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The L soft-x-ray emission spectra for Al and Si, and the K emission for graphite and diamond are
analyzed, taking into account the effects of multielectron transitions which produce a low-energy
tail on the main band. Through an appropriate transformation on the initial states, it is shown that
the final-state rule of Von Barth and Grossman is a direct result of exchange. A “Pauli rigidity”
forces the initial-state wave function to approach that of the final state, except near the Fermi ener-
gy. An assumption of random phases allows a formal solution that includes single-particle shakeup
events to all orders. It is argued that a low-energy feature of silicon is structure due to the shakeup
of single-particle-like excitations rather than a plasmon satellite.

I. INTRODUCTION

Interest in the spectra of soft-x-ray emission' has tradi-
tionally been concerned with the valence-electron density
of states for a solid. However, multielectron or many-
body effects are also a contributing factor. The most not-
able of these is the threshold singularity at the Fermi
edge in metals. In addition, there is a less striking but al-
ways evident broadening of the emission bands on the
low-energy side, producing a tailing extending tens of eV
below the expected band minimum. Where such features
may be neglected however, qualitative agreement with an
independent electron picture has been good. For simple
metals in particular, the bandwidths are close to what is
expected in a noninteracting theory, general shapes agree
with what is expected from dipole selection rules and a
sharp Fermi edge is observed.

Efforts to understand soft-x-ray emission spectra which
go beyond one-electron effects have enriched the entire
field. An early calculation by Landsberg? investigated
the low-energy tail for the sodium Ly ;; band, taking
into account both the effects of lifetime broadening and
multiple transitions (shakeup or radiative Auger process-
es). He concludes that the lifetime broadening is the
dominant effect. In a later calculation Pirenne and
Longe® interpret the tail as due mainly to the multiple
transitions. As first proposed by Ferrell,* and later
confirmed by Rooke,” a plasmon satellite is often ob-
served contributing to the low-energy tail. Since then,
various many-body calculations®~® have been attempted
and improved upon for a free-electron gas in the efforts to
explain the emission for a metal. Here we will refer to
shakeup processes as an accompanying electronic excita-
tion with the radiative transition of an electron from the
valence band to the empty core level. Such excitations
include single particle and collective processes. As far as
single-particle and collective excitations may be regarded
as distinct elementary excitations, we will use the terms
multielectron or radiative Auger processes to describe
those shakeup events involving single-particle-like excita-
tions.

We will be reporting on the low-energy features in the

37

L emission of Si and Al, and the K emission of both
graphite and diamond. Entangled in our analysis as two
distinct effects are both the multielectron transitions and
the plasmon satellite, and so two independent descrip-
tions will be utilized in developing an understanding of
the spectra. Therefore, we have divided our discussion
into two companion papers, this one being referred to as
I, and the paper immediately following this,” as II. In II,
we describe a model used in the analysis of the plasmon
satellite. Here, we will focus primarily on the multielec-
tron processes, but with some comment on the consolida-
tion of the two effects. Aberg, Utriainen!®!! and others
have looked at the radiative Auger effect in atomic transi-
tions, but little experimental work that we are aware of
has been carried out to investigate these processes in the
emission from a valence band.

The neglect to consider these multielectron transitions
in spectra at the band minima has hampered the deter-
mination of bandwidths and valence hole lifetime
broadening in soft-x-ray emission. The present approach
will try to address this difficulty. An added benefit of this
study is that it results in backgrounds, not arbitrarily
drawn, for the determination of the plasmon satellite
strengths and shapes.

II. EXPERIMENT

The specimens were excited with a 3-kV electron beam
with current densities of up to 10 mA/mm? The emis-
sion is then dispersed with a grazing incidence holo-
graphically etched grating. Soft x-rays are detected with
a modified photodiode array which integrates the signal
simultaneously over a broad wavelength region. Further
details are described elsewhere.!2— 14

It is crucial in an accurate measurement of the radia-
tive Auger tails to understand and properly subtract the
continuous bremsstrahlung background. Our gratings al-
low diffraction in many orders. The effect produces a
universal background shape due to the “pile up” of many
orders of bremsstrahlung from higher energies, up to
about 800 eV, where the reflectivity of our gratings drop.
We have extracted this universal shape for each grating
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and need then only to choose an appropriate scale factor
to subtract this contribution from a given spectrum. Ex-
tending the spectra to regions far above the main band
and beyond any doubly ionized cores determines the scale
to an adequate degree of confidence.

