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The momentum distribution, p(p), in vanadium has been reconstructed from two-dimensional
(20) angular correlation of positron-annihilation radiation (ACPAR) data sets n (p„p~). Recon-
struction has been performed by using an expansion in terms of cubic harmonics on experimental as
well as theoretical data sets n (p„,p„)for four orientations in V. The effect of statistical errors pro-
pagated during the reconstruction is also estimated. The results for p(p) reconstructed from experi-
ment are compared with those from theory by examining radial plots of the momentum distribu-
tion, 20 surfaces and their contour plots in various (p„,p~) planes. A satisfactory agreement is ob-
served in the general structure shown by the experimental and theoretical distributions and the ob-
served structure is analyzed in terms of contributions from different sheets of Fermi surface (FS) of
V. The ratio of XP/NH of the semiaxes of the ¹entered ellipsoidal hole FS sheet in V has been
determined to be 1.36 from 20 ACPAR experiment, and this value agrees well with the ratio found

by other experimental techniques. Present results show that a wealth of information about p(p) can
be reconstructed from n "(p„,p„)measured for a limited number of orientations.

I. INTRODUCTION

and

(p, ) f f p(p)dp„dp (1D data)

(p„,p~) = f p(p)dp„(2D data) (2)

where n "(p, ) and n "(p„ps)are the ACPAR data sets
and 8 represents the rotation of the sample with respect
to the laboratory frame which determines the orientation
of the sample as well as the axes in the integrals (1) and
(2) above. Thus R labels the data uniquely.

The problem of reconstructing the full three-
dimensional distribution, p(p), from a set of 1D data
n "(p, ) or 2D data n (p„,p» ) is mathematically

Recently developed experimental techniques for the
measurement of two-dimensional (2D) angular correla-
tion of positron-annihilation radiation (ACPAR) have
made it possible to study the two-photon momentum dis-
tributions (TPMD's) and Fermi surfaces (FS's) of metals
and alloys in greater detail than before. ' The results of
2D ACPAR measurements have been compared with re-
sults of solid-state theory by using difFerent approaches,
including the reconstruction of the Fermi surface directly
from the data. The central problem in the analysis of
1D and 2D ACPAR data is how to extract the TPMD,
p(p), from the measured data

equivalent to the problem of tomographic analysis en-
countered in other fields of science. Attempts to recon-
struct p(p) by using tomographic techniques developed in
other fields present some difFiculties because the algo-
rithms involved in these techniques require acquisition of
ACPAR data for several orientations, R, of the sample.
Normal counting rates in the ACPAR experiments are
such that one acquires data sets, n, for only a few direc-
tions, typically two or three, and at the most 6ve or six.
The problem of reconstruction of the momentum distri-
butions from measured 1D ACPAR or 1D Compton
profile (CP) data has been reviewed by Mijnarends7 and
his method, based on Fourier-Hankel transforms, has
been applied to 1D ACPAR and CP data sets from
several solids. Another approach based on the Fourier
transform of 1D CP data has been proposed by Mueller,
Hansen, ' and Hauser-HofFman and Weyrich. " Whereas
the reconstruction scheme due to Mijnarends is operatiye
in the momentum (p) space, the latter schemes involve
calculations in the position (r) space. Since all these
methods make use of 1D data sets, their successful appli-
cation, in practice, requires collection of data sets along
several crystalline directions to ensure satisfactory con-
vergence.

On the other hand, the two-dimensional nature of the
data, n "(p„,p~), obtained with the modern 2D ACPAR
machines, overs rich information for each orientation, R,
of the sample. Earlier, Majumdar' and Howells and
Osmon' had proposed schemes operative in momentum
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space to reconstruct TPMD, p(p), from n (P„,p»), but
their methods have not been applied in practice to real
data. Recently, standard "61tered back-projection" tech-
niques have been used to reconstruct p(p) from n "(P„,P» )

data sets for Cu (Ref. 14) and Gd, ' but these studies have
required special sample orientations to take advantage of
crystalline symmetry and several data directions to ob-
tain good quality of results. Application of Cormack*s'
method involving series expansion in polar Fourier form
have also been used' ' for reconstructing p(p), but
these schemes also suff'er from the same problem of limi-
tation to special planes or directions and necessity to col-
lect data along many directions.

