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Atom scattering from surface Einstein modes
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We consider the scattering of thermal-energy atoms by a surface with a dilute coverage of adsor-
bates having a dispersionless Einstein vibrational mode. %'e show that the diffuse elastic scattered
intensity has a Debye-%aller-type thermal attenuation only at low temperatures, and at large tem-

peratures the attenuation saturates to a much weaker form. Similar thermal attenuation behavior
occurs for the difFuse inelastic intensities. For an ordered adsorbate layer there is also a dift'use elas-
tic intensity which increases with temperature at small temperatures.

I. INTRODUCTION

Experiments using thermal-energy atam scattering
have demonstrated several surface adsorbate systems
which exhibit dispersionless Einstein phonon modes.
These occur in physisorbed systems' involving rare
gases, in chemisorbed systems, and even certain clean
surfaces exhibit mades which are nearly dispersionless. '

The typical experimental configuration is to direct a near-
ly monoenergetic beam towards the surface and then to
carry out a time-of-Sight energy analysis on the scattered
intensity at an angle well away from the specular direc-
tion. The time-of-Sight spectrum often reveals a single
quantum peak as well as multiple quantum peaks for both
annihilation and creation of the Einstein modes.

In this paper we develop the theory for the large-angle
scattering of light atoms by a dilute coverage of adsor-
bates on the surface. We find that for scattering angles
sufficiently far from specular and in the absence of multi-
ple scattering between diFerent adsorbate atoms, the
scattered intensity can be written as the product of a
form factor and a structure factor, similar to many other
types of particle scattering from solids. The major
difference is that the form factor for scattering from indi-
vidual adsorbates must take inta account multiple
scattering and reflection from the substrate surface. For
the case of adsorbates having a dispersionless phonon
band (an Einstein mode), an examination of the structure
factor reveals interesting behavior for the Debye-%aller
factor (or thermal attenuation). For temperatures small
compared to the mode energy the Debye-Wailer factor
appears in standard form for atom-surface scattering but
for higher temperatures the rate of thermal attenuation
strongly decreases. The reason for this decrease is multi-
ple exchange of real quanta, as opposed to virtual quanta.
It is virtual multiphonon events which produce the
Debye-%aller factor, but in the special case of an Ein-
stein mode, real multiple phonon exchange can make a
non-negligible contribution to either the elastic or any of
the inelastic intensity peaks. The net eFect of all real
multiquantum exchanges is in opposition to the virtual
multiphonon exchanges appearing in the Debye-%'aller
factor. Such an eFect is absent if the phonon frequency
distribution function is dispersive.

In the next section we present the theory for the
scattering of a collection of adsorbates on a flat surface
substrate. In Sec. III we evaluate the scattered intensity
for the situation in which the adsorbates vibrate with a
dispersionless phonon frequency, exhibiting in the pro-
cess the Debye-Wailer factor and the corrections due to
real multiphonon exchange. Section IV is a discussion of
the contributions which arise from the vibrational motion
of the surface substrate. In Sec. V we consider some in-
teresting eFects which arise if the adsorbates form an or-
dered or partially ordered layer. Section VI gives a few
concluding remarks.

H =Ho+H'+ V,
where Ho is the unperturbed particle Hamiltonian, H' is
the Hamiltonian of the unperturbed crystal, and V is the
interaction. The measurable quantity is the transition
rate between Snal and initial particle states, which is the
sum of Eq. (1) over all final crystal states I nf I and the
average over initial crystal states

w(kf, k; )= g wft
I nf I

where ( ) signi6es the initial-state average. If we write
the 5 function Eq. (1) as a Fourier transform, and upon
de6ning time-dependent operators in the interaction pic-
ture as

T(t) eiH t/tiTe —iH tlat'
(4)

the sum over 6na1 crystal states becomes trivial and we
have

II. SCATTERING FROM A DILUTE LAYER
OF SURFACE ADSORBATKS

The starting point for our treatment of scattering by a
dilute layer of adsorbates on the surface is the transition
rate between the initial-state i and final-state f of the en-
tire system',

wf; ——„~Tf, ~
5(Ef E;)— (1)

where Tf; is the transition matrix and the Hamiltonian is
written as
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w(kfkt)= f dt e / '
& Tf(0)Tf;(t)), &kf

~

T(t)
~
k; ) =r(kf, k, ) g e (6)

where ef and e; are the Snal and initial particle energies,
respectively.