Historically, the literature involving soft-x-ray emis-
sion has presented data in various forms. Different in-
struments involve different detector efficiencies, and
therefore reduce data with different frequency depen-
dences. Furthermore, when the valence-band density of
states is the primary concern, an added frequency correc-
tion is often included. Here, in all figures that plot data,
in both I and II, we plot transitions per unit time per unit
energy in arbitrary units, corresponding to a transition.
rate, such as given by Eq. (1).

III. THEORY

In developing a theoretical understanding of our spec-
tra, we write the observed transition rate!® T(v) (here v
corresponds to the energy of the emitted photon, but will
often be referred to as a frequency) as

T(v)< 3 v|Mg |*8(E;—E;—v), (n
f

where M;; =(¥,|R | ®;). ®; with E; and ¥, with E,
are the initial and final many-body electronic states and
energies, respectively, while v is the photon frequency.
R =3, A-p; is the radiative transition operator, A be-
ing the vector potential and p; and ith electron’s momen-
tum. For single-particle transitions, no electron-electron
interaction, and a long-lived core state (<0.1 eV), Eq. (1)
reduces to an expression proportional to the valence-band
density of states, a single-particle matrix element and the
frequency factor. In such a single-particle approximation
the remaining passive electrons are ignored. Since our
concern will be with the effects of the multiple-particle
excitations, we reexamine the many-particle matrix ele-
ment M.

One step beyond this simple approach, but which still
retains independent particles, is to take into account the
different ionic potentials felt by the valence electrons
when the core state is occupied or empty. The works of
Mahan,!® Nozieres, De Dominicis,!” and Combescot!'®
have provided improved descriptions of this problem,
with asymptotically exact solutions near the Fermi edge
in metals. These methods involve the calculation of the
appropriate correlation functions. Alternatively, one can
consider the initial and final states constructed with
Slater determinants. For emission, the single-particle ini-
tial states ¢ are distorted due to existence of the vacant
core level, while the final states ¥ are the undistorted
Bloch states. In what follows we adapt this view, and
furthermore assume a frozen core approximation, i.e., the
core states are orthogonal to the valence states of both
orthonormal sets. The two approaches are then
equivalent, and although the correlation functions are
more suited to large systems, the determinantal method
will provide some useful results.

The matrix element M, is then a determinant'®

con-
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structed by antisymmetrizing the initial and final single
particle states. In considering this determinant, Davis
and Feldkamp?® have noted that in a simple single-
particle calculation it is a good approximation to use or-
thogonalized final state (OFS) orbitals for the active elec-
tronic state (that state from which, in emission, or to
which, in absorption, the electronic transition occurs).
The OFS state to use in emission is given by

[4) = 19— 348, 14 14,0, @
J

where j sums over the unoccupied states.

In considering absorption, Stern and Rehr?! later sug-
gest that a unitary transformation on the occupied
valence states, that orthogonalizes the active electron’s
distorted state to the other occupied undistorted states,
achieves a simplification of the many-particle Slater
determinant. This simplification also produces a
modified single-particle matrix element, but one which is
modulated by the overlap of the remaining passive elec-
trons. With the assumptions taken here, this approach is
exact, and therefore useful in describing near-edge phe-
nomena as well as multielectron transitions, but the ener-
gy dependence of the passive overlap remains a difficulty.
Interestingly, as suggested by Stern and Rehr, such a
transformation provides insight into the physical source
behind the final-state rule.?

In this paper we propose a modification of the Stern-
Rehr procedure. We first consider emission; absorption
can then be treated as the emission of holes.?* We con-
sider a more symmetric transformation, which rather
than considering the orthogonality of just the active
electron’s state, transforms all the distorted occupied
states so that the new distorted states ¢’ are orthogonal
to all other occupied undistorted states i, except the cor-
responding state ¥ from which ¢ “evolved.” This trans-
formation Z, then takes the states ¢ to ¢’ through

M
¢;i= E Zji¢j 3)

i=1

and satisfies (for p <M)

