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We report the first observation of a plasmon satellite in the K emission spectrum of diamond.
The previously identified plasmon satellites of Al and graphite are also presented, and data is com-
pared with an oscillator model applicable to soft-x-ray emission and photoemission. The graphite
satellite is shown to exhibit an anomalous location with respect to the parent emission. We report
for the Al L;-Ly ;1 core-core transitions a spin-orbit splitting of 0.42+0.02 eV with a Lorentzian
width of 0.67+0.02 eV. The oscillator model applied to x-ray photoemission predicts a shift of the
plasmon satellite with respect to the zero loss line as the final-electron kinetic energy is varied.

I. INTRODUCTION

The contribution of plasma oscillations in several ex-
periments that probe the electronic structure of solids
have been increasingly investigated during the past two
decades. These experiments include x-ray photoemission
spectroscopy (XPS),! soft x-ray emission (SXE),> Auger
spectroscopy, appearance potential spectroscopy, and
others. The effect is to produce a loss or gain, corre-
sponding to the plasma energy, in the resulting spectra.
The strength of the effect can be very strong, as demon-
strated in XPS, or very small and difficult to observe, as
in SXE. These plasmon satellites may be viewed as a col-
lective shakeup event accompanying the primary elec-
tronic transition.

The previous paper,® which we refer to as I, introduced
a discussion of shakeup in soft x-ray emission, but with
regard to single-particle-like excitations. In soft x-ray
emission, the plasmon satellites are observed to be 1-3 %
of the main valence-band emission. Being this weak, and
lying on a relatively large background, identification of
these satellites is not as straightforward as in XPS, for in-
stance. The choice of background subtraction
significantly affects the line shape and overall strength.
Therefore, experimentally, the plasmon satellites of SXE
have rarely been carefully analyzed other than noting the
approximate spectral location, with only approximate rel-
ative strengths. Being collective excitations, the plasmon
satellites are a consequence of the electron-electron in-
teraction. Several perturbative calculations*~® for the to-
tal emission of an interacting electron gas have been car-
ried through, and a number of theoretical models’~'°
have been developed for the plasmon satellites of x-ray
photoemission. Although several calculations''~!* have
been published specifically for the plasmon satellites of
SXE, a simple model for fitting data in SXE has not ap-
peared. We present such a model here.

For several years now, a number of investigators
have utilized the exact solution of the driven quantum os-
cillator in describing the plasmon satellites in x-ray pho-
toemission. Recently Sokcevic and Sunjic,’ through use
of such a solution, obtain an XPS satellite line shape that
includes the effects of both plasmon dispersion and damp-
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ing. Unlike a first-principles perturbation approach, this
technique requires some kind of phenomenological
description of the density response to the sudden creation
of a core hole and fast electron.

Little attention has been paid to the plasmon satellites
of soft x-ray emission from this point of view. The aim
here will be to discuss such a model applicable to SXE,
and to comment on some qualitative points with regard
to XPS. Specifically, we shall present recent data for
aluminum, graphite, and diamond, and compare with the
model. For XPS, we point out some effects of varying in-
cident photon energy on the satellite line shape, with em-
phasis on the mutual screening between the photoelec-
tron and the core hole.

II. OSCILLATOR MODEL

We assume the plasmons are independent elementary
excitations, and although not necessary in our treatment
here, for simplicity we assume isotropy in the plasmon
wave-vector dependence. To obtain the satellite line
shape then, we convolve the main emission band with a
plasmon lineshape of a particular wave vector, and sum
up the results for all wave vectors with the appropriate
relative weights. The total transition rate T(v) for emis-
sion is given by Eq. (1) in I. We construct the satellite
transition rate L(v) at energy v with