At this point we introduce the approximation that the
adsorbates are dilute, implying that there is negligible
multiple scattering between adsorbates. Furthermore, we
will be interested in scattering at suSciently large angles
away from specular that the potential of a single adsor-
bate can be regarded as a rigid hard-core repulsion. This
appears to be a reasonable approximation in the case of
elastic scattering for suSciently large momentum ex-
change, i.e., for the intensity scattered outside of the
small range about the specular direction where the van
der Waals attractive force scatters its large total cross
section. ' If all the adsorbates are identical, the T-matrix
elements taken with respect to initial

~
k;) and final

~ kf ) particle states are

where the summation runs over all adsorbed particles,
and the adsorbate position can be written as

Ri(t) =Ri+ui(t),

where Ri is the time-independent equilibrium position
and ui(t) is the displacement from equilibrium. The vec-
tor k=kf —k;. Although we have assumed that multiple
scattering between difFerent adsorbates is unimportant,
we cannot neglect multiple scattering between the adsor-
bate and the surface. Thus the single adsorbate transition
matrix amplitude 6kf, k; ) must be calculated in a
manner which includes the interaction with the surface
substrate.

Inserting (6) and (7) into (S) leads to

oo I '
)J

where the symbols for averaging have changed meanings
somewhat; a single bracket & ) denotes the average over
vibrational motion, while the double bracket « ))
denotes the average over defect positions. Thus we see
that under the assumed conditions the transition rate can
be written as the product of a form factor

~
r(kf, k;)

~

and the Fourier transform of a structure factor S(k,e)),
where the dynamical structure factor is

&(k t)=y«e' ' ' &e' "'
e

' "' ))) . (9)
l,j

All of the dynamical information involving energy ex-
change is contained in this structure factor. We extract
the Debye-Wailer factor and the thermal attenuation in
the next section.

The form factor is the square modulus of the transition
amplitude for scattering from the particle state k, to the
state kf, taking into account the gain or loss of energy
due to phonon exchange with the adsorbate. For a repul-
sive hard-core bump on a flat hard surface it can be cal-
culated by considering a linear combination of atomiclike

I

wave functions, the direct term corresponding to a beam
incident from above the surface and the image problem of
a beam corning from below the surface. This is the stan-
dard method used for elastic scattering. ' ' One can also
obtain somewhat more approximate results using
modi6cations of the eikonal approximation, but care
must be taken to include multiple rejections between the
hard-core adsorbate and the surface.

We note that it is the differential reflection coefficient
that is usually measured rather than the transition rate.
This is obtained from it)(kf, k, ) upon dividing by the in-
cident flux j;=irtk;, /m and multiplying by the density of
states for a final scattered particle Nf m~ kf ~

lfi (——2m ) .

III. THERMAL ATTENUATION

In order to develop the transition rate of Eq. (8) further
we must examine the structure factor (9). As long as we
remain within the harmonic approximation the vibration-
al average involving the defect displacements can be han-
dled by standard methods. " %e have

ik ut(0) —ik.u. (t) —(1/2)([k ut(0))2} —(i/2)([k. u. (t))2} (k ut(0)k u. (t)}
e ' e ' =e J ~ I J (10)

Since all adsorbates are the same and located at similar
sites, the first two factors on the right of Eq. (10) are in-
dependent of position and are the Debye-%aBer factors:

j j ~
&

—(&/2)((k u) ) —@'(k)

An important simplification occurs in the displacement
correlation function in the case of Einstein modes. The
meaning of a dispersionless adsorbate mode is that each

adsorbate vibrates at a single frequency and the vibra-
tions between neighbors are uncorrelaied:

&k ui(0)k u (t)) =&k u(0)k u(t))5( (12)

Furthermore, if there is only one vibrational frequency,
this will be associated with motion in a particular direc-
tion. If we let the momentum exchange in that direction
be Q then the correlation function becomes
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(k.u((0)k.u .(t) }=Q (u(0)u(t})5(&. .