M
> Zj,-Spj=}»,-8p,- , 4)
j=1

where

N
6i=73 S . (&)

j=1

Here M denotes the number of occupied states, N the to-
tal number of states in the orthonormal set,
S;=(4¢;|¢;),and A,=(4; | ¢;) is chosen so as to retain
normalization of the states ¢’. Thus Z diagonalizes the
occupied submatrix s, of the larger unitary matrix S, and
therefore Z;; =s; 'A;, where s ! is the inverse of s. The
transformation is not unitary, except in the special cases
N =M, or when the mixing of unoccupied states ¥ in the
expansion of occupied states ¢ is zero. However we do
expect this mixing to be weak, except near the Fermi en-
ergy, a circumstance we shall refer to as weak mixing.
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The advantage in introducing Z is the simplification it
allows in the formal evaluation of the determinant of M.
The replacement terms vanish, as they would in a single
orthonormal set, although now the complications are
transferred to the evaluation of Z. The many-particle
matrix element M, will be modified by a multiplicative
factor, equal to the determinant of Z, which however,
and most importantly, is independent of the final state
(i.e., independent of the energy). We have

__ det(s)

Mp=— §(—l)P(c]t]¢,',>(¢1,...,(n01/},,),..

I, 7=¥
j

Here |c) represents a core state and ¢ = A-p. The M-1
particle overlap is also a determinant, which due to the
chosen transformation gives zero, except when p =n, in
which case

M=) (e e g))
14
J
Xty | @1) - (no (4, [ 6, )) -+ (Upr | By )
=<—1)"det<s)~(5%i’5—"l
=(—1)"det(s){c |t | &,) , (8)

where we have introduced the “partially inverted initial
state” (PIIS)

_ M
bn=355'd; . )
J

It is expected that a state ¢ which is far in energy from
unoccupied states would include mostly occupied (near in
energy) components of the i basis. In the limit of weak
mixing we have arrived at a statement of the final-state
rule. For in such a case, far enough in energy from any
unoccupied states, the built-in orthogonality of the state
¢’ forces it to approach its corresponding state 3. In ad-
dition, here we expect | A | 2~1. However, the inclusion
of components from the unoccupied states, although
small, is not ruled out by this “Pauli rigidity;” indeed,
such components are responsible for the multielectron
processes. For states near the Fermi energy Ey, unoccu-
pied components are not small, in which event the argu-
ments forcing the final-state rule fail. Besides the x-ray
edge singularity, this failure is most evident in the obser-
vation of excitonic emission.?*?°

It becomes apparent that the final-state rule is a conse-
quence of exchange. Put differently, far enough in energy
from unoccupied states at least, using a final state poten-
tial is equivalent to properly antisymmetrizing the
valence electron states. We mention that no knowledge
of Z, besides its definition, has been required to note these
consequences.

S ¥u |61 -
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Mgi=(¥;|R |®;)=[det(Z)]" (¥, |R | D)
det(s) ,
=S, R @) . 6)
IT4;

J

We first consider M for the one-particle emission
where the final state has one valence hole in the state v,
and with the once vacant core filled. In this case

(10 By B ) (7)

At this point we compare the OFS state to the present
PIIS state. Equation (2) can be reexpressed,

N
=140~ 3

j=M+1

(g, 19:)19;)

M
=3 (¢;1¢:)1¢,)

j=1

M
=3 5:"14;), (10)

j=1

where we have written (qu | ¥ )=Sﬁ_1 since S is unitary.
Comparing Egs. (10) and (9) we see that the distinction
between the OFS and PIIS states lies entirely in whether
one uses the inverse of the full matrix S, or the inverse of
the smaller occupied submatrix s. As pointed out in Ref.
21, the OFS approximation breaks down near Ep. Nev-
ertheless, the OFS states do include an edge enhance-
ment, in fact, Green?® has demonstrated that a logarith-
mic singularity exists with the OFS formalism. The
present formalism, having considered the standard mod-
el (thus far without shakeup) exactly, should produce the
correct Mahan power-law singularity.

We point out, in view of the present analysis, that mod-
el numerical computations®”?® that determine the emis-
sion with determinantal many-particle wave functions
need not evaluate any more determinants beyond one ma-
trix inversion. This reduces the effort in calculating the
single-particle-like emission, although the shakeup con-
tribution still remains time consuming depending on the
order of the shakeup desired.

As we have already mentioned, absorption can be
viewed as emission of holes. One considers holes occupy-
ing the conduction band with an empty valence band. In
this case the matrix s corresponds to the unoccupied N-M
dimensional submatrix of S. Thus different matrices s ~!
are involved between emission and absorption. Although
in practice the difference may be insignificant, this brings
up the question of a possible asymmetry in the edge
singularities between emission and absorption.