k. v
L(v):fo fw(k,v’)f(v’)gk(v'——v);,—dv’dk. (1

The parent emission transition rate is f(v), and g, (E) is a
plasmon line shape, of unit strength, for the wave vector
k and energy loss E (as obtained from electron energy-
loss spectra for instance). k. is the plasmon cutoff vector
and w(k,v) is the wave vector weight function with pri-
mary emission at frequency v; it is these weights that we
will seek. The origin of the factor v/+' takes into ac-
count the frequency factor of Eq. (1) in I. Obviously, as
pointed out in I, these frequency factors are important in
comparing data with theory, and also when comparing
with other data. Specifically, the plasmon satellite
strengths are significantly affected by the manner in
which data is plotted, and of course need to be consistent-
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ly compared. Here, T(v) and L(v) will correspond to
transitions per unit time per unit energy in arbitrary
units, and we plot all emission data in such a manner.

The approach here, which borrows from concepts used
in molecular spectra, is based on the standard electron
gas formalism of Bohm and Pines.!®!” There it was
shown that the effects of electron interaction may be
simplified by suitable unitary transformations that yield a
Hamiltonian H of the form

2
pA
H=3—+ 3 WPlP,+0}Ql0:) ., Q)
P2mo

where p; is the ith electron’s momentum with m its mass,
and P, is the conjugate momentum of the coordinate Q.
Here the Coulomb interaction between electrons has been
removed, and its effects replaced with a set of harmonic
oscillators with frequencies w(k). These quanta are the
plasmons, and the index k sums over the wave vectors for
density fluctuations up to a cutoff k.. Thus, the many-
body wavefunction | W) is a direct product of single par-
ticle states with these oscillator states.

If we consider the original Bohm and Pines (BP) Ham-
iltonian, but now include the possibility of a core hole
which has a sufficiently long lifetime to be screened by
the electron gas, then the following model Hamiltonian
can be used:

2
p.
H=3——+13 M{(plp;—N)
i k

PlP,
2

t
—M P.p,

+ 2

k<k,

+3 M (F+Gp)pie'e— 3 (F+G)Pfele . (3)
k k<k,

M, F, and M, G, represent the Fourier components of
the interaction between a valence electron with the
screening electrons and the ionic core, respectively, and
where M) =(4me?/QK?)!/? has been factored out for
convenience. N is the total electron number,  the
volume, e the electron charge and p, is the kth Fourier
component of the electron density. ¢ and c are creation
and annihilation operators for a core hole. The last term
has been added to transform away the Coulomb interac-
tion between the core hole and the electron gas when us-
ing the BP transformation U =exp(iS) with

S= 3 M Qpi 4)
k<k,

and the subsidiary condition
P, |¥)=0. (5)

The model Hamiltonian is then similar to that of
Brouers,!? except that a screening of the core hole has
been included explicitly from the start. After transform-
ing we obtain (besides the short-range, RPA and
electron-plasmon interaction terms)
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k<k,

where w) =4me’n /m and n is the valence electron densi-
ty. The kth oscillator is perturbed by an effective field
F, +G,. In the solution to this well-known problem, the
zero for the oscillator coordinate P, is translated by
F,+G,, and an overall shift in the energy of
— 3% skc(F « + G, )* arises due to the greater binding of

the screening electrons. A further transformation'® final-

ly introduces the dispersion and renormalizes the elec-
tron mass.

We will be assuming that the potential felt by a valence
electron near an ion undergoing an emission or absorp-
tion process may be determined by suitably modeling the
dynamic variation of charge density as a result of the
electronic transition. That description will provide a dy-
namic effective field perturbing the oscillators, and since
an exact time-dependent solution to this problem is
known, it may be utilized in calculating the relative prob-
abilities of plasmon shakeup. Whether we discuss emis-
sion or absorption, the effective field changes from some
initial value to a final value. Since the effective field
translates the origin of the coordinate P, two complete
sets of oscillator states are considered. The initial state is
the ground state for the initial value of the effective field,
and we are interested in obtaining the probability ampli-
tude for the kth oscillator to be in the nth excited state in
the set of states corresponding to the final value of the
effective field. The zero of the effective field is chosen to
correspond to the final-state electron density.