Recently, Pecora has proposed a method to recon-
struct p(p) using spherical harmonics and it can be de-
scribed as the Fourier (or position-space) version of previ-
ous methods' ' employed in the momentum space or as
a 2D extension of Hansen's method'o'" for 1D data sets.
We present here the results of the reconstruction of
TPMD in metallic V from experimental as well as
theoretical 2D ACPAR data sets, n (P„,p ), along four
orientations [p„the integration axis in Eq. (2)] by using
Pecora's method. A preliminary report of this work
has been published elsewhere. '

The choice of vanadium as a test case for applying the
present method of reconstruction was based on several
considerations. First, the band structure, FS, and TPMD
in a transition metal like V having partially filled 3d
states are comphcated and challenging enough to provide
a severe test of any reconstruction scheme. Secondly, the
TPMD in V has been calculated using band-structure
theory and the results have been analyzed in terms of
electronic band structure and FS topology. Lastly, and
most importantly, 2D ACPAR data for V have been mea-
sured with good enough momentum resolution and
counting statistics to ofFer reliable data for attempting a
reconstruction of the TPMD.

The plan of the present paper is as follows. In Sec. II
we present a brief outline of the formalism of the present
scheme of reconstruction. Some details of the present
calculation are provided in Sec. III. The results of the
present work are described and discussed in Sec. IV and
the conclusions are summarized in Sec. V to show that
the present scheme is successful in reconstructing TPMD
from the 2D ACPAR data and that it can be extended to
obtain valuable information about the FS topology in V.

A detailed account of the present method for
the reconstruction of a full TPMD, p(p), from the 2D
ACPAR data sets, n (P„P), is given elsewhere and we
present here only a brief outline for the sake of complete-
ness. We start with the assumption that the TPMD (p}
can be expanded in terms of spherical harmonics, "'

p(p)= +pi (p)&i (8»,P»),

where p =
i p i, (8,$ ) are the polar angles of p, and

p& (P) are the expansion coefficients which are treated as
unknowns in the present scheme. To exploit advantages

of working in the position (r) space one can expand
o(r}, the Fourier transform of p(p), in terms of spherical
harmonics and ~rite

o(r)=V—3[p(p)]= +~i (r)I'I (8.4'»

where r =
~

r ~, (8,$) are the polar angles of r, and 0 I (r)
are the unknown coefficients (in the position space) which
have to be determined during the reconstruction. By us-
ing the well-known Hankel transform one can write

i
pi (p)=, f ji(pr)ai (r)» «

0

where jI's are the spherical Bessel functions. It is clear
that if one can obtain 0 I (r) from the experimental data
sets, n "(P„,p» ), one can determine p& (P) and then recon-
struct the full TPMD, p(p}, through Eq. (3).

Determination of oI (r) is carried out by following
procedure. In the first stage we take a 2D Fourier trans-
form, o "(x,y), of the 2D ACPAR data sets by writing

g~(x,y)= J dp„I dp n "(p„,p )exp[ i(xp—„+yp»)].

Next we invoke the well-known "central slice" theorem
which states that o "(x,y}, the Fourier transform of the
data n "(p„,p ), is equal to o(r) on planes in position (r)
space which go through the origin (r=0) and are orient-
ed such that their normal is obtained from the original z
axis by rotating by R. This is achieved by expanding
cr(r} in spherical harmonics whose polar angles are mea-
sured relative to the rotated system (x,y, z}. Such a rota-
tion from a coordinate system (g, f,g) attached to the
sample to that in the laboratory system (x,y, z) can be
performed by using the well-known D~ ~ (R) coefficients7
so that

0(r}= g D' ~ (R)YI (O', P')o'i (r),
l, m', m

where the expansion coefficients D' ~ (R) depend on the
Euler angles of the rotation R and YI (O', P') are the
spherical harmonics in the (x,y, z}system.

Since the information cr"(x,y) in Eq. (6) is available in
the xy plane, we can set z =0 (i.e., 8'=90'} in Eq. (7}and
take the Fourier polar transform with respect to exp(ij P'}
of both sides of the equation. This serves to find the jth
polar Fourier coeScient of the expression. This opera-
tion is possible for the left-hand side because the values
are known from the Fourier transform of the data, while
the right-hand side can be computed because the spheri-
cal harmonics can be expressed in terms of the associated
Legendre polynomials and an exponential term:

F& (m. l2, $') =P& (0) exp(im'P') .
It has been shown elsewhere that these steps lead to the
following system of linear equations involving cr& (r),

cri"(r)= QDJ' (R)PJ (0)o, (r),
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where P& (0}are the normalized associated I.egendre po-
lynomials and a"(r-) are the polar Fourier coefficients of
0 ~(x,y) obtained from the n "(p„,p ) with the help of Eq.
(6). The above system of Eq. (8) can be solved for cr& (r)
by choosing a cutofF' value j =I,„.

The above procedure was tested by using data sets gen-
erated from a model with cubic symmetry and consisting
of spheres and these results are reported elsewhere.
These model calculations have shown that in many casesI,„can be quite large, allowing the solution of
coefficients p& (p) for l values of the order of 20—40, even

though data sets are available only for a few (2-5) direc-
tions. Our results for V presented in Sec. IV support this
conclusion. It has been pointed out" that high / and m
in P& and a large number of terms in Eq. (3) are desir-
able for reconstruction based on high-angular-resolution
data.