For emission that includes multielectron transitions,
we explicitly write Eq. (1) as
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T(v) W S |{¥()|R |P])|*(v—E,)
. y
IJIAJ y<M
M1 , 5
+ 3 3 [+ AWy, e Pp a3 X gy e X)) [R D)
n=1 »x
PATEREE yn-HgM
Xphens x, >M

XS(V—(Eyl+ - +E

yn+1)+E"1+ "'+Ex") . an
W(yis- - sYup13X1y - - - » X, ) denotes a final state with vacancies in the originally occupied states ¢,, with energy E,,
and with the originally unoccupied states ¢, , with energy E,, filled (we have assumed that the overall relaxation energy
is a constant, and omit it from the delta functions). The prime on the sum indicates omission of terms where any sum-
mation index equals any other. In view of the transformation Z, the above expression becomes

TWav|det(s)|2[ 3 [{c|t]|8,)|*8(v—E,)

¥y
y<M
M1 n+1 _
+ 3 3 [+ X (=D |2 ]8,)
n= . WX e=1
Yoo Ini1<M )
Xpheons x, >M

X('I}xl"""l}xn I‘Zyl"“’(no aye)""’$yn+l>

X8(v—(E, + " +E, )+E, + " +E.)|. (12)

To simplify this sum we make one very reasonable assumption. It will be assumed that the cross terms cancel ix} the
sum over the x and y indices, i.e., the individual single-particle overlaps have random phases, in which case we obtain

T(v)<v|det(s)|2[ 3 [{c|t|,)]|*8(v—E,)

y
y<M™M
M1 ln+1 _ )
+ 2 > [+ 3 (e |zl )]
n= X e=1
Ypoeeos Yny15M
Xiseees x >M

X 3P| 16, (no(|d, ) |6, )7
PX

XS(V“(Ey1+ o +Eyn+l)+Exl+ o +Exn) ’ (13)

where P, permutes the index x, and where we sum over all such permutations.
The evaluation of this sum is facilitated by defining the following function p (x),

S 1Y 16,017

— l. m,q .
p(x) AElT.o AR (14)

If E(g) and E (m) are the energies of the states ¢, and ¢,,, respectively, then the sum over g includes unoccupied states
having energies such that E(m)+x <E(g)<E(m)+x +AE. The sum over m includes occupied states such that
E(m)+x is an energy of an unoccupied state. p(x) is a probability per energy, and in a model where (l/lq |, isa
function of just the energies E (¢) and E (m), p (x) is expressed as

E —
p(x)= fg:_x N(E)N(E +x) | {{(E +x)| §(E)) | 4dE , (15)

where N (E) is the single-particle density of states, and E is the Fermi energy in a metal, or the top of the band in an
insulator.
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With this definition we write, in going to a continuum approximation, the total transition rate
TWav|des)|* [ 4lx+v) [s0)+p0)+@) " ["p(2lp(x —2)dz
-t [F (2 p(x —z —z')dz'dz + -+ |dx 16
+(3h fop(z)f0 p(z')p(x —z —z')dz'dz + X (16)

where A(v)=|{c |t |@(v)) |*N(v). A(v) represents a
transition density of states, and v is the frequency corre-
sponding to the Fermi energy for a metal, or the top of
the band for an insulator. The matrix element
[{c|t]|@(v))|? is an averaged matrix element corre-
sponding to the energy v. We will refer to v A4 (v) as the
zeroth-order emission.

This series can be summed by invoking the convolution
theorem for Laplace transforms. The quantity in the
larger brackets of Eq. (16), which we shall call Q(x), is
then given by

Q(x)=L'{exp[h(s)]} , (17)

where h(s)=L[p(x)] is the Laplace transform of p(x),
and where L ~! denotes the inversion operation.

Another relevant property of the Laplace transform
f(s)=L[F(x)], for some function F(x), relating the nth
derivative f"(s) is

fUs)=L[(—x)"F(x)] . (18)

The convolution theorem with Eq. (18) provides the in-
tegral equation

J x =21 (2)p (x —2)dz =xQ (x) (19

for Q(x). Since Q(x) may be written as Q(x)=38(x)
+ Q(x), the above integral equation is also expressed as

— 1 x -
Cx=px)+ [(x—20()p(x —2)dz . (20)

The function Q(x) relates to that part of the emission due
to just multielectron transitions.

