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Optics of multilayered conducting systems: Normal modes of periodic suIerlattices
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%'e develop a 4&4 transfer-matrix formalism in order to study, within the hydrodynamic model

of electron dynamics, the optics of multilayered conducting heterostructures, taking into account
retardation and the coupling between transverse and longitudinal waves at the conductor boun-

daries. The dispersion relation of the electromagnetic normal modes of an in5nite periodic superlat-
tice is calculated in the retarded and the nonretarded regimes, yielding a very rich structure, as a
consequence of several propagation mechanisms which are discussed in detail. The dependence of
the results on the set of additional boundary conditions imposed at the surfaces is also examined.

I. INTRODUCTION

The electromagnetic normal modes of multilayered
heterostructures have received considerable attention
lately. Most of it has been directed towards semiconduc-
tor heterostructures, for which the charge carriers of one
or more of its layers may constitute a quasi-two-
dimensional electron or hole gas. The bulk modes arising
from the coupling among the two-dimensional (2D}
plasmons' of each 2D conductor have been investigated
for periodic2 superlattices, as well as the surface plasmons
for truncated superlattices and localization elFects for
aperiodic structures. 4' The effects of the possible excita-
tion between a few size-quantized, low-lying electronic
energy levels have also been considered. Qualitatively
difFerent heterostructures are obtained by heavily doping
the semiconductor layers or by replacing them altogeth-
er with metallic ones. Each conducting layer thus ob-
tained can sustain collective modes such as surface and
bulk plasmons, which yield a very rich structure for the
normal modes of the composite system, whose study is
the subject of this paper.

The bulk and surface modes of conductor-insulator
and conductor conducto-r inffnite and semi-infinite
periodic superlattices were 6rst obtained using a local
model for the conducting layers in the nonretarded, and
later in the retarded, ' regimes. The effects of spatial
dispersion were introduced later" within an eff'ective-
medium approximation' using a perturbative formula-
tion. ' In order to take into account the propagation of
bulk plasmons within one or more of the layers, a hydro-
dynamic model has been solved disregarding retardation
to obtain the dispersion relation and the electron
energy-loss spectra' for in6nite superlattices. Very re-
cently, the modes of a single conducting layer within an
in6nite conductor werc also calculated within a hydro-
dynamic model including retardation effects. '

In some of the hydrodynamic calculations above, the
6elds within any one layer were expressed as a superposi-
tion of the 6elds produced by all the other layers in the
system, leading to integro-difkrential equations which
were solved taking advantage of the simple geometries
chosen. The generalization of the methods of solution

employed to other layered geometries does not seem im-
mediate. In other calculations, the fields within each lay-
er were expressed as a superposition of plane waves, and
boundary conditions were imposed at each interface. The
size of the system of equations thus obtained seems to
grow with the number of difFerent layers in the system.

On the other hand, the fields at an arbitrary position
within a layered system are completely determined if
enough field components are specified at any fixed refer-
ence position. Therefore, the propagation of waves
through this kind of system is best studied by introducing
the transfer matrix which relates the fields at difFerent po-
sitions. Clearly, the transfer across several layers is ac-
complished simply by multiplying the transfer matrices
corresponding to each of them. Transfer-matrix formal-
isms are used routinely in the design of ojytical 6lters'
and for the interpretation of seismic data. They have
also been employed successfully in calculating the resis-
tance of disordered conductors' and in predicting the ex-
istence of critical plasmons in quasiperiodic semiconduc-
tor superlatticcs.

In a previous paper, wc have developed a 2 X 2
transfer-matrix formalism for conductor-insulator super-
lattices. ' ' The results were later generalized to
conductor-conductor superlattices by assuming that
plasrnons were con6ned within the low-density conduc-
tors. The purpose of this paper is thc construction of an
exact transfer-matrix formalism appropriate for conduct-
ing multilayered systems within hydrodynamic models,
introducing no extra assumptions. Thus our formalism
can be used in the retarded as well as in the nonretarded
regimes, and it takes into account the propagation of
plasma waves in each layer, their coupling to p-polarized
transverse waves at each interface, and their transmission
into adjacent layers. Other nonlocal efFects may be incor-
porated later using perturbative approaches. ' Since hy-
drodynarnic models have usually been formulated for
homogeneous systems and there is no accord yet over
which are the nonelectromagnetic boundary conditions
obeyed by the 6elds, our results are written in a way
which is independent of the boundary conditions, so that
a comparison between the predictions of different models
of conductor boundaries can be performed within the
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same formalism.
As a Srst application of our formalism, we obtain

analytical expressions for the dispersion relation of the
electromagnetic normal modes pertaining to an infinite
periodic superlattice built from two alternating conduc-
tors. %e also investigate the elects of retardation and of
the choice of boundary conditions. A profusion of modes
is obtained, several of which have not been reported be-
fore, and their composition is described in detail.