In the case of reconstruction of p(p) which is invariant
under the operations of some point group it is enough to
substitute the harmonics associated with the symmetry
group in the foregoing equations. For cubic symmetry,
as in the case of V, we can write

P(P)= QPk(P)+k(e

where Ek (ep, p ) are the cubic harmonics2 such that

+k(~p 0p ) g ~k, l Yl (ep 0p ) (10)

and the coeflicients 3k& are chosen so that the Ek
remain invariant under the operation of the proper sym-
metry point group. This procedure has the advantage of
eliminating any Y& which does not have the proper sym-
metry and thus enables one to reduce the dimension of
the matrix involved while retaining a large I,„value.
The remaining equations follow directly from Eqs. {4),
(5), (7), and (8) with o k replacing cr& and another sum-
mation variable, k, being added to all sums. In this latter
case I depends on k.

III. CALCULATIONS

In this section we give some details of the calculations
involved in the present reconstruction using the formal-
ism described in the preceding section. In order to exam-
ine the reliability of the present reconstruction scheme
and to make a proper comparison between experiment
and theory we generated theoretical data sets, n (p„,p ),
from theoretical band-structure calculations and put
them through our reconstruction scheme. In addition,
we have compared the reconstructed TPMD, p(p), with
that calculated theoretically (but not subjected to recon-
struction).

A. 20 ACPAR for V used for reconstruction

Experimental data sets n "(p„,pp) used in the present
reconstruction were collected at a temperature of 4.2 K
with a high-resolution (0.041 X 0.068 a.u. ) a paratus us-
ing two high-density proportional chambers and single
crystals of metallic V. Data sets were measured for four

crystal orientations having the p, (or the integration axis)
along [110],[100],[111],and [112]directions and consist-
ed of about 6&10 total counts for each orientation.
Treatment of the samples and their lifetime measure-
ments showed that the samples were almost free from de-
fects. Details of these measurements and treatment of
data are described elsewhere.

Theoretical data sets, n (p„,pp), for the above four
orientations were generated by using Eq. (2) in which the
TPMD, p(p), was obtained from our previous band-
structure calculations 3 [in the independent-particle mod-
el (IPM}] for metallic V. Theoretical results of the band
structure, FS, and TPMD obtained in these calculations
have already been reported in detail earlier. A critical
comparison of these theoretical results, including that for
n "(p, ) and n "(p„,p ), with other theoretical and experi-
mental results has already shown that although the
theoretical p(p) has been calculated by using the fast ap-
proximation scheme of Hubbardz and Mijnarends, 2 it
provides a satisfactory basis to compare experiment with
theory. It should be pointed out that the theoretical p(p)
and n "(p„,pp ) calculated from it and used in the present
work did not include contributions from the core
(1s) (2s) (2p) (3s)z(3p) electrons, and nor were any
corrections for the e -e and e+-e many-body correla-
tions (so-called enhancement efFects) applied. It has al-
ready been shown~3 that the contribution from the core
electrons is already small and that it has to be reduced by
a factor a=0.2-0.3 to obtain a satisfactory agreement
between experiment and theory. The theoretical 2D AC-
PAR curves, n "(p„,pp ), were convoluted with the angu-
lar resolution of the apparatus before subjecting them to
ihe reconstruction procedure.

B. VVorking details of the reconstruction calculations

The cubic symmetry versions given in Eqs. (9) and (10)
were used to solve for pk(p), the coefficient of the kth cu-
bic harmonic for both the experimental data and the
theoretically generated data (hereinafter called theoreti-
cal data}. It is necessary to invert a matrix when solving
Eq. (8). The numerical stability of this matrix inversion
(as in many other problems involving matrix inversion)
depends on the dimension of the matrix, the instability
usually increasing with the dimensions due to computer
round-off' error, as well as the existence of small eigenval-
ues of the matrix. The dimension above which the matrix
cannot be inverted on a computer (64-bit double pre-
cision) determines the upper bound for the cutoff', k,„.

It has been shown that Eq. (8) generates a particular-
ly stable matrix for many situations which can be invert-
ed up to large dimensions. In the present reconstruction
calculations using data sets, n {p„,p ), for four orienta-
tions of V we were able to solve for pk(p) for k,„=40.
However, we found that the structure of the reconstruct-
ed p(p) did not change significantly when terms with
k ~ 25 were included in the expansion. In view of this re-
sult, we limited to k to k,„=25in all the reconstruction
calculations presented here. This corresponds to a max-
imum value of I =30 and an angular resolution of 6'.