If we denote the difference between the initial and final
values of F; +G, by A, then the initial oscillator state

|¢)=3,ar|n) is specified through expansion
coefficients aj, which are the overlap integrals

—Pi H k__ |ap
iy | | (o) | K
(7)

between the translated ground state and the untranslated
oscillator state |n). H, is a Hermite polynomial. The
integral gives

A
(2%, )'?

" exp[ — A} /(4% )]

(n))!172

ai =

(8)

The temporal development at time ¢ is determined by
the operator!®

U(t)=exp[ —iwyt(a)a +%)+Ck(t)a,:r

—Cg(tha, + A, (1)], 9)
where
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wk J ' : ’
Ak(t)=——2%- fo Sr(texp(—iwgt’)

t’ " : "0 n ’
x [ SR expliogtdt"dt

(10)
172
. , ’ . ’ ’
C=i | o fofk(t Jexplio,t')dt’ , (1)
Fo)=F (t)+G,(1) . (12)

The a' and a are the usual boson creation and annihila-
tion operators defined in this case by

172
a,= 2ho, (P —iwi Q) , (13)
. ) 172 . .
a,= 2oy (Py+io.Qy), (14)
having the property
a|n)=Vn|n-1), (15)
af [n)=Vn+1|n+1). (16)

The amplitude y; for the kth oscillator to be in the nth
excited state is obtained through evaluating

i) =(n | U1)| ¢, (t=0)) , an

with Eq. (9). Repeated application of the above property
foraanda' (Egs. 15 and 16) with some algebra give

AL CHA,

yi(t)=exp | —iot(n+1)+ A, (t)— T (2o, 12
A, "
————+C (1) | /V'n!. (18)
(2w, )1 /? T "

The amplitude at time ¢, that n plasmons will be excit-
ed corresponding to the kth oscillator while other oscilla-
tors remain in their ground state is determined by consid-
ering the product

kc ,yz kc
i ve=—"7T17- (19)
q=k Yk q

Here, and in what follows, y} is y;(o0). If we take the
logarithm and exponentiate, the squared modulus of the
above becomes

vt o |7k [ k K’
STI7S8| = | | exp [2Re [ “In(yY) dk | .
e 0 2m?

(20)

The exponential in Eq. (20) is the probability for no
plasmon shakeup. It will be dropped since we need only
the relative probabilities. In the simple case when satel-
lite coupling is independent of the final valence hole
[w(k,v)=w(k)], we may sum over all wave vectors to
obtain the total relative integrated first satellite strength
P(1),
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It is now evident that the weight function w(k) is given
by

1 ]2
Yi | Qk? Qk?
K= | & — a2 , 22
w(k) )/2 = | 7 | Py (22)
where we have defined
Ay "
e | ————4+C, | /Vn!. (23)
Mk (Zﬁa)k)”2 k

Furthermore, due to the factorial of Eq. (23), we may
write the total integrated relative probability for exciting
n plasmons in all possible ways as

o |
27

1 ke

X Ink, ol 13 K2 dky - dk,

n

(24)

1 ke, Qk2
=— dk
n! {fo Ink' 272

The satellite strengths follow a Poisson distribution.

In photoemission, it has been customary to distinguish
between two types of satellite contributions: coupling to
the core hole and coupling to the photoelectron. We
need to properly consider the interference between such
contributions. The effective field does just that; it corre-
sponds to the superposition of particle density, but also
includes their electrical charge. Coupling to the hole and
the electron are of opposite phase (charge); hence the in-
terference is destructive. Of course, the physical in-
gredient needed is a model for the effective field.

