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Isotope eff'ect and pressure dependence of the freezing temperature in proton glasses

B. Tadic, R. Pire, and R. Blinc
Jozef Stefan InstituteF, .. Kardelj University of Ljubljana, 61 Ill Ljubljana, Yugoslavia

(Received 8 September 1987)

The phase diagram of the substitutionaliy disordered proton glass Rb~-, (NHq)„H2PO4 has
been evaluated as a function of pressure, composition, and deuteration content using the random-
bond version of the Ising model in a transverse tunneling field. The results are compared with re-
cent experimental data.

Recent experimental studies' have revealed that the
proton-glass phase in Rb~-, (NH4) H2PO4 (RADP) at
x O.S can be completely suppressed by the hydrostatic
pressure I', 5 kbar, and a quasilinear variation of the
freezing temperature Ts has been found in the range
0 & P & P,. Moreover, a large isotope effect on Ts and its
pressure derivative has been observed on replacing hydro-
gen by deuterium. The purpose of this paper is to demon-
strate that these effects can be understood in terms of the
recently proposed tunneling model of proton glasses. '
This model is a random-bond version of the Ising model in
a transverse tunneling field, which can be regarded as a
simple prototype model for hydrogen-bonded ferroelec-
trics of the KH2PO4 family.

The Hamiltonian for a mixed RADP system is written'
as

P —
2 g JtsS;Sf —QQS," (1)

lj l

where Q is the tunneling frequency for the O-H 0
proton intrabond motion, and the JJ are chosen, in the
spirit of the Sherrington-Kirkpatrick (SK) theory of
magnetic spin glasses, to be infinitely ranged with a
Gaussian random distribution of mean Jo Jo/N and vari-
ance J J/Ntlz. Since we are mainly interested in the
variation of the nominal freezing temperature Ts with
pressure and composition here, and not in the detailed
shape of the susceptibility versus temperature curves, we
do not include in Eq. (1) the random-field term. s As ar-
gued in Ref. 3, within a mean-field theory the pseudospin
variables S; + 1 can be treated as components of a clas-
sical m-dimensional unit vector. The phase diagram, ob-
tained in the limit m 1, then reduces to that of a SK
spin glass for Q 0, whereas for J 0 and Q WO, one re-
covers the results of the mean-field theory of pure KDP-

type ferroelectrics.
According to the tunneling model, the transition from

the disordered (paraelectric) into the ordered ferro- (FE),
antiferroelectric (AFE), or proton glass (PG) phase can
be induced either by lowering the temperature or by de-
creasing the transverse field Q. The exact nature of the
transition depends on the relative magnitudes of the pa-
rameters Jo and J: For I Jg I & J the transition is into a
FE (Jo & 0) or AFE (Jo & 0) phase, whereas for
J»

I Je I a PG phase appears. In each case, the transi-
tion temperature depends on Q. For Q ~ 2J, one finds
Ts(Q) 0, i.e., no PG ordering is possible at any temper-
ature. (Similarly, T, Ofor Q~

I Jol when J 0.)
Using the general replica formalism of Parisi, one can

show that the static dielectric susceptibility for the tunnel-
ing model (1) in the case Je 0 is given by

q(x)dx

where q(x), 0~x ~1, is the Parisi order-parameter
function, and r &(S;)z) represents the diagonal part of
the PG order parameter in replica space. 3 X exhibits a
cusp at T Ts and has the valueX 1/7 for T~ Ts. The
freezing temperature is obtained from the condition that
q(x) 0 at T Ts. i.e., X(Q, Ts) r/Ts 1/J. This rela-
tion remains unchanged for Jose0 as long as I JoI ~ J.
For I Jo I & J, however, one obtains the critical tempera-
ture T, from X(Q, T, ) r/T, 1/I JoI. The total suscep-
tibility is given by X«t X/(I —

I Jn IX), which diverges at
the transition point T,(Q).

The order parameter r at the phase boundary can be
calculated within a replica-symmetric theory. Thus the
transition temperature T (i.e., T, or Ts) is determined by
the coupled equations

T- m-~J, I Jo I],
r - [&cosh(H/T)&, ] '[&(Q'T/H')sinh(H/T)), +r&(Jz/H)'cosh(H/T)&, ],

withH~(Q +rJ z )' and

g + co

&f&, =—(2tr) 'i'„dzexp(—z'/2)f(z) .