The reconstruction of the experimental data was
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smoothed by modulating the solutions in the position
space by a Gaussian window" which was equivalent to
convoluting the data with a 2D Gaussian in momentum
space having a full width at half maximum (FWHM) of
0.04 a.u. (0.3 mrad) ln each direction. This smoothing
did not change the reconstruction sigaiN[cantly, except for
p & 0.3 a.u., where it helped to suppress the usual fluctua-
tions present in the reconstructions near the origin. Al-
though these fluctuations were small in our case we felt
that in view of the estimated error (see below) they dis-
torted the real structure present. Combining the above
convolution with the experimental resolution gives a radi-
al resolution about 0.053 a.u. (or 0.4 mrad).

The reconstruction of the theoretical p(p) from the
theoretical data was handled in the same way, except in
this case we smoothed the reconstruction with a Gauss-
ian of FWHM equal to 0.069 a.u. (0.5 mrad) to obtain a
better matching with the reconstruction of experimental
data. Our tests showed that inclusion of TPMD due to
core electrons made little difference in the TPMD recon-
structed from experiment and theory.

In order to estimate the propagation of statistical er-
rors in the data by the present reconstruction scheme we
generated random log-normal-distribution error data ar-
rays consistent with the number of counts in each data
projection. We put several such sets through the recon-
struction programs. The statistical errors in the resulting
reconstructions showed a strongly isotropic distribution
in momentum space. We, therefore, calculated a spheri-
cal average of the square of the error at several radial dis-
tances. The square root of this average is plotted in Fig.
1 as a function of radial (momentum p} distance. The
umts of the error (ordinates in Fig. 1) are the same as the
units in all subsequent plots of the p(p} values to be

5.0

4.0

3.0

2.0

0.0
0.0 1.0 2.0 3.0

P (3.0.)

FIG. 1. Statistical error (hp} expected in the present recon-
struction scheme as a function of momentum (see text). The
units of hp are the same as that of p(p} in the subsequent plots
shown in Figs. 2-5.

presented in Sec. IV and thus allow a direct comparison
of the absolute error expected in reconstruction of the ex-
perimental data with the size of the structure present at
each radial distance.

IV. RESULTS OF THE RECONSTRUCTIGNS
AND THEIR MSCUSSIGN

As mentioned in Sec. III the results of our theoretical
calculation of electron band structure, positron wave
function, FS topology and TPMD, p(p), for V have been
described in previous reports. Our present results for
reconstructed p(p) can be better understood in terms of
the three different sheets of FS for V: (i) second-band oc-
tahedral hole surface centered at I ["I -centered, octahe-
dral" (GCO)], (ii) third-band distorted ellipsoidal hole
surface centered at N ["N-centered, ellipsoidal" (NCE)],
and (iii} third-band multiply connected "jungle-gym"
arms along the (100) directions ["jungle-gym arms"
(JGA's)], where GCO, NCE, and JGA are the labels by
which we shall refer to these FS's in our discussion.

Presentation of our results for reconstructed p(p) and
their comparison is made in different ways. In this dis-
cussion we shall refer to three types of distribution for V:
(i) p, (p), theoretically calculated (but not reconstructed)
TPMD due to band electrons, (ii} p (p), TPMD recon-
structed from the experimental 2D ACPAR data sets,
n "(p„,p~), and (iii) p„(p), TPMD reconstructed from
theoretical 2D ACPAR data sets.

Present results for TPMD are shown in Figs. 2—11 in
terms of radial plots, 2D surfaces, and contour plots.
Comparisons of p (p) and p„(p}versus p along the three
symmetry directions ( 100), ( 110), and ( 111) are
shown in Figs. 2-4, respectively, along with the statistical
error caused by the reconstruction procedure. Also
shown in the inset of Figs. 2-4 are the relevant electronic
bands which contribute to p, (p) in the first two Brillouin
zones (BZ's) along that p direction and the plot of p, (p)
itself. The bandwise contributions to the electron
momentum distribution (i.e., for Compton scattering) in
V have been analyzed by Kanhere and Singru s and a
similar analysis for the TPMD has been reported previ-
ously.