The paper is organized as follows: In Sec. II, we con-
struct the transfer matrix for a single conducting layer,
from which that of any heterostructure can be obtained
by simple multiplication. We also obtain analytically the
normal modes of the periodic superlattice. In Sec. III, we
present and discuss the results of calculations for a highly
doped semiconductor superlattice, and we devote Sec. IV
to conclusions.

II. THEORY

In this section, we develop a transfer-matrix formahsm
which permits the calculation of the optical properties of
multilayered conducting heterostructures within the hy-
drodynamic model. For concreteness, we consider the
superlattice shown in Fig. 1 consisting of alternating lay-
ers of conductors a and b stacked along the Z direction.
In order to obtain the transfer matrix of the system, we
start by constructing the transfer matrix of one conduct-
ing layer, following a procedure similar to the one dis-
cussed in Ref. 20.

A. Trlefllfer matrix of one layer

In a given layer there are two p-polarized waves mov-

ing towards the right and left with wave vectors

q+ ——(Q, O, kq T},such that

N
(q T)2 eT(~) Q2

2

There are also two longitudinal waves with wave vectors
g={Q,O, +q ), obeying

e {q+,ro)=0 .

Here,

is its spatially dispersive longitudinal dielectric function,
P(co) is the local contribution from the interband transi-
tions to its dielectric response, ~~ is the plasma frequency
of its conduction-electron gas, r is a phenomenological
damping constant, and P is its stifFness constant. Transla-
tional invariance along the X-F plane and in time allows
us to consider only waves with the same wave-vector pro-
jection unto the X-I'plane (Q, O) and a given frequency co.

Most quantities above, such as q, e, e", etc., depend on
which layer, a or b, is being considered; this dependence
is implied throughout the present subsection in order to
simplify our notation.

Since there are four waves in each layer for each co and

Q, the fields anywhere inside the layer can be determined
from any four independent components at one point. It
is convenient to choose components which are continu-
ous at the layers' boundaries. Electromagnetic theory
implies the continuity of E„and 8„, the components of
the electric and magnetic acids parallel to the surface. 26

The identity of the other two independent continuous
field components cannot be determined from electromag-
netic theory alone, and it is the object of the much-
debated additional-boundary-condition (or ABC) contro-
versy. z i Different ABC's correspond to difFerent as-
sumptions about the microscopic response of the conduc-
tor near its surface. However, we have found that
several well-known ABC's can be expressed as the con-
tinuity of pj, and of 4mivp, where j, is the normal to the
surface component of the conduction current density, p is
the charge-density fluctuation induced in the electron
gas, and p and v are constant parameters within each lay-
er. We will refer to the choices @= 1, v =P /co~ as model
I, )u=l/co~, v=P as model II, and @=1, v=1 as
model III."

Having chosen the four independent field quantities
E„(z),8~(z), pj,(z) and 4mivp(z), we proceed to find how
they are related at diferent points inside a layer. This is
most simply done by writing them in terms of the right-
and left-moving contributions to the magnetic field,
8+(z) and 8 (z), and to the scalar potentials P+(z) and

(z) in the Coulomb gauge:

Cthe

e (c0)=P(co)—
CO +iCO/7

is the local transverse dielectric function of the layer,

By

PJz

4+i vp

(4)
~here

g C

E 6)

1

„TQc
6 67

T QC
LPq 0'

—ivy [Q +(q ) ] ivy [Q +(q") —]



37 OPTICS OF MULTILAYERED CONDUCTING SYSTEMS:

(b} (b)
By By

=M1
Wz PA

4m' nght 4&7 vp Jcft

The transfer matrix M1 can be written in blocks as

—I —1

~1 ~LT ~LL—1 —1

where

CT [(ZT)2ST—grT PrLSL)
~TT sr CT

L J

S i(C —C )
MTL=1.WL

o —sr

(14a)

(14b)

FIG. 1. Superlattice made up by alternating two conducting
layers a and b. The wave vectors of the two transverse and the
two longitudinal waves in each layer, and their common parallel
projection are displayed. The coordinate system employed is
also shown. and

S i(C"—C )
M =iS'

o —s'

c' i [(z")'s'—w'w's']
iSL CL

(14c)

(14d)

and

cr =(e e)co—/4',
Here we have introduced the following definitions:

(15a)

o =(e e)co/4—ni

are the transverse and longitudinal conduction-electron
conductivities. Notice that e"=0 in Eq. (8) since it is to
be evaluated at the plasmon wave vector.