(3a)

Equations (3) can be rewritten as a single implicit equation for the reduced transition temperature T—:TW/J, namely,

&cosh(H/T)&, -&(~z/H)'~sh(H/T)&, +&(Q'/H')»nh(H/T)), (4)
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with further reduced variables Q-=QW/J and 8—= [Q
+ T(Wz) 2] 'i2. The parameter W is defined as

J/I Jol f«l Jol &J,
(5)

, 1 for I Jo I
~J .

We now discuss solutions to Eg. (4) in these two cases.
(1) FE and AFE phase ( I Jo I &J). The limiting case

of a pure FE or AFE system is obtained by setting
J 0(W 0) in (4) and (5). The transition tempera-
ture is then given by

Q/ I Jo I tanh(Q/T, ), (6)

where T, corresponds to T, (T~) for Jo & 0 (Jo (0), re-
spectively.

When JNO but I Jol & J. T is lowered; however,
long-range order persists for W in the range 0~ W& 1.
Numerical solutions of Eq. (4) for several values of Ware
shown in Fig. 1. Notice that for each W a critical trans-
verse field Q, is found such that T 0 as Q ~ Q, and no
FE (AFE) order exists for Q & Q, . We obtain
Q, -=Q, W/J 1+W2. For Q close to Q, (i.e., I/T&)1),
as asymptotic expansion applied to Eq. (4) yields

(" ") 8 Q(Q —W' )
3W2 4Q+ W' W2(-Q —W')

Thus the slope with which T, goes to zero at Q, is found
as

s(W) (8T,/8Q)„, -2/(3W ) .

In pure systems (W 0) the slope becomes infinite,
s(0) —oo, in accordance with earlier results. For
finite J, however, one has 0(W & 1, and the slope is finite
(cf. Fig. 1).

(li) PG phase (I Jo I
~J): Here W 1, and the transt-

tion temperature is not aff'ected by the actual value of Jp
as long as I Jol ~ J. The solution for W 1 represents
the PG freezing temperature Ts/J as a function of Q/J.

Ave/j

FIG. 1. Reduced transition temperature T$VlJ plotted vs

tunne1ini frequency QW/J for several values of the parameter
W fsee Eq. (5)1. T represents T, for 0~ W& 1 and T~ for
W l, respectively.

The critical transverse field is now given by Q, 2J, and
the slope (8Ts/8Q )o has the value s(1) ——,

' . The hne

Ts(Q) separates the paraelectric (PE) from the PG phase
with broken replica symmetry, and is thus analogous to
the de Almeida-Thouless line in spin glasses. 9

We now turn to the concentration and pressure depen-
dence of the transition temperature. We adopt a simple
model for the concentration dependence of the coupling
parameter Jo..

Q(P) -Q(0) aP,
J(P) J(0)[1+yP/J(0) j

(9)

(10)

and, similarly (k A,F)

J,"(P)-J,"(O)[i+ykPIJok(0)1 ' . (»)
If yk & 0, this implies Jo (P) & 0 for all P & 0.

The parameters Q(0), J(0), and Jo(0), as well as the
coefficient a, y, yk, can be determined from the experi-
mental data of Refs. 1 and 2. For the deuterated sample
at x 0.5 and atmospheric pressure (P 1 bar=0) we
set Q 0, 'o and thus Ts, d,„tJ(0) 56.5 K.2 The mea-
sured slope dTs/dP -2 K/kbar is due entirely to the de-
crease in J(P), since (8Ts/8Q)n-o 0 (see Fig. 1).
Thus we find y 2 K/kbar.

Turning next to the undeuterated sample x 0.5, the
decrease of the freezing temperature Ts(P 0) from 56.5
to 17.4 K may be attributed to a nonzero value of the tun-
neling frequency Q, but with the same J(0). The ratio
T /J(0) 0.308 corresponds to Q(0)/J(0) 1.596 via
Eq. (4), thus Q(0) 90.23 K. Finally, a is determined
from the condition that at the critical pressure P, 5 kbar
Q reaches its critical value Q, —= Q(P, ) 2J(P, ), which
with the help of Eqs. (9) and (10) yields a 1.156
K/kbar.

Using these parameters we can calculate from Eq. (4)
(W 1) the pressure dependence of the freezing tempera-
ture Ts(P) in the entire range 0(P &P,. The result
(curve a in Fig. 2) is a quasilinear variation of Ts with P,
in fair agreement with the experimental data of Samara
and Terauchi.