Before we discuss the special features observed in Figs.
2-4, some comments on the general trends shown by
p (p) and p„,(p) are in order First, t. he radial plots of
the reconstructed TPMD in Figs. 2-4 show an oscillatory
structure in the region p ~0.5 a.u. where the statistical
error expected due to the reconstruction process is al-
ready high. These oscillations are ascribed to the propa-
gation of correlated noise in the reconstruction. Second-
ly, we observe that although the experimental and
theoretical curves in Figs. 2—6, 8, and 10 show similar
structures, the theoretical curves display sharper struc-
tures. Similar behavior was observed for p (p) and
p„(p)reconstructed for Cu (Refs. 1 and 14) from the 2D
ACPAR data. This is an effect which appears to show up
in aB comparisons of the reconstruction of the experi-
mental TPMD of V versus reconstructions of the theoret-
ical TPMD. Certainly, this might suggest a simple
discrepancy between experiment and theory; that is, the
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theoretical structures may be larger than they should be.
However, in the following detailed discussion of the re-
sults we also consider some other possibilities: the
many-body correlation effects and the experimental reso-
lution. In particular, much of the structure in the TPMD
of V results from the d bands. There is some suggestion
that, as a result of many-body interactions, in some tran-
sition metals the contribution of d states to the TPMD is
deenhanced relative to the s and p states, whose contri-
butions are usually enhanced, especially near the Fermi
level. &e note that this mechanism may be in operation
here, causing much of the structure to appear smaller
than its band-theory counterpart, although this has not
been. examined in detail. Since the main aim of the
present work is to demonstrate the applicability of the
reconstruction algorithm described in Sec. II to 2D AC-
PAR data sets measured for a limited number of orienta-
tions, we have not attempted a detailed treatment of
many-body correlation e8'ects.

Examination of the distributions shown in Fig. 2 indi-
cate that p, (p), shown in the inset, does not possess much
structure along the [100]direction in the first and second
BZ's and this behavior is confirmed by p (p) as well as

p„,(p). However, a slight bulge is observed in p, (p) just
beyond the point 0 in the second BZ. This feature
is reproduced by p (p) and p„(p) in the range

p =1.25 —1.34 a.u. with the position of the bulge in

p„,(p) occurring at a slightly lower (-4%) p value when
compared to p„(p). We ascribe this discrepancy to the
difkrence in the lattice parameter a.

It should be noted that our theoretical calculations
were based on the crystal potential for V as calculated by
Moruzzi et al. , who have used the value of a =5.54
a.u. corresponding to zero pressure. In order to maintain
an internal consistency with their crystal potential we de-
cided to work with the same value, a =5.54 a.u. , in our
calculation of p, (p), although the experimental value was
found to be 3.4% higher (i.e., a =5.72620.006 a.u.). In
the earlier reports, our theoretical results obtained for
the energy bandwidths and semiaxes of NCE (FS sheet) in
V using a =5.54 a.u. have been compared with other
theoretical and experimental results to demonstrate satis-
factory agreement. The effect of the lattice parameter on
TPMD was checked by comparing our results for p, (p)
for V with those obtained by Singh and Jarlborg, ~' who
made a self-consistent calculation of p, (p) in V for
a =5.726 a.u. using the linear muIn-tin-orbital method
of band structure. This comparison has shown that a
3.4% change in the lattice parameter causes a lateral
shift in the position (p values) of the structure in the
p, (p), but the amplitude, shape, and the peak-to-valley
ratios in these curves are not afFected significantly. The

ORY

100)

0 .OGS

O.OO& &

0 .008

0 .MR
0

0
4

4
0

0

0 g, i I t I i I

0 Q.2 0.4 Q, e

~+ + se g ~ ~ ~i I t 5~~t+ 4~+A~ X a-4 ~1
0.8 l.O 1.2 k. 4 L.S L.I 2.0 2.2 2.4 2.8 2.8

FIG. 2. Reconstructed TPMD p„(p}(sohd curve) and p„,(p) (dashed curve) along the [100]direction in V (see text}. The dotted
curve indicates the statistical error generated during the reconstruction. The inset shows the relevant band structure E(k) vs k and a
plot of p, (p) along ( 100) (see text).



MOMENTUM DENSITY OF VANADIUM: A RECONSTRUCTION. . .

s ) 5 f I

THEORY

V: f1)0'j

Q.008 ~

Q.907-

Q .nna

Q .nba

Q aQQ"f ed
perirnent

Q.me- constructed
Theory

Q.oo&-

r ~
g. t I t I t I t t ~ I I I ~ l&~g I ~ l t

0 Q.2 Q 4 Q.I Q 8 10 12 l 4 ES L I 20 22 24

p (a.u.)
FIG. 3. Same as Fig. 2, but for the [110]direction.

2.6 2.e

THKORY

V' t,'1l&)

Q.oev '-

Q .AAA

Q sas p%

Q.~-
C$

0

Q.m-

Q O
s f s I s I s l s I j I I I II I lhasa I

O Q.2 Q4 Q I Q. 10 12 k4 k5 I. I 26 22 24 28 2$

p (a.u.)
FIG. 4. Same as Fig. 2, but for the [111]direction.