In the case of physisorbed noble gases, the direction of
the vibrational motion is normal to the surface. ' For
CO chemisorbed on a Pt(111) surface the Einstein fre-
quency is identified with a wagging mode and the dis-
placement is parallel to the surface. However, even in
this latter case we need consider only a single direction of
momentum transfer since in most experiments the in-
cident beam and detector are in the same plane with the
normal to the surface. The displacement correlation
function of the single mode can be written in terms of the
frequency distribution function p(to} as

(u(0)u(t)) = I p(co)

X t n (~)e' '+ [n(~)+1]e

where con is the cutoff frequency, n(co) is the Bose-
Einstein function, and M is the mass of the adsorbate.
For an Einstein mode of frequency 0 the spectral density
is a 5 function,

p(to) =5(t0 —Q)

and we have

( u (0)u (t) ) = t n (Q )e'"'+ [n (Q )+1]efi

2MQ

tribute to the Debye-Wailer factor of Eq. (11). The total
real double quantum contnbution to the transition rate is

(()")(k,k )= "
~

(k, k ) ~'e
g~zg2 I'

X I5(ef —e; —2()'iQ)n (Q)

+5(sf —e;+2))'tQ)[n(Q)+1]

+25(sf —e, , )n(Q)[n(Q}+1]I . (20)

The double summation over adsorbate sites again pro-
duces the factor i) because of the 5) appearing in the dis-
placement correlation function (13). In the brackets, the
Srst and second terms give the double quantum annihila-
tion and creation, respectively, while the third term is the
elastic contribution. Clearly, all terms involving the ex-
change of an even number of quanta will give a positive
contribution to the elastic intensity. It is a straightfor-
ward matter to sum all such terms and the result for the
total elastic transition rate is

~( )(1 k )
irn

~
(k 1 )

~

—2lv(g)

XIO & n( Q)[n( Q)+1] 5(sf —s;),Q ()'i

mQ

(21)

We now return to the question of the scattering transition
rate. This can be developed in terms of a series in num-
bers of quanta exchanged by developing the exponential
of the displacement correlation function in Eq. (10}:

(k u (0)k u. (t))
e ' ' =1+(k u((0)k uf(t)}

+-,'(k ut(0)k u, (t))'+

Keeping only the zeroth-order term in Eq. (8) leads to

where Io(z) is the Bessel function of imaginary argument.
We note here that Eq. (21) describes difFuse or incoherent
elastic scattering although energy is conserved,

~ kf (
=

~
k, (. The particles are scattered in all direc-

tions according to the distribution dictated by the form
factor

~
i(kf, k, )

~
. At low temperatures ktt T &&f!Q we

have n (Q)~0 and the Bessel function approaches unity
leaving the ordinary Debye-Wailer behavior of Eq. (19).
On the other hand, at high temperatures, k&T~AO
where n(Q)~k, r/()tQ. The higher-order quan~urn
transfers make an important correction to the thermal at-
tenuation. From Eqs. (11) and (16) we have for the
Debye-Wailer exponent

fi
W(Q) =-,'Q'& u'(0) ) = [n(Q)+-,'] . (22)

If the adsorbates are randomly distributed on the surface
the double summation is equal to q where g is the nurn-
ber of adsorbates, giving I()(z) = e'/&2irz .

The large-argument form for the Bessel function is

(()(kfk') —
~

1 (kf k' )
~

e 5(sf e; )

There are, however, other contributions to the elastic
scattering. For example, the second-order term of the de-
velopment in Eq. (17) contributes to double quantum an-
nihilation, double quantum creation, and to terms involv-
ing the creation of one quantum and the annihilation of
another at diferent times. These latter processes give no
net energy exchange, but they are real quantum exchange
processes as opposed to the virtual processes which con-

Thus at large temperatures the decreasing exponential of
the Debye-%'aller factor is canceled by the exponential
part of the Bessel function, leaving

u) ' '(kf, k; ) =
~

i.( kf, k; )
~

(2itQ An(Q)/MQ)'

~
(
i.(k,k;)

~

. (24)
(2~Q'k, r)'"

These results show that the diSuse elastic scattering from
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a collection of Einstein osciHators exhibits a quite
different thermal attenuation behavior from the coherent
or diffractive scattering, and this difference becomes very
apparent at high temperatures where the thermal at-
tenuation varies according to 1/v T.

Although until this point we have examined the elastic
scattering, such corrections due to higher-order quantum

l

exchange also appear in all of the inelastic intensities.
For example, the contribution to the intensity from the
exchange of three real quanta has terms involving both
annihilation and creation which lead to a net exchange of
only a single quantum. AH of these inelastic exchange
processes can be summed and expressed as

to(k&, k;)= il g ~
i(kf, k, )

~
e (@I &n(Q)[n(Q)+1]

a=1

)&(5(s&—e; —ai)iQ)jn(Q)/[n(Q)+1]I ~ +5(sf —s, + aAQ)[[n(Q)+1]/n(Q)j ~ ) . (25)