In a similar manner we can analyze the behavior in the
range of concentration where AFE or FE order exists. To
determine Jo(0) in (11) we consider the cases of pure
ADP (x 1) and RDP (x 0). Since J(x,P) 0 in both

where Jo (P) & 0 and Jo (P) & 0 are parameters appropri-
ate to pure ADP and RDP at a given pressure P, and simi-
larly,

J(x,P) 2[x(l —x)) ' 'J(P), (8)

with J(P) characterizing the 50% ADP-RDP system. We
neglect, however, the variation of Q with x, assuming that
the tunneling frequency of protons in RDP is nearly the
same as in ADP. There is, however, a strong isotope effect
on Q if protons are substituted by deuterons, i.e.,
Qa ut&& Qproton o«deut =0.

Following an earlier analysis for the case of pure fer-
roelectrics4 s we assume a linear variation of Qand J, Jo '

with P at low pressures and write
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FIG. 2. Calculated pressure dependence of the transition
temperature for Rb~ —,(NH4) HqPO4. 0:data from Ref. 2.

FIG. 3. Calculated phase diagram for Rb&-~(NH4) H2POQ.
(a) atmospheric pressure (P 0), (b) P 4 kbar, (c) 10 kbar,
(d) deuterated system (P 0), 0: data from Ref. 11;0: Ref.
12.

limits, we can simply solve Eq. (6) with Q known from the
PG case. From known values of Tlv and T, at P 0, we
obtain Jo (0) 165.9 K and J4I(0) 162.4 K. To esti-
mate the coeIIicients yk in (11) we have tried to fit the
measured pressure dependences of T~(P) and T, (P), us-
ing the solutions of Eq. (6) with Q(P) and Jo' (P) as
given by (10) and (11), respectively. A reasonably good
fit could be achieved in the range 0 & P & 15 kbar with

yg 2.568 K/kbar and yp 5.587 K/kbar (curves f and e
in Fig. 2). For P & 15 kbar the calculated Tjy(P) deviates
from the experimental data. Obviously, the one-
parameter approximants (9)-(11)cannot be extrapolated
into the high-pressure region P & 15 kbar.

We can now predict from Eq. (4) the pressure and con-
centration dependence of the transition temperature
T(x,P) for all values of x and P. The results for three
representative cases x 0.2, 0.8, and 0.85 are displayed in

Fig. 2 (curves b, c, and d). The experimental points2 lie
close to the calculated TN(P) at x 0.8. No experiments
are available at present to test our predictions for other
concentrations.

Applying Eqs. (7) and (8) we can evaluate the phase
diagram T vs x for a fixed value of the pressure, which is
shown in Fig. 3. The apparent asymmetry around x 0.5
at P 4 and 10 kbar is due to the large difference between

y~ and yF. There is no PG phase at P 10 kbar since
P )P, (P, 5 kbar at x 0.5). The vertical lines
separating the PG and FE or AFE phases appear as a
consequence of broken replica symmetry in the ordered
phases. The experimental points from the recent reviews
of Courtens" and Hayase, Sakashita, and Terauchi'
seem to support the predicted phase diagram at atmos-
phcnc prcssure.

In Fig. 3 we also show the predicted phase diagram for
the fully deuterated system Rb~- (NHq)„Dzp04 (or

DRADP) at atmospheric pressure (curve d). It should be
noted that the isotope effect in the proton-glass versus
deuteron-glass freezing temperature 7's(x) can be well
described by assuming that in the deuterated system
Q 0, whereas J remains unchanged on deuteration.
Thus it seems that J, which is essentially a measure of the
amount of randomness in the system, is not affected by the
"geometric" isotope effect in the 0-H O bond. "
This effect is responsible, however, for the increase of
Jo (0) and Jf(0) by factors of 1.46 and 1.34, respectively,
which is necessary to account for the huge increase in TN
and T, on deuteration. More experiments on the pressure
and concentration dependence of T, and Ts in mixed
DRADP systems are needed to test these assumptions.

In conclusion, the above analysis provides strong sup-
port to the tunneling model of proton glasses3 and, in a
broader context, the tunneling model of hydrogen-bonded
ferroelectrics. ' A crucial prediction, which seems
confirmed by experiments on RADP at finite temperature,
is the slope of the temperature versus pressure curves.
Within our approach, this slope remains finite at the criti-
cal pressure P, in a mixed system, but diverges in the pure
ADP or RDP case. It has recently been argued'5 that
quantum fluctuations may be important in the PG transi-
tion at low temperatures, giving rise to a shift in Q, and
an infinite slope 8/Ts/8Q as Q Q, . Thus 8Ts/W'may
also eventually become in6nite as P P„&&here Tg ap-
proaches absolute zero. Unfortunately, the existing
data' on Ts(P) have not been obtained at temperatures
low enough to check these predictions. However, further
refinements of the present model are clearly necessary,
and should include the quantum effects, short-range
correlations of the Slater type as well as random-field
effects. '
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