III. SXE PLASMON SATELLITES

In the case of emission, a positively charged core hole
is surrounded by a negative screening cloud which essen-
tially cancels the interaction with a ‘“passing” valence
electron. Some electrons eventually make a radiative
transition, eliminating the core hole, but immediately
leaving a valence hole in its place. The response of the
electronic system is not instantaneous, but of the order of
the plasma oscillation period. Furthermore, the valence
hole may move away from the original site, contributing
to the dynamic effective field. Thus initially the screening
density is distributed for essentially a point charge, and
must then try to adjust itself to the extended valence
hole. As the valence hole moves away the electron densi-
ty must further do its best to keep it screened.

We shall model this state of affairs by first assuming
Fermi-Thomas screening of a positive point charge. At
t =0 the point charge becomes a spherical shell of posi-
tive charge with a finite radius r,. The radius then in-
creases at a rate corresponding to some velocity v up to
the Fermi velocity. After an appropriate screening time,
the expanding shell of charge is considered to be statical-
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ly screened. The static screening should be good for ve-
locities less than the Fermi velocity, but becomes more
dubious when the Fermi velocity is approached.

For emission, the corresponding effective field we use is

sin[k(ry+vt)] k}
k(ro+vt)  k*+kl

fk(t)z"Mk

Xexp(—awyt/21)

k?sin[k(ry+vt)]
(k24-k3)k(ro+uvt)

X[1—exp(—w,t/2m)] | . (25)

Here, we turn off the initial effective field exponentially
with a time constant equal to a plasma period. Simul-
taneously the effective field due to a statically (Fermi-
Thomas) screened expanding shell of positive charge is
turned on exponentially. The velocity of the expanding
radius is determined by the valence hole energy within
the bandwidth of the parent emission. We use
v=vp(e/er)!/2, where ¢ is the valence energy measured
from the valence-band minimum, and € with vy are the
corresponding Fermi energy and Fermi velocity. The ra-
dius r, corresponds to the initial finite spacial extent of
the valence hole, and k is the Fermi-Thomas wave vec-
tor. A suitable choice for r; is the average radius of a
self-consistent atomic wave function. In those cases
when the valence state is considered a linear combination
of an s and p state, we vary the value of ry; from the s
value to the p value in a linear manner [Eq. (28) for in-
stance] as the valence hole energy is varied from the band
minimum to the Fermi energy. Thus v and r, introduce
the v dependence in the weight function w (k,v). The in-
tegral of Eq. (11) is evaluated numerically. For v =0 the
integral does not strictly converge for our choice of f(¢).
We use a cutoff of 407m/w;, since a more properly
modeled effective field would go to zero with increasing
time.

In applying this model, we will need information about
the k dependence of the plasmon energy and width, not
to mention the cutoff vector. We will describe these
quantities with the following k dependence:

@y :w0+#k2 5 (26)
[ =Tg+£&k?. 27

[ is the full width at half maximum as a function of k,
Iy and w, are values, at k=0, of the plasmon width and
energy respectively.

As discussed in I, the plasmon satellites of soft x-ray
emission rest upon a background which is due to single-
particle-like shakeup and to a lifetime-broadened parent
band emission. In previous measurements of these satel-
lites a reasonable background was arbitrarily drawn un-
der the satellite and subtracted to obtain the satellite line
shape and strength.??! In I we discuss a method for
determining this background with at least some physical
principles in mind, and have applied it to the satellites

6745

observed in aluminum, graphite and diamond. The resul-
tant data with the background subtracted is pictured in
Figs. 1(b) and 2, along with calculated line shapes.

For aluminum, the L-Lyj ;; core-core transition'? in-
terferes with the satellite emission. We have fit two spin-
orbit split Lorentzians on a linear background to this
peak [Fig. 1(a)]. The Lorentzian higher in energy was
fixed to have exactly twice the strength as the other. We
are then able to resolve the spin-orbit splitting, and ob-
tain 0.4210.02 eV, with a Lorentzian width of 0.67+0.02
eV. The location of the L;-L;; peak was observed to be
at 45.22+0.05 eV.