6778 PECORA, EHRI.ICH, MANUEI. , SINGH, PETER, AND SINGRU

O~~!~wllrlsrr ~ lsrrssrr r s l I s I s l s r r r $ r r r r 3 1 I T T l r I I r 3

0 aogi%-

O. OOf2-

0.44LQ

0, QQQS

0 .nrmg

O . QGG2 p

0«0 a~as la sa sl as a ~ la assi ss ss ls ss sl ss as ls I
I

s s a s s s s a s s l s s s-' s ——

-2.25 2.25

p (parallel to t:010) 1.34 a.u. from origin) (a.u.)
FIG. 5. Reconstructed TPMD p„,(p) (sobd curve) and p„,(p) (dashed curve) alon a line (a ong a tne p) parallel to [010] and displaced from

op gis pa icu ar p one is the dashed line in the Brillouin-z
a e structure observed in both the curvcurves js occurring mainly in the second and third BZ.

Prew. Px»y)

PO

2

III IIS) I'I I I I I I ~ I I I I I I I I I I I I I I I
l

I I I I I I I I I
t

I I I I I I !

v (oo~)

-2

r&00] ~
Px
(a.u. )

Pt~Px»y~ [010]

Theory

-2

[100]~
Px

(a.u.)

Py (a.u. )
i110] [030]

FIG. 6. The TPMD surfaces I,(p„,p } and (

text) in the (
r x*py an p~ pxspy) (see

p„,p )=(Ool) plane passing through I at p, =O.
The particular ( ) 1p„,py) p ane is shown in the inset at the top
right comer.

GCO

Ill I I I I I i Ill I II II I lit ill I lll I I I I I l l l i I I I

-2 0 1

Py (a.u. )

llllllllll

FIG. 7.. Contour plot ofp„(p„,py ) shown in Fig. 6 in the par-
ticular (p„,py ) plane. The labels NCE, JGA, and GCO indicate
the effect of the particular sheets of FS of V on the structure ob-
served.



37 MOMENTUM DENSITY OF VANADIUM: A RECONSTRUCTION. . .

Pqc(Px P

V (00&)

Prc~Px PX~

I

v (oo~)
(displaced

aiong [Oot])

Experiment ~ 1'I'0 III,

px

(a.u

xPy

Theory

Py (a.u.) Theory

y (a.u.)

(au.)
2

-2
&y (a.u.

-2

Q Py (a.u.)
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lateral shifts observed between the structures displayed
by p„,(p) and p„(p}curves in Figs. 3 and 4 can thus be
attributed to the difFerence between the theoretical and
experimental value of a.

The radial plots of p, (p) along the [110] direction
shown in Fig. 3 show very interesting structure which

FIG. 10. Same as Fig. 6, but for a (p„,p~ ) =(001) plane situ-
ated at p, =2tr/o along the [001]direction.

arises from the dipping of the second X& band below the
Fermi level (E =EF ) by a few (10-15) mRy between I
and N. The occupied part of this second Xt band (see in-
set of Fig. 3} gives rise to "spikes" in the p, (p) curve at

p =0.45 a.u. and through the umkla images at p =1.1

and 2.0 a.u. as explained elsewhere. 2 ' In the literature,
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FIG. 9. Contour plot ofp„,(p„,p~ ) shown in Fig. 8 in the par-
ticular (p„,p» ) plane.

FIG. 11. Contour plot ofp„{p)in a plane lying in the HPHP
plane (centered at N) on the face of the Srst BZ. This particular
plane is indicated in the inset of the 6gure. The NP and NH
axes are also indicated in the Sgure.
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there exists speculation about the existence of narrow
necks connecting the JGA and NCE FS sheets in V along
the (110) directions. Such necks will appear if the
second X& band lies above E =EF aB along the X direc-
tion and as a result the spikelike structure in p, (p) should
be noticeably absent in V along the [110]direction. The
fact that the p (p) plot in Fig. 3 shows a prominent peak
at p —1.1 a.u. is a strong indication that the second X,
band dips below the Fermi level and that there is no neck
along I N in the FS of V. The structure observed in the

p„(p) and p„(p)curves (Fig. 3) in the region Ji = l.0-1.2
a.u. reveals two marked dUFcrences. First, there is a la-

teral shift in the positions of this peak which is attributed
to the difFerence in the lattice parameter as pointed out
earlier. Secondly, the peak in p„(p)appears more prom-
inent and has a higher "peak-to-valley" ratio compared
to p„(p). This observed difFerence between the ampli-

tudes of the p (p) and p„(p)curves could arise from a
slight azimuthal misahgnment of the sample during mea-
surement. The procedures used permit us to align the
sample within 21 degree and we estimate that this error
is not suScient to explain the observation. As explained
earlier, a 3.4% change in the lattice parameter did not
change the amplitudes in p, (p) distributions signifi-

cantly. ' %'e, therefore, feel that the signi6cant
difFerences in the amplitude and peak-to-valley ratios ob-
served in Fig. 3 need some other explanation.