IV. DISCUSSION

As it turns out, the effect of the size of the system is an
interesting factor to be concerned with from this analysis.
We expect that beyond a large enough volume the spec-
tral shape should remain constant. For metals at least,
the Anderson? theorem tells us that the zeroth-order
emission (the final state with one valence hole) will be
completely blocked for an infinite system. Therefore the
multielectron transitions must make up for the lost
strength, and do so in such a manner that the essential
shape of the zeroth-order emission is retained.

With a localized core hole, the potential becomes an in-
creasingly smaller perturbation for a wave function that
has an increasingly greater extent as the size of the sys-
tem grows. Thus the quantities (| ¢), as functions of
the energy, vary with increasing volume in such a manner
which diminishes a particular shakeup event; i.e., the
overlaps become narrower functions of the energy
difference between the two states. At the same time the
number of such states, both occupied and unoccupied, in-
creases, favoring the multielectron transitions. The two

f
trends must then compensate for each other ‘“in the

correct manner,” at any volume. Although the relative
strengths of zero shakeup, one shakeup etc. change with
the size of the system, their total sum should remain un-
changed, which suggests that in any model calculation
with some particular volume, all significantly contribut-
ing shakeup orders need to be included. Equations (17)
and (16) determine, provided our assumption of random
phases is valid, the total emission to all orders for any
size model system. Alternatively, Eqgs. (20) and (16)
determine, to all orders, just the multielectron contribu-
tion.

Naturally, without actually possessing p(x) from a
first-principles calculation, it is difficult to draw concrete
conclusions about the behavior of Q or Q. However, the
above observations can lead us to the following sensible
picture.

In the case of a metal and an infinite system, the delta
function in Eq. (16) is completely suppressed due to the
Anderson theorem. The emission shape is thus deter-
mined with Eq. (16) by convolving with the function Q.
The function Q is then expected to be a narrow but asym-
metric shape, which in this case also gives the XPS line
shape. The repeated convolutions of Eq. (16) indicate
that Q(x) in Eq. (20) can be viewed as the solution to a
multiple scattering process, in which p (x) is the probabil-
ity per energy of scattering once with energy loss x. Due
to the increasing density of states as the volume in-
creases, p (x) becomes stronger, but also more localized
near x=0 (for a metal), thus “multiple scattering” be-
comes more probable, but at smaller energies, such that,
presumably, the shape of @ does not change appreciably
in the limit of large volumes.

For band-gap materials, the multielectron processes do
not dominate the zeroth-order emission, otherwise an
added gap, equal to twice the ordinary band gap, would
be observed between the absorption and emission for an
insulator or semiconductor. Such an added gap is not ob-
served. It would appear then that det(s) does not ap-
proach zero for a large system, and therefore the Ander-
son theorem does not apply in the case of a material with
a band gap. This makes sense with the observation that
the overlaps (/| ¢) become narrower functions of the
energy with increasing volume. Once this width, for the
states near the top of the band, is much less than the
band gap, the occupied states of one orthonormal set ap-
proach a complete set for all the occupied states of the
other orthonormal set, and probability becomes
“trapped” within the matrix s. For a metal, there are al-
ways occupied states near unoccupied states that “leak”
away this probability leading to the orthogonality catas-
trophe. In an insulator then, it would be expected that
the relative strength of the shakeup to the zeroth-order
emission approaches a constant for large systems, with
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the zeroth-order emission dominating. Although a
band-gap material can have a distinct multielectron con-
tribution to the emission within the main band, such a
separation in a metal is not easy to define without first
specifying the size of the system.

The other characteristic emission of concern here is the
plasmon satellite, which occurs when emission is accom-
panied by a plasma excitation, and thus the emitted pho-
ton energy is diminished by the corresponding plasma
frequency. Therefore, on the lower-energy side of the
emission, one expects to find a feature that resembles the
main emission band; however, the plasmon dispersion
and width broadens most of the structure. The satellite
strengths are typically 1-3 % of the main band, and lie
on a background produced by the multielectron transi-
tions. The plasmon satellites are a direct consequence of
electron-electron interaction and are not described with
an independent electron approach. The separation of the
shakeup spectrum into plasmon and multielectron contri-
butions is of course an approximation, and will only work
well if the plasmon is a well-defined elementary excita-
tion.