)(e —sg /2&A ~Q
2MQ aI

X5(eI—s +at)lQ) . (26)

Figure 1 is a plot of the temperature dependence of the

I.O

Again, as in Eq. (24) above, at high temperatures the
Debye-Wailer factor is canceled by the exponential part
of the Bessel function, leaving a thermal attenuation
which falls ofF as 1/~T At ve. ry low temperatures as
n(Q)~ 0, the transition rate for multiple quantum ex-
change is the well-known Poisson distribution

2%
tc(k&,k;): iI g ~

r(k&, k, ) (

ke T &+An A =0

thermal attenuation of the diffuse elastic peak as given by
Eq. (21). On the vertical axis is the product of the
Debye-%aller factor and the Bessel function

I=e (~)I &n(Q)[n(Q)+1]Q fi
~ MQ

(27)

plotted as a function of the dimensionless temperature
x =Qikz T/MQ2. The parameters are chosen for the
case of CO adsorbates on Pt(111) in which t)10-6 meV
and we take a typical value for Q of 4 A '. Also plotted
on the same figure is the Debye-Wailer factor
exp[ —28'(Q)]. At temperatures low compared to the
Einstein frequency the thermal attenuation looks very
much like the Debye-Wailer factor, but at higher temper-
atures the saturation effect due to the multiquantum con-
tributions becomes dominant. Note that the temperature
at which the transition occurs T-MQ /Q kt) depends
strongly on the momentum transfer Q, with the satura-
tion to the high-temperature region occurring much
sooner at large Q (or large scattering angles away from
specular).

O. I IV. A VIBRATING SURFACE SUBSTRATE

O.OI

Up to this point we have considered a collection of vi-
brating adsorbates on a Bat, rigid surface substrate. In
any real situation, the substrate will also be vibrating and
this certainly has important consequences for the thermal
attenuation of the diffuse scattering. To a good approxi-
mation, we can write the displacement of the jth adsor-
bate as the sum of two terms,

u, (t)=u,'(t)+ u,'(t), (28)

0 OOI l I I l

i.0 2.0 5.0 4.0 5.0 6.0 7.0

FIG. 1. The temperature dependence of the di8'use elastic in-
tensity plotted as a function of the variable x =Q ke T/MQ .

o
The momentum exchange is Q=4 A and AQ=6 meV, corre-
sponding to CO adsorbed on Pt(111). is the Debye-
Waller factor, exp[ —2 W( Q)]; ——— is the temperature
dependence of Eq. (27), exp[ —28'(Q)]ID; and ——.— is the
temperature-dependent part of Eq. (37) for an ordered surface,
exp[ —2 W( Q) ](Io—1 ).

(k.uj(t)k. u;(0) ) =0, (29)

where k can be a vector in any direction.
Now we need to reconsider the phonon average ap-

where uj(t) is the displacement due to the Einstein mode
vibrations [written simply as u (t) up to this point] and
u'(t) is the additional contribution due to the substrate
vibrations. It is a good assumption that the substrate
modes and the Einstein mode are independent, which can
be expressed as
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pearing in a structure factor of the transition rate in Eq.
(8). Again, in the harmonic approximation we arrive at
an expression identical with Eq. (10}except that the dis-
placements are given by Eq. (28}. We first consider the
terms which produce the Debye-%aller factor

([k u, (t)]'& =( Ik.[uj(t)+uj'(t)])'&

=([k.u'(t)] &+([k.u'(t)] &

+(k u,'(t}k u'(t)&+(k u;(t)k u,'(t)& .

(30)

the sum of two contributions,

—,
' ( [k.u, (t)]' & = IV'(k)+ W'(k), (31)

where W'(k) is the contribution due to the substrate vi-
brations and W'(k) is the contribution from the Einstein
modes which we have simply called 8'(k) up to this
point. Because of Eq. (29) the time-dependent correlation
function also separates into substrate and adsorbate con-
tributions

(k.uj(0)k ui(t) & =(k u'(0)k ui(t) &

The last two terms on the right vanish because of Eq. (29)
and we are left with a Debye™%aller exponent which is

I

+ ( k u'(0)k. u'( t) &5 i .

Thus the transaction rate (8) takes the form

(32)

—i(t& — t)t/ )t)& 2~s 2+ o» ik (Ri —R ) (k u'(0)k ui(t)) (k u (0)k u (t))5)
&&

fi 'I
l~

The major changes in comparison with our previous ex-
pression of Eq. (8) are the addition of the substrate
Debye-Wailer factor, and the possibility of exchange of
substrate phonons provided by the presence of the sub-
strate displacement correlation function in the exponen-
tial.

