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The vibrational contribution to energy of formation of self-interstitials in fcc metals is investigat-

ed saith the use of the Green s-function method. The vibrational contributions to the energy, entro-

py, and free energy of formation of (100)-split interstitials have been calculated for the case of
copper so as to discuss their temperature dependence. The vibrational contribution to the forma-

tion energy at low temperatures is -0.945 eV. The variation in formation entropy at low' tempera-
tures is found to be more pronounced.

I. INTRODUCTION

The properties of self-interstitial atoms in metals con-
tinue to be interesting. For fcc metals, (100)-split or
"dumbbell" interstitial seems to be the most stable
configuration as obtained by computer simulation' as
mell as diferent experimental studies. ' One of the
most important developments in this field has been the
discovery of low-frequency resonant modes of self-
interstitials. ' ' These resonant modes are instrumen-
tal in explaining many physical properties of irradiated
metals; particularly high interstitial mobility at low tem-
peratures. ' ' In a recent paper we have presented a
Green's-function theory for the formation entropy of de-
fects in metals and applied it for the case of self-
interstitials in copper —where the role of resonant modes
was emphasized. In the present paper, we calculate the
vibrational contribution to formation energy of the self-
interstitials in Cu so as to discuss the temperature depen-
dence of the formation energy. Further, the temperature
dependence of the formation entropy and formation free
energy is also discussed.

An understanding of the properties of self-interstitial
atoms depends upon a knowledge of the thermodynamic
parameters of the point defects: the energies and entro-
pies which control their formation, migration, snd associ-
ation. Calculations of point-defect energies have almost
exclusively been made for the static lattice and any effects
of zero-point motion and thermal vibrations have been ig-
nored. In contrast, the entropies are generally evaluated
in the high-temperature limit. However, experimentally
the defect parameters are usually measured at elevated
temperatures. For example, the experimental measure-
ments of diN'usion coefBcients in metals are usually ana-
lyzed in terms of a defect model in order to determine the
diff'usion mechanism. Quantitative analysis of the data
results in numerical values for the thermodynamic pa-
rameters of the point defects. Though the equilibrium
concentrations of self-interstitisls at high temperatures
are orders of magnitude smaller than the equilibrium va-
cancy concentration, an interstitial contribution to self-
diffusion is possible because of the high mobilities of self-
interstitials, snd the observed curvature in the Arrhenius

plot of the self-diffusion data in many metals including
Cu may not be ascribed to divacancies only. ' In any
case, in order to understand the role of self-interstitials in
difFusion the temperature dependence of the the defect
parameters, i.e., formation energy and entropy, should be
studied snd as such, the evaluation of the temperature-
dependent vibrational part of the formation energy„even
if small, is worthwhile and interesting. Further, in the
present case of self-interstitials, the occurrence of low-
frequency resonance modes is expected to give a
signi6csnt contribution to the thermodynamic quantities
at low temperatures snd consequently a more pro-
nounced temperature effect may be obtained. The aim of
the present work is, therefore, to study the temperature
dependence of thermodynamic parameters of self-
interstitials in Cu. In the calculation we use the results of
dynamics of self-interstitials in Cu discussed in our earlier
works. """

Incidentally, I.eung and Stott have discussed the tem-
perature dependence of properties of vacancies in sodium
and aluminum on the basis of the Gibbs-Bogoliubov vari-
ational principle for the Helmholtz free energy treating
the perfect crystal in the Einstein model as a reference.
The present method uses full phonon spectrum where
change in the density of states is expressed in terms of a
generalized phase shift which can be used for the evalua-
tion of any thermodynamic property of the defect crystal.

In Sec. II, we sketch the necessary theoretical back-
ground where the formula for vibrational contribution to
thermodynamic properties is given. Section III is devot-
ed to the calculation of vibrational formation energy, en-
tropy, and free energy of (100)-dumbbell interstitials in
Cu at different temperatures.

II. THKGRKTICAI. ASPECTS

%hen lattice defects are introduced in a crystal, the
free energy of the crystal is increased. The increase due
to a single point defect is called the Gibbs free energy of
formation, 6, of the defect. The free energy is decom-
posed into an enthalpy term and an entropy term accord-
ing to the thermodynamical relation
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where T is the absolute temperature. Here H, the for-
mation enthalpy, represents the work done when a defect
is created and S is the formation entropy. The enthalpy
term can be expressed as

0 =E +@V

where E and V are formation energy and formation
volume, respectively, and p is the pressure. The term p V"
is negligible at atmospheric pressure as the volume V is
usually of the order of the volume of the unit cell in the
crystal.

In the harmonic approximation, the internal energy of
the crystal may be expressed as the sum of two terms,

the change in density of states is

1 d8( )

6f CO

The determinant D(co) is restricted only to the perturbed
region spanned by the defect and atoms directly a8ected
by it.