To examine our data in light of the understanding
presented here, we need the quantities (¢ | #). Not hav-
ing distorted and undistorted solid state wave functions
readily available, we will need to model overlaps in some
simple manner. We will not here make any attempt to
find the states §. Instead we will take (¢ |$)=(¥|¢),
since for states ¢, far from the Fermi energy, the mixture
of states ¢ is expected to be rather localized about ¢,,
thus we instead model the overlaps (¢|¢). Two such
models will be used, each with different advantages. In
each case we assume an integrated average over an ener-
gy surface.

V. DATA ANALYSIS

A. Atomic model

The first method uses self-consistent atomic wave func-
tions, which seems a suitable approach for silicon and di-
amond. This method is free of any fitting parameters and
thus provides an estimate of the strength of the emission
due to shakeup. We write the distorted wave function ¢,

¢=9+8¢, 21

where 8y represents the distortion of the Bloch state due
to the core hole. The conduction state is taken to be a
plane wave whose kinetic energy is measured from the
bottom of the conduction band. Since the valence state ¢
and the conduction states are assumed to be elements
from the same orthonormal set, their scalar product is
zero. Therefore the overlap we seek is the Fourier trans-
form

(k|89 =7 [ utrexplik-r)dr 22)

of the distortion. Here, Q is the volume and k is the
wave vector of the conduction state.

Since it is assumed that the core hole is localized at one
site, one expects the distortion to be appreciable in this
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region only. With atomic wave functions, we presumably
obtain a reasonable distortion near the vacant site, but
deviate from it as the nearest neighbor is approached.
Hopefully this error is tolerable, in particular since it is a
difference we seek here rather than the correct wave
functions themselves. In the case of silicon for instance,
we represent the valence state with an sp? hybrid of 3s
and 3p atomic functions whose s and p components vary
throughout the band, and whose binding energy is also
varied. The s and p components are determined from the
difference in L and K emission, using the usual dipole
selection rules for those emission bands. Their relative
strengths are chosen to be consistent with band-structure
calculations.’® The binding energy is varied through a ra-
dial scaling linear with the valence-band energy (with
respect to the vacuum level), which simulates the radial
variation throughout the band that perhaps the inclusion
of other atomic states in a linear combination of atomic
orbitals approach would induce. It is the difference in
these atomic functions, with and without a core vacancy,
that are used to model the distortion. Thus we use

(WE") | E)) = [[a(E)st(r,E)
+b(E)8¢,(r,E)]explik-r)dr ,

(23)
where 8¢, and 8y, are the differences in the atomic s and
p functions, respectively, a (E) with b (E) satisfy the nor-
malization condition a?+b%=1, E is the corresponding
valence state energy and E’ is the corresponding conduc-
tion state energy [E'=(#%k?/2m) measured from the
bottom of the conduction band]. The self-consistent
undistorted atomic functions for diamond and silicon are
calculated® with the valence electrons in the
configuration s !p3; the distorted functions are calculated
with the appropriate core vacancy, and an occupied s
state in the next highest shell to simulate screening.
Since we use normalized atomic wave functions, the den-
sity of states is taken to be that appropriate to an atomic
volume. Given these overlaps we can construct the emis-
sion due to the multielectron transitions. Equation (15)
with Eq. (20) determine Q, which, with Eq. (16) and some
A (v), give that part the emission shape due to multielec-
tron transitions. For vA(v) we first use the data itself.
The calculated shakeup is then subtracted from the data
and the result reiterated for v 4 (v) until adequate conver-
gence is achieved (usually two or three iterations).

The results of this approach for diamond and silicon
are pictured in Figs. 1 and 2. In diamond the calculation
depicts a sensible shake-up tail upon which, as we shall
demonstrate in II, a plasmon satellite rests. What is ob-
tained from this method is an estimate of the strength
and shape devoid of any free parameters, which agrees
reasonably with our data, reassuring that the effect we
are describing is responsible for the observed strength.

The emission from silicon shows a striking amount of
strength in regions below what would be reasonably
called the band minimum, and in fact prompted this in-
vestigation. A feature appears near 79 eV, which has
previously been identified as a plasmon satellite.’>3* For
silicon, not only does this atomic method produce a
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FIG. 1. Soft x-ray K emission data for diamond (dots). The
solid line is the multielectron contribution to the emission cal-
culated with atomic self-consistent wave functions. The inset is
an enlargement in the region of the low-energy tail.

much stronger multielectron contribution than in dia-
mond, consistent with the data, but it also indicates a
maximum which lies several eV lower than the band
minimum (=86.5 eV). In diamond the modeled max-
imum lies close to the band minimum, if not underneath
the zeroth-order emission. This maximum in silicon, al-
though not matching the feature at 79 eV exactly, is only
3 eV from it, suggesting that possibly this feature is not
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FIG. 2. Soft x-ray L emission data for silicon (dots). The
solid line is the multielectron contribution to the emission cal-
culated with atomic self-consistent wave functions. The inset is
an enlargement in the region of the low-energy tail.
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due to a plasmon satellite, but instead structure from the
multielectron contribution, an interpretation we shall
comment on later.