Since 8+ (z) and 8 (z) are transverse, and P+(z) and
(z) are longitudinal waves propagating along the Z

direction with wave vectors q, —q, q, and —q" re-
spectively, they are related at different points z and z'
through

8
=T(z —z')

L L
ZL Iq O

e'v[Q'+ {q')'1
(15b)

is the corresponding surface impedance
ZL=pj ~/(4rrivp) for a longitudinal wave propagating
with wave vector q;

W = —pa
6' N

(15c)

is the magnetic field-electric current response 8'
—=pj, /8 for a transverse wave, and

is the surface impedance Z =E, /8» —for a transverse
plane wave traveling towards the right with wave vector

, and

[g2+( L)2j
(15d)

T(z —z')=diag[e'i ' '' e

is the corresponding density —electric field responseW:E„"/(4ni vp) f—or a longitudinal wave; finally,

iq (z —z'} —sq "{z—z')q

and diag( . . } is a diagonal matrix constructor. Finally,
Eqs. (5) and (9) lead to the 4)&4 transfer matrix of one
layer of width d,

M, =G T(d)G

C:—cos(q d ),
C:—cos{q d ),
S —=sin(q d)/Z

SL =sin(q "d ) /Z

(15e)

(15g)

(15h)

which relates the fields at its right boundary to those at
its left boundary through

contain the information about the layer's width. Our
definitions (15a)—(15d) of the four impedance functions,
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Z, Z", 8', and 8', are understandable if we regard 8
as the transverse response and p as the longitudinal
response to the exciting fields E and j,. We are not
aware of previous attempts to de6ne a longitudinal sur-
face impedance Z", so we remark that it plays, for longi-
tudinal waves, a role similar to that played by the usual
transverse surface impedance Z in classical optics.
Furthermore, notice that the set of Eqs. (14) is invariant
under the simultaneous interchange of the indices T and
I.on both their right- and left-hand sides.

Notice that since we chose continuous Seld quantities
in Eq. (12), we need not worry anymore about the bound-
ary conditions, and the transfer matrix for a multilayered
system is simply given by the product of the transfer ma-
trices of its constituents. However, the transfer matrices
themselves depend on the choice of ABC's through the
parameters p and v as shown by Eqs. (13)-(15).

8. Bulk normal modes of a periodic suIN:rlattice

a2 ——[Tr(M) —Tr(M )]/2 . (21b)

After substituting Eqs. (13)-(15)in Eqs. (16) and (21), and
performing a quite tedious algebra in order to condense
the resulting -10 terms, we obtain

and

a,= —2(L+T}+K(S."ST+STSb")

a2 ——2+4LT+E S,S,"Sb Sb

—2K [(C, Sb +S, Cb )( C, Sb +S,"Cb )

(STSL +STSL
)]

(22a}

which is only quadratic in cos(pd) and can be solved
analytically for p in terms of the coeScients

a3 ———Tr(M )

In order to calculate the dispersion relation of the bulk
modes of the superlattice, we Srst calculate the transfer
matrix M for a complete period A. s discussed above, the
latter can be written simply as

M =Mba'

T=C, Cb [(Z, )—+ ( Zb ) ]S,Sb /2,
CLCL [(ZL}2+(ZL}2]SLSL/2

(23a)

(23b)

where M~' and MI are the transfer matrices of layers a
and b respectively, and are obtained from Eqs. (1)-(15)
simply by appending the indices a or b to all the layer-
dependent quantities such as Z", Z, 8', etc.