Starting from Eq. (33) we now consider the elastic
scattering contributions to the transition rate. Again the
Srst-order contribution comes from replacing the dis-
placement correlation function exponentials by unity.
The double summation over adsorbate sites gives a factor
g for a random distribution and we recover an expression
similar to (19) except that it is multiplied by the substrate
Debye-Wailer factor. Correlation terms coming from
multiquantum exchange of the adsorbate Einstein modes
lead to the same correction that we obtain in the previous
section, and we have

(t)(kI, k;)= g ~
v(kI, k;}

~
e '"'e

XI() n(Q)[n(Q)+1] 5(ef —e;) .

(34)

Corrections to the thermal attenuation coming from the
multiple exchange of real substrate phonons are negligi-
ble. This is due to the fact that the frequency distribution
function p'(t0) for the substrate modes is a continuous
function of co. This is most easily demonstrated by re-
placing exp[(k-uj(0)k ut(t) &] in Eq. (33}by its second-
order expansion in order to examine the two-phonon con-
tribution. If p'(0t) is a smoothly varying function the
two-phonon contribution will be an inelastic background
without a 5-function contribution at the elastic condition
eI ——e,;. Thus the major contribution of substrate vibra-
tions is simply to multiply the elastic diffuse scattered in-
tensity by an additional Debye-%aHer factor.

V. ORDERED OVERLAYERS

~ » =~'y5„ (35)

where G is a surface reciprocal lattice vector of the or-
dered array of defects and g is again the number of de-
fects. Thus the zeroth-order elastic scattering becomes

ut(kI, k, )= +5k o5(eI —s;)
~
i(kI, k;)

~

=2 3'
G

Xexp[ —W'(Q)] .

Experimental observations of adsorbate Einstein modes
are often carried out at coverages approaching a mono-
layer. At such coverages the overlayer must take on a
certain amount of two-dimensional ordering. For the
case of CO on Pt(111)observations were made under con-
ditions of ordered phases where diffraction peaks were
detected. The Einstein mode was always visible, al-
though it was shifted up in energy somewhat.

It is interesting to examine both the coherent and
diffuse elastic contributions in the situation in which
there is an ordered overlayer. For such an overlayer, at
very low surface temperatures all of the elastic intensity
will be scattered into the coherent difFraction peaks and
there will be no diffuse elastic contribution. As the tem-
perature increases, multiple quantum exchange gives rise
to contributions with no net energy exchange, and such
contributions appear as a diffuse elastic background.
Thus, as opposed to the case of random surface adsor-
bates, an ordered overlayer has a diffuse elastic contribu-
tion which initially increases with temperature and rises
to a maximum before exhibiting the decrease due to
thermal attenuation.

For simplicity we will again consider the adsorbates to
be on a rigid substrate. As in Sec. III above, the elastic
transition rate is given by Eq. (18). In the case of an or-
dered overlayer the summation over adsorbate sites be-
comes
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This is clearly a coherent contribution because it appears
only at the diffraction peak positions and is proportional
to g as opposed to the diffuse or incoherent contribution
which is proportional to q. There is no correction to this
term due to exchange of real multiple Einstein quanta.
For example, the two-quantum contribution is the same
as Eq. (20). It is proportional to rI and not rP as is Eq.
(36) and is consequently a dim'use or incoherent contribu-
tion. The reason for this again lies in the independence of
the vibrational motion of Einstein oscillators as expressed
in Eq. (12). Thus Eq. (36) shows that the thermal at-
tenuation of the coherent difFraction intensities is given
by the classic Debye-Wailer behavior. If we allow the
substrate to vibrate also it would contribute an additional
factor of exp[ —2 W'(k)], as in the preceding section.

Moving on to a discussion of the difFuse or incoherent
elastic contribution, all of it comes from the exchange of
even numbers of multiple real quanta. We have already
seen that the lowestwrder contribution is the double
quantum elastic term of Eq. (20). It is a straightforward
matter to sum all of the higher-order corrections, which
produces the following:

w' '(k/, k;)= —
~
~(kI, k;)

~

e

X Io n(Q)[n(Q)+1] —1

(37)

This vanishes at low temperatures k&T«AQ, and in-
creases with temperature initially as exp( AQ/kz'1). —
After rising to a maximum it decays at very large temper-
atures according to the 1/~T form discussed in Sec. III.
The temperature-dependent part of Eq. (37), namely
exp[ —2W'{Q)](IO—1), is compared to that for a ran-
dom distribution of adsorbates in Fig. 1, again for the
conditions appropriate to CO adsorbed on Pt(111).