B. Fitting procedure

To better determine these plasmon satellite back-
grounds, and as an alternative general approach to mod-
eling the low energy tails, we employ a second method
based on a fitting procedure near the band minimum.
Noting the energy denominator of first-order perturba-
tion theory, we will assume that |{Y(E’')|¢(E))|?
varies in a Lorentzian manner as a function of E —E’;

K(E) r
2m (E—E'2+(L2)?2°

where K (E) is a normalization factor such that
J 1 (WE") | $(E)) | *N(E"dE'=1 . 25)

E’ and E are the energies corresponding to the unoccu-
pied conduction state and occupied valence state respec-
tively, and I' will be referred to as the mixing width.
Given this, one can construct the total e__r_nission shape.
Again Eq. (15) with Eq. (20) determine Q, which, with
Eq. (16) and some vA(v), give that part the emission
shape due to multielectron transitions. This then added
to v A4 (v) would correspond to the total emission.

Our procedure will be to fit the data in the region cor-
responding to the low-energy part of the zeroth-order
emission (the bottom of the band). There, it is expected‘
that v 4 (v) follows v}(v—v,)"/2, where n=1 for a p core
and n=3 for an s core. v, corresponds to the energy at
the band minimum. Furthermore, this power-law shape
will also be lifetime broadened by an energy-dependent
width.3#35 We assume this width ¥(v) to have the form

y(v)=Bvp—v)? . (26)

[ {HE")|$(E))|*= (24)

Our model for the shape of v 4 (v) near the bottom of the
band requires the three parameters v, 3, and an overall
strength.

For each material considered, the fitting regions are
chosen over an extent where the power law is expected to
be valid, and removed from possible interference from
any plasmon satellite. The total emission at the band bot-
tom is then taken to be a sum of the broadened power law
and the multielectron contribution. This multielectron
contribution is constructed with the above mentioned
procedure, where we first use the data throughout the
main band to represent the zeroth-order emission v A4 (v)
in Eq. (16). Here ' will be the only parameter, thus a
four-parameter fit to the bottom of the band is attempted.
Once a minimum in the chi-square value is obtained, the
multielectron contribution is subtracted from the first ap-
proximation for the zeroth-order emission (the data) and
again the procedure is reiterated until adequate conver-
gence is achieved.

As already mentioned, for a metal the relative strength
of our power-law model to the multielectron contribu-
tions is in principle a function of the size of the system.
This factor is controlled by the strength of the density of
states and the mixing width I'. Large volumes begin to



6738

make the numerical work more difficult, since then p (x)
becomes 2 much narrower but stronger function, and Eq.
(20) requires many more iterations. We again choose the
density of states appropriate to an atomic volume, and let
the mixing width construct various functions p (x) such
that the fitting procedure picks out the best one.

The results of this analysis for aluminum are pictured
in Figs. 3 and 4. The band minimum v, was found to be
at 62.0310.1 eV, B is 0.019+0.001 eV~!, the mixing
width T'=1.06 eV, and E;=72.710.05 eV, thus we re-
port a bandwidth of 10.67+0.15 eV, which is in good
agreement with the value 10.6 eV reported by Levinson
et al. using angle-resolved photoemission. The ob-
served width is about 10% smaller than the noninteract-
ing electron value of 11.7 eV. This trend in the simple
metals has recently been discussed with regard to sodi-
um,>® and has been attributed to the energy dependence
of the electron self-energy.’”!53% A useful byproduct of
this fitting procedure is the background upon which the
plasmon satellite rests. We emphasize that the fitting was
done only in the region above the plasmon satellite
threshold, in this case from 59 to 64 eV; to our satisfac-
tion, a sensible tail below the satellite was achieved.