The periodicity of the superlattice implies that the nor-
mal modes of the system can be obtained as Bloch waves
such that

B

JMjg

4&l vP g+d

=e'&

4771 Vp g

where d =d, +db is the superlattice period and p is
81och's wave vector. Therefore, the dispersion relation

p =p(ra) of the bulk normal modes is given implicitly by

det(M —e'~ 1)=0, (18)

that is, e'~" should be an eigenvalue of M. %e write the
characteristic polynormal in A=e'+, p(A) =
det(M —Al), as

P(A)=A (A +a3A+a2+a&/A+ao/A ) . (19)

Now we remark that if p is a solution of Eq. (18)
representing, for instance, a Bloch wave traveling to-
wards the right, then —p is also a solution and it
represents the same wave but traveling towards the left.
Therefore, if A is a zero of P(A), so is 1/A. From Eq.
(19) we see that we should have ao= 1 and a, =a3, and
therefore the fourth-order equation in e'+, Eq. (18), can
be written simply as

4cos (pd)+2a3cos(pd)+a2 —2=0,

K=(W, —W )(W,"—W ) . (23c)

%'e remark that in the absence of spatial dispersion,
the normal modes of the system are given by pure trans-
verse waves in each layer, coupled at their interfaces by
the electromagnetic boundary conditions. These modes
obey the dispersion relation cos(pd)=T. 2 In a similar
fashion, cos(pd)=L is the dispersion relation of normal
modes made up of pure longitudinal waves coupled at
the interfaces in order to obey the additional boundary
conditions. In the limit K~0, Eq. (20) factors as
4[cos(pd) —T][cos(pd) —L]=0, so that each one of the
two normal modes discussed above propagates unafFected
by the presence of the other. Thus we may regard I( as a
measure of the coupling between transverse and longitu-
dinal modes. Notice that K is proportional to Q and
that it vanishes for propagation along the superlattice.
We also point out that for any value of K, Eq. (20) has
two pairs +p of solutions which evolve continuously from
the pure transverse and the pure longitudinal modes at
K =O. This solution survives even in the nonretarded re-
gime, attained simply by replacing q, and qb with iQ in
Eqs. (15). Thus we have twice as many solutions than
found by previous workers. ' ' ' The relative impor-
tance of the two sets of modes, and the possibility of
neglecting one of them in difFerent situations, is an im-
portant question which wi11 be addressed in the future.

Other limiting situations can be easily explored. The
local limit of the dispersion relations is obtained by let-
ting the imaginary part of q, and qb go to inf]jnity, so
that the charge density gets con5ned to the interfaces. In
this case, transverse and longitudinal modes also become
uncoupled, although the latter's wave vector diverges and
we are left only with the same dispersion relation as ob-
tained by classical optics. The limiting case of a local-



OPTICS OF MULTILAYERED CONDUCTING SYSTEMS:

nonlocal superlattice should be investigated with some
care, as it can be attained in two nonequivalent ways.
We can either let co& ~0 and pb ~0 in order to obtain a
conductor-insulator superlattice, or we can neglect the
stiS'ness pb while retaining a finite value for co in order
to get a local-nonlocal conductor superlattice. Both of
these cases have been studied before using a specific
ABC. A rich spectrum of normal modes, consisting of
guided bulk plasmons, surface plasmons, guided and/or
extended transverse waves, all coupled among them-
selves, was found. Here we remark that similar results
are obtained at the conductor-insulator limit when we use
the ABC's referred to above as models I and III, and also
at the local-nonlocal conductor limit when we use model
III. However, in the remaining situations, there is no
transverse longitudinal coupbng, i.e., the normal modes
of the local-nonlocal superlattice behave as though no
plasma waves were present in the spatially dispersive lay-
ers.

III. RESULTS

In the present section, we use Eqs. (20}—(23) in order to
calculate the dispersion relation of the electromagnetic
normal modes of highly doped semiconductor superlat-
tices. The results for metallic superlattices are qualita-
tively similar. In order to compare our results with pre-
vious works, we choose the same parameters as in Refs.
22 and 14: the widths of the layers are taken to be
d, = 100 A and db ——5d„ the free-carrier densities
n, =2.33&(10' cm and nb ——2n„we ignore the contri-
bution of the bound electrons to the response, e =1, and
we assume a very large electronic relaxation time
~=10 /co~. The plasma frequencies and stifFness con-
stants are obtained from

3%2
(co )~=4nn e /m and P = z(3Ir n )

where e and m are the electronic charge and mass, re-
spectively, and the index a can take the values a or b.