After subtracting the core-core transition, the integrat-
ed satellite strength is 2.21+0.2% of the main emission in-
tegrated from 62 to 73 eV. The first observation of this
satellite was due to Rooke.?’ He quotes peak-to-peak ra-
tios for Al, Mg, and Na as 1.0%, 1.2%, and 2.0%, re-
spectively, with a large uncertainty. Besides Rooke, a
published plasmon satellite for aluminum has also been
provided by Neddermeyer and Wiech.?! Although they
do not quote its relative strength, our analysis of their
published data gives a corresponding integrated strength
of 2.0%.

Parameters for modeling the aluminum plasmon satel-
lite are determined by considering electron energy-loss
data. Our inelastic electron scattering data for aluminum
have been fit according to Egs. (26) and (27), and we ob-
tain @o=15.05 eV, T(=0.6 eV, u=2.6 eV A%, and £=1.5
eV A%, Self-consistent atomic wave functions?? give the
mean radii for 3s and 3p Al states as 1.3 and 1.7 A, re-
spectively. We model r, for aluminum as

2
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FIG. 1. (a) Soft x-ray L emission data for aluminium in the
region of the L;-Ly; jy; core transitions (dots). The solid line is
the spin-orbit split Lorentzian fit. (b) The aluminum plasmon
satellite (dots) with low-energy tail and core-core transition sub-
tracted. The solid line is the modeled aluminum plasmon satel-
lite.
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FIG. 2. (a) The diamond plasmon satellite (dots) with low-

energy tail subtracted. The solid line is the modeled diamond
plasmon satellite. (b) The graphite plasmon satellite (dots) with
the low energy tail subtracted. The solid line is the modeled
graphite plasmon satellite.

spectively. We model r,, for aluminum as
ro=1.3+0.4e/¢p , (28)

with similar linear relations for other materials. Follow-
ing Gibbons et al.,® we use a cutoff wave vector of 1.1
A~'. Equations (25) and Eq. (11) give the weight func-
tion according to Eq. (22). Fermi-Thomas screening
determines A;, and the final line shape is determined
with Eq. (1), where we use normalized Gaussians cen-
tered at w, for g, (v). Our calculated integrated relative
strength of 1.9% is in close agreement with the observed
value, and the line shape depicts the data satisfactorily.
The success of this simple model on the test case of
aluminum provides encouragement for its use on other
materials.

Several earlier measurements’*?> have identified a
plasmon satellite in the emission of graphite. We have
observed such a feature in both graphite and diamond.
These satellites, with the backgrounds of I subtracted ap-
pear in Fig. 2. Here we compare these features with the
present plasmon satellite model, although some disper-
sion information is lacking. Graphite is anisotropic, and
its dispersion parameters have not yet been measured
along the c axis; furthermore, dispersion parameters for
diamond are nonexistent. We have fit Buchner’s?® elec-
tron energy-loss data for graphite, according to Egs. (26)
and (27), for the plasmon dispersion in both directions
perpendicular to the c axis. Averaging the two directions
for use in Egs. (26) and (27), we find 0y=27.45 eV, u=4.2
eVA? I'y,=10 eV, and § is essentially zero. For diamond
we w111 simply note that for large-band-gap insulators the
dispersion is typically small or zero.?’ Not having any
more information, we will use the k=0 values of
©p=33.3 eV and T'y=13 eV measured by Egerton and
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Whelan?® and take both p and £ equal to zero. Since no
measured determination of a cutoff vector is currently
available, in both cases we use the Ferrell value of
k,=0.471kg(r!’?) where r,=(1/a,)(3/47n )3, with a,
the Bohr radius and kg the Fermi vector. For diamond
and graphite, k. is then 1.49 and 1.38 AL respectively.
The 2s and 2p mean radii for carbon self-consistent atom-
ic functions are 0.81 and 0.89 A respectively.

