with (19b) we see that

For ¹independent dielectric functions we have F, =F&
=F,s =e&(ro), EI ——e, (ai) and the previous expression is
reduced to its local version.

The procedure followed here to Snd the polarizability
of a coated sphere can be extended to an arbitrary num-
ber of coats by using repeatedly the impedance trimsfer
relation (27) together with Eqs. (21) and (22).

The electric polarizability (28) exhibits an interesting
behavior in the limit when I is large enough so that
(a lb) +' ~&1. In that case we get the approximate local
relation

60—E

1 —Q(0+iI')

1 —Q'[Q'+ iI"(Q')] (30)

the particle actually responds as if it were made entirely
of the coating material.

We have applied our expression (28) to a sphere with
an Al core 50 A in radius coated with a layer of A1203 5
A thick (Fig. 1), and a 50-A core of this oxide coated with
a 5-A layer of till (Fig. 2). Frqllencies well spl'ead ill the
range 0 g ~ ~ 1.3'~ are represented. %e used the
Lindhard-Mermin (LM) diele:tric function for the met-
al. ' It includes bulk plasmons as well as electron-hole
pair excitations. Examples where the Drude (D) local
dielectric function is used are included for comparison.
For the oxide we used the form appropriate to the amor-
phous phase,

lo 2 —
OX

(LM)/OX

)0 2 —~M/OX
+++~e~e ~ ~ ~e~

OX

)0
ox

10
M(O)/Ox

OX

cu =0.00I ru

(a)

au =0.67cvp

(b)

where Q =ro/roz, I =0.322, Q' =co/ros, eo =5.01,
e„=2.80, Acoii

——14 eV, mr ——706 cm ', and I"(Q')
=4[1—tanh(3/2Q')]. It includes both the infrared bulk
resonance and electronic interband transitions where for
the latter an envelope function was Stted to the experi-
mental data. ' Figure 1 shows httle structure in the 1-

dependence of the polarizabihty except in the intermedi-
ate frequency range in which the strong surface plasmon
in the metal dominates. Notice that two peaks are visible
in Fig. 1(b), one due to the plasmon at low I and the other
to electron-hole pairs. The latter is entirely absent from
the Drude (labeled D) result, as expected. At low and
high frequencies the coating resonances overwhelm the
metal response. Also, at high values of I the particle
behaves as a pure-oxide sphere and its response follows
Eq. (29). We have included the pure-oxide polarizabili-
ties for comparison (labeled OX). For the very thin oxide
coating we have used in this example the crossover
occurs at the rather large value of 1-25 but this number
decreases for thicker layers. A similar situation occurs
for the metal-over-oxide case, shown in Fig. 2. Again the
polarizability does not show much structure and follows
the pure-metal response at large I-values. Here the pure
metal curve is included for comparison (labeled M). Note
that the bulk-plasmon structure at ro&re~ [Fig. 2(d)] is
smoothened out by the presence of the oxide core.

cu = $.3~

l l

20 30 40
P0LE CeOm P

FKs. 1. ImaglIlary part of the I-pole polanzsbility of an
oxide-coated A3 sphere at various frequencies. The metallic (M)
core is 100 A in diameter and the Alz03 (OX) coating is 5 L
thick. Expression (30) was me(i for the dielectric function of the
oxide. Both a I.indhard-Merlin (LM) and a Drude (0) diekc-
tric function were used for the metal and the results are
diferent only in ca~a Q). The pohar4ebibties of a pure oxide

0
sphere 100 A in diameter are included for comparison.

&f. QPI'I+AX. MNORPTION

In the long-wavelength limit the absorption of elec-
tromagnetic energy by small particles is due mainly to the
coupling of the electromagnetic Seld to the induced elec-
tric and magnetic dipoles. The absorption cross section
is34

a.= Im(aI'+a'i ') .47FO)

C
(31)

where a(&' and a(& ' are the electric and magnetic dipole
polarixabilities, respectively. For typical metals at room
temperature this expression is valid in the infrared region
of the spectrum and below. %'ithin this range of validity,
a low (5~~a) and a high (5 ~~a) frequency regimes can
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be distinguished in the magnetic term, depending on the
values of the skin depth 5=c/&2~+co, with cr the con-
ductivity of the metal, and the metal particle radius a. In
the far-infrared region a metallic spherical particle 100 A
ln radius satisfies the condition 5 ))0 and assumes a
linear dependence in co, while a 1000-A radius particle
satisfies 5&~a (except at frequencies below S cm
where the transition region is located) and aI ' assumes
an co' dependence. For metal particles of radii greater
than about 50 A, the magnetic contribution to the far ab-
sorption cross section becomes greater than the electric
contribution; nevertheless the existence of an oxide
coating on the particles increases considerably the elec-
tric dipole absorption while it almost does not afFect the
magnetic dipole contribution. In what follows we shall
ignore the latter.