Since Eq. (20) is quadratic in cos(pd), there are two
solutions for each frequency. These were sorted out ac-
cording to the imaginary part of the Bloch's wave vector
p. In Fig. 2 we show the real and the imaginary parts of
the dispersion relation p =p'+i@" versus co of the so1u-
tion with the smallest imaginary part, obtained for a axed
value of Q =0.5/d, and using the ABC's we referred to
before as model III. Several kinds of.modes can be
identified in this figure.

First, there are modes corresponding to surface
plasmons (SP's) propagating along each conductor-
conductor interface. The nonzero overlap of their elec-
tric field at each layer gives origin to two bulk bands.
These two SP-SP bands have been discussed before for
local-local and loca1-nonlocal conducting superlat-
tices. * ' It is interesting to note that they are modified
slightly by spatial dispersion.

Next, there are bands corresponding to guided
plasmons (GP's) in the low-density layers —in this case,
the a layers —coupled among themselves by the evanes-
cent mostly transverse (ET) waves they induce in the

&.5
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I
I
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I
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I I I

0.2 0.4

d, Re (p)

1.2

FIG. 2. Dispersion relation p =p'+p" vs ~ of the small p"
modes obtained within model III for a superlattice made up of
two alternating conductors a and b with d, =100 A, db ——5d„
n, =2.33)&10', nb ——2n„e =1, and ~=10 /co~. The parallel
wave vector is taken to be Q=0.5/d, y~co/c, so retardation
efFects are unimportant. The results were obtained using model
III. The SP-SP modes, the index n of the GP-ET modes, and
the boundary of the Brillouin zone (BZ) are indicated.

high-density b layers. Their frequencies lie around the
single-film longitudinal resonance frequencies co„given
by

aP„=( &ni) +p, [Q +(nn/d, ) ], n=1,2, . . . , (24)

but they are shifted towards lower frequencies. The ori-
gin of this shift is the Snite decay length of longitudinal
waves in the b layers, which leads to some plasmon spill-
over from a layers. Since the decay length increases with
ni„, so does the frequency shift. Notice that the modes la-
beled with even n have a shorter bandwidth than those
with odd n, since their corresponding plasmons produce a
smaller field in the b layers. For the same reason, the
imaginary part of their wave vector is larger.

Finally, above oib=1.4oi~ bulk propagating plasmons
(PP s) exist in both kinds of layers, giving rise to an al-
most longitudinal PP-PP mode whose dispersion relation
has a series of gaps at the center and the edges of the
Brillouin zone due to the periodicity of the system. '

Comparing Fig. 2 with Fig. 1 of Ref. 22, we find the
same SP-SP and similar GP-ET bands. However, the
latter appear shifted since in Ref. 22 the b layers were as-
sumed local and therefore the e8'ects of plasmon spillover
were excluded. The position and widths of the bands we
obtained also correspond closely to those shown in Figs.
1 and 2 of Ref. 14, since retardation is unimportant given
the large value of Q we have chosen. Although the mode
n =1 is missing from the results of Ref. 14, our Fig. 2
shows that it has a small decay distance 1/p" so it is of
small account. A mode similar to the almost longitudinal
PP-PP mode above ~~ has been obtained recently' by
neglecting completely all transverse fields.

In Fig. 3 we show the dispersion relation p versus ~ of
the second solution of Eq. (20), that with the larger p",
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FIG. 3. Dispersion relation p vs co of the large p" modes cor-
responding to the same parameters as in Fig. 2. The index n of
the GP-EP modes is indicated.

FIG. 4. Dispersion relation p vs co of the small p" modes for
a small parallel wave vector Q=SX10 /d, -co/c, so that re-
tardation e8'ects are important. All other parameters are as in
Fig. 2. The index m of some PT-GP modes is also indicated.

n)' = I(co )~~13b[Q +(meld~)i]I'/i . (25)

Finally, above the critical frequency both kinds of layers
become transparent to longitudinal and transverse ~aves.
The dispersion relation shown in Fig. 4 follows closely
that of transverse waves (PT-PT) in a local superlattice,
but with sharp structures due to longitudinal resonances.

using the same parameters as in Fig. 2. A series of ex-
tremely narrow bands can be seen around the longitudi-
nal resonance frequencies co„. Therefore there are two
bulk modes, those shown in Fig. 2 and those in Fig. 3,
corresponding to each guided plasmon in the a layers.
The reason for this multiplicity is that below oi~ there are
two mechanisms coupling adjacent a layers: the evanes-
cent transverse (ET) waves and the evanescent plasmons
(EP) in the b layers. Since the latter have a much smaller
decay length than the former, they generate a smaller
coupling and hence they produce the flatter GF-EP
bands. These modes are absent from Ref. 22 where the
evanescent longitudinal waves at the b layers were
neglected. Neither were they reported in Ref. 14. How-
ever, they correspond to the low-frequency modes ob-
tained in Ref. 15.