We mention in passing that the inelastic scattering in-
tensity due to the ordered layer of Einstein oscillators is
also diffuse and of exactly the same form as Eq. (25) for
randomly distributed oscillators. Once again, it is con-
strained to be a difFuse or incoherent contribution be-
cause of the independence of different vibrators. This ex-
plains why the inelastic signal from the Einstein modes is
clearly observed regardless of whether the adsorbate lay-
er is ordered or disordered.

As a Snal note in this section we discuss briefly the
question of partial ordering of the adsorbate layer. In
particular, the surface substrate will in general have pre-
ferred sites, and even under conditions of dilute coverage
the adsorbates will tend to locate in these preferred sites.
Since the preferred sites form a lattice re8ecting the
periodicity of the surface, such a dilute layer of adsor-
bates will be a two-dimensional lattice gas. For elastic
scattering, this distinction can be illustrated by consider-
ing the double summation over occupied lattice sites of
Eq. (18). As usual for a lattice gas, this can be broken
down into two terms,

(38)

where q is now the number of occupied sites instead of
the total number of surface lattice cells as in the first part
of this section. ' The erst term of (38) is proportional to
ri and gives the coherent contribution, while the second
term is the difFuse or incoherent part and is proportional
to ri. It is now easy to show that the coherent elastic part
will have an intensity given by the same expression as Eq.
(36), while the incoherent part is identical with the ex-
pression for random adsorbates appearing in Eq. (21).
The inelastic intensity is also diffuse and has the same
form as Eq. (25). These results are valid only for dilute
coverages. As the coverage becomes more dense the
overlayer will deviate from a random 1attice-gas distribu-
tion due to the lateral forces between adsorbates. How-
ever, this discussion gives a general idea of the expected
scattered intensity.

UI. CGNCLUSIONS

We have considered here some aspects of the scattering
of a beam of thermal-energy atoms by a dilute surface
layer of adsorbates exhibiting a dispersionless Einstein
mode. We see that the coherent elastic part, which exists
if the adlayer is ordered or partially ordered, has a
thermal attenuation behavior which is well described by a
Debye-Wailer factor. The diffuse elastic signal, on the
other hand, has a thermal attenuation which can be re-
garded as coming from two sources, the vibrations of the
substrate and the vibrations of the Einstein mode. The
contribution from substrate vibrations is again given by a
Debye-&aller factor. However, the contribution coming
from the adsorbate vibrations, assumed to be a disper-
sionless Einstein mode, shows quite different behavior.
At very low temperatures and for small momentum ex-
change the thermal attenuation looks very much like the
Debye-Wailer form, but at higher temperatures there is a
saturation to a much weaker decay. The origin of this
behavior is real multiquantum transfers which result in a
net exchange of zero energy and hence add to the elastic
intensity. These processes act in opposition to the
virtual-phonon exchanges which are the origin of the
Debye-Wailer factor.

We also discuss the inelastic scattering by the Einstein
modes and we 6nd that this inelastic signal is always
difFuse, even in the case in which the adsorbate layer is
ordered or partially ordered. The inelastic intensity for
an energy exchange corresponding to a given number of
quanta also has strong corrections coming from higher-
order quantum number interactions. These higher-order
corrections give each inelastic peak a type of thermal at-
tenuation behavior which is very similar to the elastic
case. At low temperatures and momentum exchange the
attenuation is essentially a Debye-%aller behavior, but at
high temperatures the thermal attenuation saturates to a
1/~T behavior.

Since at least one system, that of CO on Pt{111),exhib-
its an Einstein mode even when the coverage is
suSciently high to form an ordered overlayer it is of in-
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terest to examine such a situation. The diff'use elastic sig-
nal for such a system should exhibit an interesting behav-
ior. At low temperatures, all elastic intensity of an or-
dered system should appear in the diff'raction peaks. At
higher temperatures, when there can be both annihilation
as mell as creation of the Einstein quanta, the even num-
bered multiquantum processes v@11 ahvays have terms in-
volving equal numbers of creative and annihilation
events, and this leads to a diffuse signal at zero energy ex-

change. This di8'use elastic signal mill increase with tem-
perature and rise to a maximum before it finally decreases
due to the thermal attenuation.
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