There are three frequency regions where the presence

of an oxide coating over a metal sphere modifies
significantly the response of a pure metal sphere. One is
the low-frequency region where the oxide exhibits a bulk
resonance (co-coT), another is the region where the sur-
face plasmon is excited in the metal (ro-co ), and the last
one is the high-frequency region where interband transi-
tions may take place in the oxide (cu-co& ). An interest-
ing result in the limit of very low frequencies
(co &0.32coT } is that the electric multipolar polarizability
of a metal sphere covered by an oxide layer is indepen-
dent of the dielectric function of the metal and therefore
the electric absorption cross section is completely dom-
inated by the behavior of the dielectric coating at such
frequencies. Ignoring the last term in the dielectric func-
tion (30) the following approximate expression is obtained
for the electric dipole absorption cross section in such a
limit,

10

(~)
ca) = 0.001 cop

OX+~t~o~ ~ ~ ~ ~oe ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ +~ ~ ~~:::

)00
I
I
I

I
I
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/
I
I

t

Il
I

I
I
I

(c)
4J =1.04)p

10'

j
t (
I

)00

(b)
cu=Q. 67Gu~

OX I M(D)

IM(LM}

)00

J3

l0

(v= l.3 co~

lo '
-~f- SIP~ 0 ~ ~ ~ ~ ~ ~ ~ ~ & ~ & ~ ~ 0 ~ ~ ~ ~ ~ ~ ~ ~ ~ 0 ~ ~ ~ ~

l0
0 20 40 60

POLE ORDER P
80

I

I
I

]0 2 +.

I I

20 40 60
POLE ORDER t'"

SO

FIG. 2. Same as Fig. l but for an Alz03 core covered by a layer of tin of same dimensions. The pure metal sphere is also included
for comparison.



R. ROJAS, F. CLARO, AND R. FUCHS

0 ' = yb ez(eo e—„),Q(e) 12K 3 1

C (@0+2@i,Ii )
(32a)

10

M {LM)i'OX
M {0)/OX

where

1 —XI

1+( I + 1)xi /I ' (32b)

M

C

10

6

x& ——(a/b) '+' . (32c)

(a) 943 cm '

100 cm-'

with y = I coT. For very thin layers the above relation is
linear in the width t =b —a of the coating.

We have obtained numerical results for the electric di-
pole absorption cross section of coated (o, ) and uncoated
(e„)spheres. In Fig. 3 we show the ratio cr, /o „asa
function of the relative width t of the coating for an
Al/A120, sphere of external radius 100 A at the frequen-

cy where the phonon absorption peak due to the oxide
appears, a value that varies slightly around 0.0072~&, or
equivalently around 1.27~T as a function of thickness t.
We find that very thin oxide layers increase absorption by
factors of 10' or 10 depending on frequency, while thick-
er layers give factors about one order of magnitude
bigger, in agreement with earlier results. ' Because the
presence of the metal is not important in this region the
nonlocal character of the core dielectric function has no
effect at this frequency.

Figure 4 shows the absorption cross section of an Al
core 50 A in radius with a 5-A-thick AlzOi coating (solid
line) and a pure Al particle of radius 55 A (dashed-dotted

a 10

LU
ch

~ 10
Vl

CK

C)
~ 10

CL
IX
O -4

Co

10
0.00 0.03 0.5

Ca) / 4fp

FIG. 4. Absorption cross section of an Al sphere of radius 50
A with a 5-A A1203 coating (solid line), and a pure Al sphere of
the same external diameter (dashed-dotted line). Labels are as
in Fig. 1.

hne), both computed using a Lindhard-Mermin dielectric
function for the metal. A third curve in Fig. 4 provides
the local results obtained with a Drude model (dashed
line). Inspection of this figure shows three main effects of
the thin coating added to the metal core: a large
enhancement and resonance in the low frequency already
discussed in connection with Fig. 3, an enhancement and
broad resonance at large frequencies due to interband
transitions in the oxide, and finally a red shift of the sur-
face plasmon resonance in the metal. Nonlocal effects are
present through an enhancement by about a factor of 2
beyond the oxide infrared peak at low frequencies and
through the small blue shift in the plasmon resonance.
The approximate position of this resonance may be ob-
tained in the local case by solving for the minima in the
denominator of Eq. (28). Ignoring damping they are
given by