In order to investigate the effects of retardation, in Fig.
4 we have plotted the dispersion relation of the long-
decay-length modes of the same superlattice as in Figs. 2
and 3, but for a small parallel wave vector
Q =5 X 10 "/d, . At frequencies below c0 we find again
two SP-SP and the odd-numbered GP-ET modes. The
even-numbered ones cannot be seen in this 6gure since
the weak GP-ET coupling is further reduced when Q is
decreased. Between co and the critical frequency
co, =[(co )~+(Qc) ]'/ =1 51co~, lo.ngitudinal waves can
propagate in the b layers but transverse waves cannot.
Therefore, we find a series of modes (PT-GP} consisting
of odd-numbered guided plasmons in the b layers coupled
by the almost constant propagating transverse (PT) waves
in the a layers, with frequencies very close to

2.0

1.8 Qd, = 5x10

&p

I

I

BZ~
1
}

I

1.0
0,0 0.2 0.4

d, Re (p) d, Im(p)

FIG. 5. Dispersion relation p vs co of the large p" modes for
Q=SX10 /d, . A11 other parameters are as in Fig. 2.

In Fig. 5 we show the short-decay-length modes corre-
sponding to the same parameters as in Fig. 4. Below co~

we And GP-EP modes similar to those shown in Fig. 3.
Above co we obtain the mostly longitudinal PP-PP mode
that appeared previously in Fig. 2. Notice that Q is so
large in Figs. 2 and 3 that a propagating PT-PT mode
cannot exist, so its decay length is much smaller than
that of the PL-PL mode. This situation is reversed in
Figs. 4 and 5.

%e also investigated how our results are modi6ed by
difFerent choices of ABC. To that effect, we repeated the
calculations above but using models I and II instead of
model III. The results for model II corresponding to
those in Figs. 4 and 5 are shown in Figs. 6 and 7, respec-
tively. Notice that the SP-SP bands displayed in Fig. 6
are almost indistinguishable from those present in Fig. 4
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2,0

1.8

1,2- n=$

Qd, = 5xlO

The results obtained within model I differ much less
from model III than those of model II, and so they are
not shown. The reason for this is that whereas p and v
are constants in model III, in model I p is constant and v
is proportional to n '~ and therefore it has a small vari-
ation of only about 25% between consecutive layers. On
the other hand, p and v change in model II by 60% and
100%, respectively, in going from one layer to the next.
The main difFerences we found in model I consist of a
small decrease in the frequency of the guided plasmon
modes and a diminished coupling between the even-
numbered and transverse ~aves.

SP
) 0 F

0.0 0.2 0.4

dcRe (p)

I I I

10 15

~O'd, Im (p)

FIG. 6. Dispersion relation p vs co of the small p" modes cal-
culated within model II. All other parameters are as in Fig. 4.

2.0

&.8
ado =5x10

QJ 1.6-
Mp

&,2—

1.0
0.0

fl=P
A=I
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0,2
I

0A

d, Re (p)
4 8

d, lm(p)

FIG. 7. Dispersion relation p vs ~ of the large p" modes cal-
culated within model II. All other parameters are as in Fig. 2.

since they are almost unafFected by spatial dispersion and
therefore they are not infiuenced by the ABC' s. On the
other hand, the GP-ET bands are noticeably shifted to
higher frequencies since, in model II, the plasmon spill-
over is considerably diminished. The n =5 mode almost
overlaps the upper SP-SP band, and it actually does when

Q increases. Between co~ and co, we Snd PT-GP propaga-
tion at the same frequencies in both figures, but the bands
in Fig. 6 are narrower due to a decreased L-T coupling.
Recall that this coupling vanishes in model II in the limit
when one of the conductors becomes local. In fact this
coupling is so weak that the plasmon-originated structure
in the PT-PT mode above co, all but disappears. The
GP-EP bands appearing in Fig. 7 are displaced towards
higher frequencies, such as those in Fig. 6, while the PP-
PP mode above co closely resembles that in Fig. 5, except
for the distribution of gap widths and the heights of the
peaks ofp".