The vibrational contribution to the internal energy is
given by

E„;s(T)=g e(co, T),

with

E ( T, V) =E„„„,( V)+E„o,( T), (3) + s ikr
1 1

where E,&„„, is the part of the energy referring to the
static lattice and depends only on crystal volume, and

E„;s is the vibrational part of the energy depending on
temperature only. For the present our concern is the vi-
brational part of the formation energy. As thermo-
dynamic quantities are expressed as averages over the to-
tal frequency spectrum of the crystal, the change in ther-
modynamic parameters is obtained in terms of the
change in frequency spectrum.

The calculation of the change in density of states due
to defects, b,Z(co), has been discussed earlier. ~ The
change for the single defect can be expressed as

where co, are the eigenfrequencies of the lattice and k is
the Boltzmann constant. Introducing the frequency spec-
trum

E„;g= E co, T Z QP N,

the change in energy due to the presence of a single de-
fect, i.e., formation energy is given by

bE„o,= f e(co, T)bZ(co)dco,

bZ(co)= trIm[G(co) —G (co)]

tr Im[ln(D —co ) —ln(D —co )], (4)
1T If'

where G(co)=(D —co )
' is the mass-reduced Green's

function and D is the dynamical matrix of the lattice. In
terms of the usual lattice Green's function G (co)=(P
—M co ) ', b,Z(co) is expressed as

b,Z (co)= —— Im lnD (co)
1

K dco

with D(co) =det
~

G (co)(P Mco ) ~, w—here P (P ) and M
(M ) are the force constant matrix and mass, respective-
ly, of the defect (ideal} crystal. Introducing the general-
ized phase shift as

—ImD (co )8 co =tan
ReD (co )

where bZ(co) is given by Eq. (7). In terms of the phase
shift 8(co) the formation energy is

bE„;& —f e——(co, T) dco .

We break the integral in Eq. (12) into two parts to give

max d8
bE„o,=—f e(co, T) dco

71' 0 dco

+ f e(co, T)bZ(co)dco,
max

(13)

where co,„ is the maximum frequency of the lattice.
Above the niaximum frequency bZ(co} has a 5 function
at the possible localized mode frequencies co& and, there-
fore, the second part is integrated to give gl e(col, T),
while the first part is integrated by parts with the result

dco + 8( ~co)sax( ~cgoyTx) + g E,(col y T)
1

~ r

b,E„;~= — f™x8(co) coth (14)
2% 0

Though one atom from the surface enters the lattice to form the interstitial dumbbell, the number of surface atoms still
remains invariant and there is a loss of energy corresponding to a bulk atom. Making allowance for such a loss of bulk
atoms the vibrational contribution to formation energy is given by

E„&——— f 8(co ) coth
2% 0 2kT

fico
cosech 8Q)

+—8(co,„)e(co,„,T)+ g s(coi, T)—3 f e(co, T)Z„(co)1co,
0

(15)
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where Z„(co}is the frequency spectrum of the ideal lattice normalized to unity.
The vibrational contribution to formation entropy is found to be

2

S„;b——— max 8(~ )
cosech dru+ —8(co,„)o(co,„,T)+ g o (co, , T) 3—k o(co, T)Z„(co)dao,

Lo 1 msx

0 QP 2kT

(16}

where

o(co T)= —ln(1 —e "r)
flu kTflu/kT

It may be noted that the important quantity in the deter-
mination of the vibrational contribution to formation en-
ergy and entropy is the phase shift 8(co) which contains
the relevant dynamics of the defect crystal.

An alternative formulation using local representation
of the total frequency spectrum can be employed to
evaluate the change in thermodynamical quantities.
The total spectrum of the lattice can be expressed as the
sum of the local frequency spectra of all the atoms in the
lattice

Z (a) ) = g Z,™(co),
m, i

where

negligible contribution comes from the eigenfrequencies
of the perfect lattice ' and therefore, expressions (20)
and (21) are especially suitable for the limiting cases of
the low and high temperatures. For example, at very low
temperatures

e(a), T)~, k T ((irido
fuu

2
' (22)

and only zero-point motion of the atoms contributes to
the energy; as a consequence, low-temperature, E„,b is
dominated by the localized mode frequencies and contri-
butions of low-frequency modes are not important. Of
course with increasing temperatures the resonant mode
contribution should be significant as a result of thermal
vibrations. In the high-temperature limit the contribu-
tions of both the terms in Eq. (20) are of the order of 3kT
and EyIb is vanishingly smal l.