I+1
e,'I(co)= — eb(co)Gi(a, b, a) ), (33a)

1 —TI (ar )xI
G, (a, b, ~)= l+11+ TI(u)x&

(33b)

FIG. 3. Absorption cross section of an A1203-coated Al
sphere of 200 A external diameter relative to that of an uncoat-
ed sphere of the same size. t is the coating thickness. Curve {a)
is for a frequency of 943 cm ', a value close to the phonon ab-
sorption peak in the oxide. Curve I,

'b) corresponds to a far-
infrared frequency of 100 cm

6b ( CO ) —EI,
'

Ti(co) = 1+1
g(CO) + 'Eg

(33c)

Using a Drude model for e, (co) and assuming that e&(co)
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is a constant over the frequency range considered, we ob-
tain

Np

( 1 ~» )1/2
a, l

(33d}

This relation is in agreement with that given by Munnix
and Schmeitz for the limit case of very large l. Reso-
nances are shifted to the red by the oxide coating. If
eb(co) is not a constant near col', Eq. (33d) must still be
solved self-consistently for col' in order to obtain the
desired resonances.

Figure 5 shows the absorption cross section of an
A1203 core 50 A in radius covered by a 5-A-thick tin lay-
er. This case shows a plasmon resonance associated with
each of the metal surfaces. A good estimate for their po-
sition may be obtained again in the zero-damping limit by
solving the corresponding normal modes equation given
by setting the denominator of Eq. (28) to zero. Two types
of solutions emerge:

eb, l = HI+( ,H— —e,-ea )
2 1/2

where

I 1+1+ 'Eg+ ( t" +E'I, )XI'I+1
1 —x(

(34a)

(34b)

10

g 10

100 0

M 10

cA
10-2

10
!L
IX

10

10
0.00 0.06 0.5 2.0 2.5

FIG. 5. Same as Fig. 4 but for an A1,03 core covered by a
layer of pure Al metal of same dimensions and a pure A1203
sphere.

with xi as given in Eqs. (32c). Solutions corresponding to
the plus (minus} sign are resonances of the external (inter-
nal) surface of the metallic shell. In the x, ~0 limit the
external surface solutions are given by e& &

———e, (I + 1)/I
and they correspond to a physical situation with a =0. In
the same limit the internal surface solutions are
e» ———e, I/(I +1) and they correspond to a physical sit-
uation with b~~. In Fig. 5 the two resonances are
clearly visible at either side of ro-co~ /2. We chose to use

a layer of tin metal instead of aluminum in order to avoid
an overlap of the interband transitions with the inner sur-
face plasmon peak. Figure 5 also includes the absorption
cross section of a pure oxide sphere of the same external
diameter for comparison (labeled OX). Strong absorption
by the oxide is present at very low and high frequencies,
while the metal dominates the central region as was the
case for the oxide-on-metal sphere. Notice, however,
that the low-frequency oxide peak is absent entirely for a
Drude metal while a small feature still remains in the
Lindhard-Mermin case. Again in this case the surface-
plasmon resonances are slightly blue shifted when a non-
local dielectric function is used. In the optical absorption
by a single small sphere where only the dipole polarizabil-
ity matters we find nonlocal efFects to be small. For a me-
tallic shell both the Drude and Lindhard-Mermin dielec-
tric functions give two resonances associated with the
inner and outer surfaces of the metal. A similar result
was obtained by Lushnikov et al. using a jellium model
with a random-phase approximation (RPA). Recent
work by Ekardt using the time dependent local density
approximation shows the presence of only one resonance
of mixed inner-outer surface character. This result was
obtained for a very small metal-on-metal sphere with an
external radius less than 15 A, well below the range we
have considered in our work. Our nonlocal theory based
on SCIB is a compromise that allows the treatment of
larger particles but may give wrong results when quan-
tum size efFects are important or when a very thin metal
coating covers an also metallic core.

IV. STOPPING POWER

Experiments using 50-100-keV electrons as a probe
have proven useful in the study of electromagnetic excita-
tions in small particles. ' If the electron passes close to
the surface the field in the particle is highly nonuniform
and excitations of pole order higher than dipole may be
dominant. For instance a 50-keV electron at grazing in-
cidence excites on a 200-A sphere several multipoles, the
octupole having the largest amplitude. A similar e8'ect
occurs when two spheres placed in an external electric
field are very close to each other. ' The 6eld excites
the dipole on each particle which in turn produces s
highly nonuniform potential in its vicinity, thus produc-
ing higher-order excitations whose relative amplitude de-
pends on the separation of the spheres, peaking at the oc-
tupole when the center-to-center separation is 1% larger
than the diameter. Optical experiments on pairs of
small particles require many pairs to be exposed and the
di%culty in controlling their size and separation presently
makes it preferable to use electrons in order to excite the
rnultipoles under well-controlled conditions. The total
energy loss by an electron passing near an oxide-coated
sphere has been previously studied by Munnix and
Schmeitz as a function of impact parameter. Here we
shall discuss the energy dependence of the interaction in
relation to the excitation of surface resonances.