IV. CONCI. USIONS

In this paper we have developed a transfer-matrix for-
malism in order to study within hydrodynamic models
the optics of spatially dispersive conducting layered
media, taking into account the coupling between p-
polarized transverse waves and longitudinal waves at
each interface.

In order to allow for the presence of longitudinal
waves, we have introduced 4X4 transfer matrices instead
of the usual 2X2 matrices that appear in classical op-
tics. ' They are not unlike the 4X4 matrices that show
up in elasticity theory. ' In order to make our formalism
suitable for diFerent models of the conductor-conductor
interface, we expressed the transfer matrix in terms of the
two parameters p and v that de6ne the set of additional
boundary conditions chosen. Thus we can turn from one
hydrodynamic model to another simply by adjusting p
and v without modifying our formulas.

We applied the transfer-matrix formalism to the calcu-
lation of the bulk electromagnetic normal modes of an
in5nite periodic superlattice made up of two alternating
homogeneous conductors. A quadratic equation for
cos(pd) was found from which two sets, p and —p, of
Bloch's wave vectors can be obtained analytically for
each frequency ro and each value of the parallel wave vec-
tor Q. We remark that besides the period d of the super-
lattice, there are two very dissimilar length scales in our
problem: the decay length (or the wavelength) of trans-
verse and longitudinal waves. Since the transfer matrices
have terms which are exponential functions of these dis-
tances, they are highly unbalanced, and a straightforward
numerical calculation of the dispersion relation is bound
to fail due to numerical instabilities and accumulation of
rounding errors. Thus it is advantageous to have analyti-
cal results available. They also permitted us to explore
several limiting cases, such as the uncoupling of trans-
verse and longitudinal waves, the conductor-insulator su-
perlattice, and the local-nonlocal conducting superlattice.

The reason we obtained two modes at each co and Q
can be easily understood by erst considering the limit in
which both conductors are identical. In this case the su-
perlattice becomes homogeneous and it has two kinds of
normal modes which are the usual transverse and longi-
tudinal waves. However, their dispersion relation is fold-
ed back at the Brillouin-zone boundary p =m. /d due to
the artifIIcial periodicity d. Now, as we allow the two
conductors to become diFerent, the periodicity d acquires
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a physical meaning, gaps open at the Brillouin-zone
center and boundary, and the modes couple among them-
selves whenever their dispersion relations approach each
other, but the existence of two sets of solutions remains.

%e have identi6ed a very rich spectrum of normal
modes for the superlattice. First, we found two bands
(SP-SP) corI'espolldlllg to surface plas111011s p1'opagat111g

along each interface and coupled together through the
tails of their evanescent 5elds. These bands also appear
in local systems and they are slightly modi5ed by spatial
dispersion. Then there are modes made up of guided
plasmons in the low-density layers, that is, propagating
longitudinal waves re8ected back and forth at the boun-
daries of the a layers such that their wavelength fits ap-
proximately a half-integer number of times in layer's
width. The guided plasmons of neighbor a layers interact
either through the longitudinal or through the transverse
evanescent fields they induce in the high-density b layers,
thus giving origin to two kinds of bulk modes, GP-ET
and GP-Ep. At higher frequencies we detected bands
made up of resonant guided plasmons in the b layers cou-
pled together through propagating transverse waves at
the a layers (PT-GP). Finally, we found modes mainly
made up from either transverse or longitudinal waves
propagating in both kinds of layers (PT-PT and PP-PP).
Modes coming from guided transverse waves were not
obtained since the layers we considered were too thin.

Our formalism can be used in the retarded and the
nonretarded regions. %'e have found a richer spectrum
in the retarded region due to the possibility of transverse
wave propagation. We have also explored the di8'erences
between several models of conductor interfaces. The
main discrepancies obtained were in the frequencies of
the guided plasmon modes due to the differences in
plasmon spillover, and in the bandwidth of those modes
involving both transverse and longitudinal waves due to
di5'erences in their coupling strength. The possible obser-
vation of the multitude of modes we obtained through
their interaction with external probes, such as incident
hght or charged particles, will be the object of future
research. More realistic models of conducting superlat-
tices, taking into account electron-hole excitations, quan-
tum electronic interference effects at surfaces, and size
eFects, should also be investigated.
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