The integrated relative strength of the satellite in dia-
mond was measured to be 1.61+0.2% of the main emis-
sion integrated from 258 to 264 eV. The calculated
plasmon satellite for diamond appears to fit well with the
observed satellite, and room remains for an even better fit
if a slight dispersion were included. The calculated in-
tegrated relative strength is 1.75%. Thus little doubt
remains that the satellite in diamond is indeed due to
plasmon shakeup.

The result of our model calculation for graphite is not
as satisfying. The observed integrated relative strength is
1.24+0.15% of the main emission integrated from 263 to
285 eV. Our calculated integrated relative strength is
reasonably close, with 0.9%. Also, the overall shape and
width appear to match the observed satellite. However,
the location of the observed satellite is lower in energy by
approximately 4 eV from the modeled position. Al-
though the dispersion along the c-axis was not properly
taken into account, it appears that doing so would only
serve to move the calculated satellite higher in energy,
since Venghaus?® has measured the k=0 electron
energy-loss spectra for graphite along the c-axis and finds
the plasma loss at 20 eV. Besides the discrepancy in loca-
tion, the overall strength, shape, and width of the feature
do agree reasonably well with our plasmon satellite mod-
el. Unlike the candidate for a plasmon satellite for silicon
discussed in I, the anomalous position in graphite is in a
direction permissible due possibly to some unusual
dispersion or large cutoff vector. We therefore assign a
plasmon satellite to this feature in graphite, in agreement
with the earlier identifications, but we point out the
anomalous position for which we have no explanation.

In I, we identified a low-energy feature in silicon as due
to structure in the single-particle-like shakeup, and refut-
ed the plasmon satellite identification it had been previ-
ously assigned to. In doing so we modeled a plasmon sa-
tellite in silicon with the presently discussed method.
The location of the observed feature was far too high in
energy and completely inconsistent with the well-
documented silicon plasma loss and dispersion. The
modeled silicon plasmon satellite appears in Fig. 8 of I,
with the dlspersxon parameters w0—16 97 eV, I'y=2.0
eV, u=2.6 eV A2 £=3.35 eV A2, and the Ferrel cutoff
vector. The 3s and 3p values for r, used were 1.12 and
142 A, respectively. We do, however, point out that a
weak silicon plasmon satellite might be present, but that
it should be difficult to observe next to the single-
particle-like shakeup structure.

IV. XPS PLASMON SATELLITES

Although we have been mainly concerned with
plasmon shakeup in SXE spectra, we may modify the
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present description in order to make some comments
about XPS plasmon satellites. To do so, we need a
reasonable model for the dynamic effective field for the
photoemission process. Such a procedure will yield in-
teresting physics when the photon energy is variable.
This will characterize the plasmon shakeup as the time
scales vary from the adiabatic to sudden limit.

For photoemission, an electron at some core site is ex-
cited to a continuum state that is initially localized about
the core hole, then it proceeds to move away with a ve-
locity corresponding to its kinetic energy. The response
of the surrounding electrons will be to produce density
fluctuations that attempt to screen the newly created
charges. The screening is maximally achieved in the case
of the stationary core hole, but the degree of screening
for the moving electron decreases with velocity.

While the photoelectron is still near the site, the
remaining core hole and escaping electron screen one
another, at which point the effective field seen by the
plasmons is relatively small. If the electron velocity is
great enough that it leaves the proximity of the core hole
before a screening time has elapsed, it will leave behind
an unscreened positive charge, thereby creating a strong
effective field. When the stationary core hole is later
completely screened by the surrounding electron gas, any
screening provided to the photoelectron is lost, and the
moving unscreened photoelectron may produce plasmons
until it escapes through the surface, where it might also
excite a surface plasmon.