The probability that the electron loses an energy ~ is
given by (we use Hartree atomic units)
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FIG. 6. Energ -loss probability function for a 100-keV elec-
tron passing 190 away from the center of a sphere. The latter
has an Al core 12S A in radius and a SS-A coating of Alz03
(dashed line), or is a pure Al sphere of the same external diame-
ter (solid line).

Here p is the impact parameter, u the electron speed, 6 o
the Kronecker delta, and E is the modi6ed Bessel func-
tion of order m. The total energy absorbed in the scatter-
ing process is obtained by integrating the energy multi-
plied by the above probability function. We have applied
expression (35) to a pure Al and to an Al/A1203-coated
sphere. Results for a 100-keV electron passing a distance
p=190 A from a 180-A pure aluminum sphere (solid
line), and a 125-A sphere coated by a 55-A layer of A120&
(dashed line) are shown in Fig. 6. The coating thickness
was chosen so as to have the surface plasmon resonance
at the same frequency as in Batson's experiment, keeping
the external diameter of both spheres the same. The bulk
oxide dielectric function we have used includes both the
low-frequency resonance and the interband transitions as
given by (30}. For the metal we used the I.indhard-
Mermin dielectric function. The pure aluminum sphere
exhibits several peaks associated with the resonant excita-
tion of the dipole, quadrupole and higher-pole modes,
plus a kink several orders of magnitude smaller at the
plasma frequency, a nonlocal efkct. In contrast, the
coated sphere shows only one prominent peak associated
with a surface plasmon resonance and the overall width
of the resonance is much smaller than in the pure metal
case. One can understand this result by recalling that be-
sides shifting the resonances to the red the oxide coating
acts to suppress the excitations of higher order as dis-
cussed in Sec. III, so that one expects to see only the
lowest-order peaks, in this case only the dipolar. In fact,
if the sphere becomes large the dipolar resonance be-
comes weaker while the oxide inhibits the higher polar
resonances and the overall energy loss of the electron will
therefore be significantly decreased. Figure 7 is for an
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FIG. 7. Same as Fig. 6 but for an Alz03 sphere with a Sn lay-
er of same dimensions, and a pure oxide sphere.

0
~ ~

0

A1203 125-A-radius core covered with a 55-A layer of Sn
metal (solid line}, and a pure oxide sphere of the same
external diameter (dashed line). Several multipoles are
excited in the metallic shell and are quite visible since the
costing is thick. The Mie resonance associated with the
outer metal surface is the lowest frequency peak, while
that associated with the inner surface is the peak of
highest energy. The low-amplitude oscillations above the
plasma energy are the bulk plasmon standing waves. No-
tice that the infrared oxide peak is entirely destroyed by
the presence of the metal.

V. CONCLUSIONS

, Our study of ihe polarizability of a coated sphere
shows that for high enough pole order this quantity is
dominated by the coating material, even when the latter
is very thin. This efFect has important consequences on
the response of an oxide-coated aluminum sphere to a
STEM electron, suppressing the multipolar structure in
the loss probability function. Due to interband transi-
tions the polarizability of the oxide is high in the region
where the multipolar resonances occur. The same effect
is expected in the optical absorption spectrum near the
Mie resonance of a cluster of such spheres since, as is
known, pairs of spheres or more complex arrays 6 exhibit
multipolar optical resonances if the interparticle distance
is less than about three particle radii. Absorption by the
oxide is dominant at very low as well as very high fre-
quencies. In the case of an oxide core coated by a metal
layer the infrared oxide peak is almost entirely
suppressed and two plasrnon peaks occur, as an excita-
tion in the concave and the convex metal surfaces, re-
spectively.

Using a nonlocal dielectric function to describe the
response of the metal has an important e8'ect on the I-
dependent polarizability. %'e find that the oxide has as a
general rule the eFect of smoothening out the structure
introduced by the excitation of bulk plasmons and
electron-hole pairs. A blue shift in the plasmon peaks is
always present as a nonlocal effect, however, both for a
metal core covered by oxide as for a metal shell with an
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oxide core. Some nonlocal enhancement is also observed
in the absorption spectrum of the particle although it
reaches at most a factor of 2 in the cases studied.
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