Three possibilities can be suggested to explain the ob-
served behavior. One is that present theory has overes-
timated the lateral size (p values} of the drop of the
second X, band below E =EF in the E(k)-versus-k rela-
tion along the X axis. A second possibility is that the
present theory has underestimated the contribution of the
first Slled X, band in the region of the valley observed in
Fig. 3. Another possibility is that the relative e+-e
many-body corrections (i.e., enhancement factors) for the
first and second X, bands are diS'erent with the partial
contributions to p(p) by the second X, band, which has a
3d character and is closer to E =Ez, getting deenhanced
Recently Singh et al. have found evidence in Ni for
such a deenhancement of p(p) for 3d bands near E =EF
and they have proposed a partial enhancement factor
s, (y) for each l state. Although an energy-dependent
enhancement in 3d metals has been suggested earlier,
the possibility that the enhancement factor for d states is
lower than s or Jl states needs to be further investigated in
detail for transition metals in general and for the present
experimental data for V in particular.

The plot of theoretical TPMD, p, (p), along the [111]
direction shows a sharp discontinuity at about p =1.55
a.u. (scc iilsct of Fig. 4) arising Gilt of thc closslIlg of thc
A, band (JGA) with the Fermi level along I' (=PH).
This is manifested in the reconstructed curves, p„(p)and

p„(p),in the form of a shoulder (Fig. 4) in the region

p =1.3—1.5 a.u. , with the experimental curve showing a
smoother structure. Once again the ~eaker character of
this structure shown by p„,(p) could be caused by the
deenhancement of the A& band, which has 3d character
near EF.

In Figs. 2—4 we have shown the radial behavior of the

reconstructed TPMD in p space. In order to examine the
tangential resolution of the reconstruction of the TPMD
we show in Fig. 5 plots of p (p) and p„(p)along a line
parallel to [010]but located at a distance of p = l.34 a.u.
from the origin in the (001) plane in p space. The gross
features (viz. , central peak, shoulders with steep dechne,
side peaks, etc.) observed in the experimental and
theoretical curves match surprisingly well. As noticed
previously, the structure in the theoretical curve appears
exaggerated. Results shown in Fig. 5 indicate that the
tangential resolution in the present reconstruction calcu-
lation at the radial distances in Fig. 5 is of the order of
0.15 a.u. (or 1.0 mrad} which matches well the 6' angular
resolution mentioned earlier.

The results presented in Figs. 2-5 inspire us with a
confidence that the present reconstruction scheme can
reproduce structural details in the TPMD well within the
expected statistical error and the radial and tangential
resolutions. We shall now proceed to present our results
in the form of 2D surfaces p {p„,li„)in some interesting
planes and compare them with the corresponding
theoretical (without reconstruction) surfaces p, (p„,p~).
As a typical illustration of the wealth of information pro
vided by the reconstructed surfaces, p~(p„,p~), we have
chosen three (p„,ll~) planes passing through I (p, =0),
I H/2 (p, =m /a), and H (p, =2m'/a); that is, (001) planes
translated along [001].

A comparison of the experimental and theoretical sur-
faces of TPMD in the {001)plane passing through p, =0
is shown in Fig. 6, where the relevant plane in the first
BZ is shown in the inset. Examination of Fig. 6 shows
that several structures observed in the theoretical sur-
faces are well reproduced by the reconstructed surface,

p„,(Jl„ll„),although with less sharpness. One prominent
structure observed in Fig. 6 is the presence of hollows
along (110) which arise from the NCE sheets of the FS
as conSrmed by the values ofp, and p„atwhich they are
observed. Another important structure observed in Fig.
6 is the steep decline in the second BZ and it is ascribed
to the GCO and JGA hole sheets centered at I' which cut
along the (110) directions in the plane of Fig. 6. The
efFects of these three sheets of FS of V are brought out
more prominently in Fig. 7 where we have shown a con-
tour plot of the p~(p~, pz ) surface of Fig. 6 in the relevant

(p„,p„)plane. The regions where the diFerent sheets of
FS manifest themselves are marked by their labels (viz. ,
NCE, GCO, and JGA).

Plots of p, (p„,p„)and p (p„,pz) in the (001) plane
which is displaced along p, =[001] by an amount m/a
from the origin are compared in Fig. . 8. In this plane the
NCE's are positioned along the (100) directions and
their presence is confirmed by the deep hollow structures
observed in p„(ll„,p~ ) along (100) and centered around
0.55 a.u. The presence of JGA is indicated by the hollow
structures observed around 1.0 a.u. along (100) and
around 1.4 a.u. along (110). A contour plot of this

p (p„,p~) surface (Fig. 8) is shown in Fig. 9 and these
contours bring out the effects of FS topology more clear-
ly.