For the effective field in photoemission we use the
function

. 2
_ sin(kvt)  k > |exp(—wyt/2m) .

t)y=—M, |1
f( ) k kvt k2+k0

(29)

This function, excluding the exponential, corresponds to
a stationary positive point charge (the core hole) and a
concentric negative shell of charge expanding radially
outward with velocity v (the photoelectron). The
effective field zero is referred to the final Fermi-Thomas
screened state. The screening of the core hole is achieved
by the exponential, with the time constant w; /(27). The
exponential also screens the photoelectron, turning off
the coupling to the photoelectron after a screening time.
We then neglect to model the inelastic scattering of the
photoelectron after a screening time. We instead only in-
clude the photoelectron during times in which it can in-
terfere with the core hole. After this point, if the photo-
electron has not already escaped to the surface, plasmons
can be excited by the electron acting independently. In a
more complete treatment, one would include the later
contribution by averaging over core sites, and using a
mean free path to weight contributions at different
depths.’

As mentioned earlier, the contributions to the satellite
strengths may be viewed as individual coupling to the
core hole, the photoelectron, and their mutual interfer-
ence. Earlier workers”* have termed plasmon coupling
to the photoelectron as the extrinsic contribution, while
coupling to the core hole together with the interference
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was termed the intrinsic contribution. Our model func-
tion not only represents the inclusion of the intrinsic con-
tribution, it includes the extrinsic contribution for times
during which the two are able to interfere. We have in-
stead modeled the coupling to the core hole and photo-
electron as a one-step process during times that it is most
important to do so. For kinetic energies of 50 eV or
more, electron escape depths’! are comparable to the dis-
tance that an electron travels in a screening time, thus
neglecting the later inelastic scattering of the photoelec-
tron should be a reasonable approximation.

Using Eq. (29) we have calculated the satellite
strengths for Al, Mg, and Na, as a function of photoelec-
tron kinetic energy. The dispersion parameters used for
Mg are wy=10.2 eV, p=2.6 eV A?, [,=0.7 eV, £=1.1
eVA2 and for Na, w,=5.6 eV, u=1.9 eV A2 I',=0.4
eV, and £=2.0 eV A2, In both cases we use the Ferrell
cutoff vector. The results, along with some published®? 3
experimental data appear in Fig. 3. The curves first in-
crease with low kinetic energy in the adiabatic regime, to
an asymptotically approached constant as the sudden
limit is attained. The depiction of the data is quite good
for such a crude model. The calculated strengths are
slightly weaker, quite possibly indicating the missing late
inelastic scattering contribution.

Several years ago Penn’* introduced a particular
three-step model that ignored the interference of the in-
trinsic and extrinsic contributions. For high photoelec-
tron energies, it would be expected that the present mod-
el would provide strengths that are similar to the intrinsic
contributions of Penn, for in this limit, the present model
simulates the sudden appearance of a positive point
charge with little mutual screening between it and the
photoelectron. This seems to be the case, since Penn re-
ports intrinsic strengths for Al, Mg, and Na as 26%,
36%, and 41%, respectively, while our calculated corre-
sponding strengths are 26%, 38%, and 56%. Penn’s
good agreement with experiment would suggest that the
interference is negligible for hard x rays. Modeling the
intrinsic contribution with the sudden appearance of a

[+]
(o]

40

Relative Satellite Strength (%)

(o] 100 200 300 400
Electron Kinetic Energy(eV)

FIG. 3. The modeled XPS plasmon satellite strengths for Al,
Mg, and Na, as a function of the electron kinetic energy. The
solid points are data for Al from Johansson and Lindau (Ref.
32). The crosses are data for Mg from Norman and Woodruff
(Re. 33).
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point charge alone implicity assumes that the interfer-
ence does not exist, since the sudden appearance of a
point charge with its full unscreened potential alone im-
plies no photoelectron is in the vicinity to provide such
interference, a situation which is realistic for hard x rays.
For soft x rays, the present analysis indicates that the in-
terference is essential.