III. ( 100}-SPLITINTERSTITIAL IN CU

Z; (co)= ImG;; (co)
2NM

is the local frequency spectrum of the atom rn; G, , (co)
being the same site Green's function. Thus in terms of
the local frequency spectrum of the defect, the energy
and entropy of formation can be expressed as

Eb= Z CO —Z N E NT N, (20)

S„;b= Z co —Z co 0 N, T dQ), 21
0

where Z" (Z } is the local frequency spectrum of the de-
fect atom (a host atom). For the present case of dumbbell
interstitials, the local spectrum of the defect is described
by the resonant and localized modes alone and almost

fl ——8. 14f )), fi = —0.66f ((,
(23)

The vibration of ( 100}-split interstitials has been dis-
cussed in some detail previously. ' The defect is de-
scribed by an assumed vacancy at the origin and two in-
terstitials at (0,0,+d}, where 2d =0.5a is the distance be-
tween the dumbbell atoms; a is the lattice constant. A
nearest-neighbor defect model with central and noncen-
tral force constants between dumbbell atoms (f~~~,fi), be-
tween a dumbbell atom and its nearest neighbors (Fi,Fj ),
and zero force between the assumed vacancy and neigh-
bors has been employed. The force constants to be used
in the calculation are those obtained by Zeller in com-
puter simulation:

TABLE I. Temperature dependence of energy, entropy, and free energy of formation of self-
intersiitials in Cu.

5
25

100
200
400
600
800

1000
1200
1355

E„;b (eV)

0.0386
0.0402
0.0451
0.0425
0.0294
0.0164
0.0112
0.0086
0.0069
0.0059
0.0053

S„;b/k

0.0070
1.1374
2.6259
2.2872
1.2162
0.6613
0.5371
0.4921
0.4711
0.4598
0.4543

2.2075
2.2091
2.2140
2.2114
2.1983
2.1853
2.1801
2.1775
2.1758
2.1748
2.1742

3.0070
4.1374
5.6259
5.2872
4.2162
3.6613
3.5371
3.4921
3.4711
3.4598
3.4543

2.2062
2.2002
2.1&25
2.1659
2.1257
2.0592
1.9973
1.9369
1.8768
1.8172
1.7710
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where f
~~

is the nearest-neighbor central force constant in

the ideal lattice. In the calculation of the lattice Green's
functions a modi6ed Gilat-Raubenheimer method was
followed. The necessary phonon data were obtained from
a sixth-neighbor axially symmetric model based on neu-
tron scattering measurements of the dispersion curve.
After using the force constants given in Eq. (23) and the
lattice Green s functions, the phase shift e(to) is obtained.
The phase shift is a continuous function of co except for
the jump discontinuities at the localized mode frequen-
cies. A similar strong but continuous increase occurs at
resonant frequencies. There are seven localized modes in
addition to three well-known resonant modes of Es, A2„
and E„symmetry occurring at 1.1, 1.6, and 2.3 THz, re-
spectively. '

Utilizing phase shift and the density of states of the
ideal lattice, the vibrational contribution to the formation
energy and formation entropy are easily calculated. To
obtain the total energy and entropy of formation, one has
to add the volume-dependent part to the respective vibra-
tional parts. For formation entropy the volume contribu-
tion (image term) has already been evaluated and is equal
to 3.0k. As regards the formation energy, extensive
calculations using computer simulation have been carried
out. ' ' The typical values for fcc metals are 3-4
eV. In a recent elastic calculation Kornblit has ob-
tained a value 2.1680 eV for the formation energy for Cu.
~e have used this value of E,& „,to obtain the total for-
mation energy. This choice seems to be in line with the

re]Imported
experimental value 2.2 eV. ' The choice of

E',~„„,has no special significance because our interest for
the present is the temperature dependence of E . The
values of formation energy and entropy, along with their
vibrational parts, are presented in Table I for a number of
temperatures below the melting point (1356 K). The
table also contains the free energy of formation
=E'—TS'.

It is observed that the free energy of formation hI'
varies more or less linearly with temperature —de-

creasing with rising temperature. As expected, the vibra-
tional energy and entropy of formation decreases with in-
creasing temperature, attaining constant values at high
temperatures, except at low temperatures where they ini-
tially increase giving maximum values at 65 K. The low-
temperature variation is more pronounced in the case of
formation entropy. The behavior of formation entropy is
well understood if we keep in mind the fact that at low
temperatures only low-frequency vibrational modes are
effective so that the occurrence of low-lying resonant
modes of self-interstitials leads to signi6cant contribution
to S„;b. Evidently, while discussing the point-defect
properties, the temperature dependence of thermodynam-
ic parameters must be taken into account, especially at
low temperatures. Thus, for instance, in the evaluation
of the possible contribution of self-interstitials to self-
difFusion in metals at low temperatures, the used parame-
ters E and S~ ought to be temperature dependent. As a
matter of fact, with a maximum value of 0.045 eV for
E„;b at 65 K and corresponding formation entropy 5.62k,

—(E b
—TES)IkT —3a correction factor, e "" (=2.782X10 ),

with bS =S (T) S is in—troduced in the difFusion con-
stant D e(s +s )Ik~ -(E +E )AT. Em and $' are ener-

1

gy and entropy of migration. Consequently, Di should
be 2-3 orders of magnitude smaller than the estimated
value using temperature-independent E and S . How-
ever, it must be remarked that this has no immediate
practical importance for the present case of copper, since
the measurements are generally at higher temperatures
where the vibrational effects are inconsequential for the
formation energy.
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