In order to examine the TPMD reconstructed in a
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plane further removed from the origin, we have com-
pared in Fig. 10 the two surfaces p, (p„,p„)and p (p„,p )

in a (001) plane, which is displaced along p, ([001])by an
amount 2m/a from the origin. These surfaces are lying in
the second BZ and hence their amplitudes are expected to
be small. Nevertheless, the general magnitude of
p„,(p„,p» ) is in good agreement with the overall clover-
leaf-shaped structure seen in p, (p„,p») (Fig. 10). Exam-
ination of the FS topology reveals that the depression ob-
served around the origin, p„=p=0, in the p, (p„,p ) sur-
face arises out of the JGA's cutting through this (p„,p»)
plane. It is interesting to observe that corresponding
depression is not seen in the p~(p„,p») surface around
the origin. The absence of the depression may be caused
by the deenhancement of the surrounding p(p) values
since these result from the third band which is strongly of
d character. Further studies are required to determine
whether this is in fact the case.

The technique of 2D ACPAR measurements is capable
of calipering the FS sheets in metals and this has been il-
lustrated by applying the Lock-Crips-West theorem to
fold the n "(p„r»») data from p space to k space. This has
already been accomplished for V. ' We feel that the

p (p) data reconstruction in the present work can be
similarly folded back into the first BZ to obtain p (k)
which can lead to a determination of the FS or occupa-
tion number of electrons in k space. ' Our previous
work 3 has shown that the analysis of 2D ACPAR curves
in p space itself can bring out interesting details of the FS
of V. In order to demonstrate the usefulness of the
reconstructed TPMD for mapping the FS topology we
obtained p (p) in a plane lying in the HPHP plane cen-
tered at N of the first BZ. A contour plot of p (p) in this
plane is shown in Fig. 11 where the relevant plane, sym-
metry points, and directions are shown in the inset. This
plane is ideally suited to bring out the cross section of the
NCE in the HPN plane. In addition, this plane is normal
to the radial direction out from the origin and any distor-
tion arising out of the slope of p(p) should be small. The
shape of the contours in Fig. 11 clearly bring out the el-
liptical cross section of the NCE. Although the contours
do not allow an absolute measurement of the semiaxes of
NCE along NP and NH, a determination of the ratio
(NP/NH) of the semiaxes is possible. Such an analysis
of Fig. 11 yields a ratio NP/NH =1.36 which compares
satisfactorily (to within 7%) with the ratio of 1.27 deter-
mined experimentally by Phillips (using the technique
of impulsive fields) and Parker and Halloran (using
magnetothermal oscillation technique). It may be point-
ed out that the value NP/NH =1.36 determined by us is
insensitive to the choice of contour used.

In the above we have presented reconstructed p (p)
along four directions and p (p„,p» } in four planes in or-
der to illustrate the usefulness of the present reconstruc-
tion scheme. In principle, one can extend this presenta-

tion of any direction or plane in the momentum space to
examine the efFect of the diferent sheets of FS on the
TPMD. The reconstruction of TPMD from 2D ACPAR
data sets is thus capable of bringing out rich details of
TPMD (and therefore of the wave functions of electrons
and positron} and FS in metals.

Recently it has been shown that the Fourier transform
of TPMD, 8 "(r), provides a sensitive and useful quanti-
ty to compare experiment with theory. ' We wish to
point out that our reconstruction procedure leads to a
calculation of 8»(r) at an intermediate stage and al-
though we have not presented these results here, we feel
that such a possibility is another advantage of the present
scheme of reconstructing TPMD.

V. CONCLUSIONS

The results presented in the preceding section show
that a wealth of qualitative as well as quantitative infor-
mation about the TPMD, p(p}, in 3d transition metals
can be derived satisfactorily by applying the present
reconstruction scheme to experimental 2D ACPAR data.
It has been shown that the dimensions of the FS sheets
can be determined by suitable analysis of the reconstruct-
ed TPMD. The results of the reconstruction are under-
stood better if one applies the reconstruction method
both to experimental data and theoretically generated
data and compares the results with the theoretical
TPMD. Our analysis also illustrates how the results of
reconstruction can be understood in terms of the elec-
tronic band structure and FS topology in spite of the ap-
proximate nature of our band-structure calculations. Us-
ing a more accurate method of calculating TPMD and in-
clusion of e -e many-body correlations and combining
such theory with a reconstruction method can lead us to
a better understanding of the process of positron annihi-
lation in metals. The results of reconstruction can be ex-
tended to obtain 82r(r} and p(k) and the latter can lead
to determination of FS dimensions.

As far as the success of the reconstruction method is
concerned, the present results show that for 3d metals
with cubic structure it is possible to reach l „=20-25in
Eq. (3} using data sets, n "(p„,p ), for four p, directions.
Further work is necessary to determine which particular
orientations should be chosen in a 2D ACPAR experi-
ment so that high-quality reconstruction can be achieved
from a limited set of data sets n "(p„,J»» ).
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