We plot for aluminum in Fig. 4, the wave-vector
weight function for two incident photon energies in excit-
ing photoelectrons from the 2p core, which is bound by
~73 eV. An escaping electron that has involved a plas-
ma excitation, has a kinetic energy of ~1412 eV due to a
1500-eV photon. For such a velocity, the wave-vector
weight function is negligible at small &, then rises sharply
at approximately k =, /v, which is 27 multiplied by the
inverse distance that the electron travels in a screening
time. A similar behavior is demonstrated for the 150-eV
incident photon. In this case the electron kinetic energy
is =62 eV, thus the photoelectron does not travel as far
in a screening time and the corresponding rise in the
weight function occurs at greater k. In our model the
distance the electron travels in a screening time is the ex-
tent of the newly created charge distribution. This max-
imum extent corresponds to the minimum density fluc-
tuation wave vector needed in the screening, and thus not
all plasmons with different wave vectors are excited. In
the case of fast electrons, plasmons of almost all wave
vectors are weighted comparably. This is in contrast to
SXE, where plasmons nearer k, are weighted more heavi-
ly.

An interesting measurable consequence with this XPS
model is predicted due to the plasmon energy dispersion
with wave vector. The first moment of the satellite line

(a)

16 [ —

First Moment (eV)

| 4 ————rrrr—
I 10 102 103 104
Electron Kinetic Energy (eV)
0.3
2 asl [hr=1500eV
< 0.24 )
= ° 1 / hv=150eV
S ] /
* 0.1 /
] / b

0.4 0.6 0.8 1.0
Wave Vector (A1)

FIG. 4. (a) Modeled first moment of the XPS 2p core Al
plasmon satellite line shape with respect to the zero loss line as
a function of the electron kinetic energy. (b) The wave vector
weight function for the XPS 2p core Al plasmon satellite for
1500- and 150-eV incident photons.
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shape, measured from the zero loss line, should
“disperse” with incident photon energy. We express this
moment m (E), for an escaping electron of kinetic energy
E and wave vector weight function w (k, E) with,

kC kC
m(E)=[ ﬁwkw(k,E)dk/fo w(k,EMdk .  (30)

A plot of this function appears in Fig. 4 for the case of
aluminum with the above mentioned dispersion parame-
ters. The centroid of the weight function increases in go-
ing from high kinetic energies toward lower kinetic ener-
gies. A casual inspection of the published data of
Flodstrom et al.*® exhibits such a dispersion. Below the
plasma energy the trend reverses, essentially because here
the effective field for the greater oscillator energies
changes significantly more adiabatically than for the
lower energies. Hence, the excitation probabilities of the
smaller-wave-vector plasmons are relatively enhanced
compared to the greater-wave-vector plasmons.

Figure 5 displays the modeled Al XPS 2p core plasmon
satellite line shapes for several incident photon energies
before convolving with a zero loss line, and ranging over
the adiabatic to sudden transition. The mentioned
dispersion is evident, and would be most easily perceived
with incident soft x rays. The line shape corresponding
to the 1500-eV photon has some distinctive structure.
The sharp peaking is a consequence of the equal weight-
ing of almost all the wave vectors, together with a quad-
ratic plasmon energy dispersion.

V. SUMMARY

We have discussed a model for the analysis of plasmon
satellites in soft x-ray emission which we compare with
recent measurements on Al, graphite, and diamond. The
model confirms the plasmon satellite identification of the
low-energy features, but also points out an anomalous
shift in the graphite satellite.

We have also investigated several aspects of plasmon
satellites in XPS with particular emphasis on the mutual
screening between the core hole and photoelectron as the
incident photon energy is varied. The analysis predicts a
dispersion of the satellite strength away from the zero
loss line as the photon energy is decreased through the

0.10+

Grbitrary units)

L(v)

Energy (e
FIG. 5. The modeled XPS 2p core Al plasmon satellite line
shapes for a 1500-eV photon(solid line), 500-eV photon(dashed
line) and a 150-eV photon(dashed-dotted line).



37 SHAKEUP IN SOFT-X-RAY EMISSION. II. PLASMON ...

soft x ray region. Our result suggests why the neglect of
interference between the intrinsic and extrinsic contribu-
tions of Penn’s theory is a good approximation.
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