Results for graphite, diamond and silicon are pictured
in Figs. 5, 6, and 7, respectively. The graphite emission
was measured at an angle of 50° with respect to the c axis.
For graphite, fitting in the region 256-265 eV, we obtain
v5=263.210.5 eV, =0.012+0.001 eV~!, and I'=1.21
eV. With a Fermi energy of 284.710.1 eV, the band-
width is 21.51+0.6 eV. This value falls in between 22.5 eV
measured with angle-integrated photoemission® and 20.6
eV measured with angle-resolved photoemission,*’ and
can also be compared with 20.7 eV from band-structure
calculations.*! With graphite, as well as diamond, we ob-
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FIG. 3. Soft x-ray L emission data for aluminum (dots). The
solid line is the sum of the fitting procedure. The dashed line
gives the corresponding multielectron contribution.
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FIG. 4. Soft x-ray L emission for aluminum in the region of
the plasmon satellite. The solid line is the sum of the fitting
procedure. The dashed line gives the corresponding multielec-
tron contribution.

tain a sensible background for the low-energy features
which we shall identify in II to be plasmon satellites. Our
diamond results were fit between 258 and 265 eV, giving
vy=258.310.3 eV, =0.016+0.001 eV~!, and I'=2.15
eV. With the top of the band at 283.91+0.2 eV, we obtain
a bandwidth of 25.61+0.5 eV. Although the lifetime
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FIG. 5. Soft x-ray K emission data for graphite (dots). The
solid line is the sum of the fitting procedure. The dashed line
gives the corresponding multielectron contribution. The inset is
an enlargement in the region of the low-energy tail.
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FIG. 6. Soft x-ray K emission data for diamond (dots). The
solid line is the sum of the fitting procedure. The dashed line
gives the corresponding multielectron contribution. The inset is
an enlargement in the region of the low-energy tail.

broadening appears to be unrealistically large at the band
minimum (= 10 eV), the bandwidth is in good agreement
with 25.2 eV obtained in a recent calculation*? that treats
the dynamical aspects of correlation within a first-
principles Green’s function method.

In the case of silicon our fitting procedure, although
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FIG. 7. Soft x-ray L emission data for silicon (dots). The
solid line is the sum of the fitting procedure. The dashed line
gives the corresponding multielectron contribution. The inset is
an enlargement in the region of the low-energy tail.
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depicting the general trend in the low-energy tail, did not
give a satisfactory background for the purported plasmon
satellite feature. We fit in the region 84-87 eV. The re-
sulting parameters are v;,=286.61+0.1 eV, [=0.022
+0.001 eV !, with a mixing width I'=2.19 eV. With the
top of the band at 98.81+0.1 eV, we report a bandwidth of
12.210.2 eV for silicon. The maximum of the shakeup is
slightly higher in energy than in the atomic method, but
still well below the band minimum. To further investi-
gate whether the multielectron shakeup can be responsi-
ble for the structure at 79-eV, we consider the question of
how well this feature can be attributed to a plasmon satel-
lite.

C. Silicon low-energy feature

In II we describe a plasmon satellite model which
works fairly well in the classic test case of aluminum. It
satisfactorily determines the strength and relative weights
to assign the plasmons of different wave vectors. The
satellite shape and location is constructed with the ap-
propriate convolutions with the main band shape. The
result for silicon is shown in Fig. 8. Electron energy-loss
measurements®> put the silicon plasmon energy for the
wave vector k=0 at 17 eV; it disperses to about 20 eV at
cutoff. It should be pointed out that the location of the
satellite is determined mainly by the plasmon energy and
its dispersion, and will not be greatly affected by the rela-
tive strengths that our model might assign each wave vec-
tor. Satellite strength corresponding to plasmon energies
greater than the value for k=0 is possible, but not corre-
sponding to lower energies. It should then be clear from
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FIG. 8. The low-energy tail in silicon, where the upper set of
points is the data, and the lower set of points is the data with
the modeled silicon plasmon satellite subtracted. The solid line
below is the modeled silicon plasmon satellite as determined by
methods described in II. The inset is an enlargement of the
modeled silicon plasmon satellite.
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Fig. 8 that the location of the feature at 79 eV is too high
by about 6 eV to be identified with a plasmon satellite.
Even when dispersion is completely ignored, the modeled
satellite peak falls below the observed feature by about 4
eV. Depending on how a satellite background is drawn,
the feature is either too narrow or of the wrong shape to
resemble the main emission band. Also, the possibility of
a surface plasmon is insignificant, since emission mostly
originates deep within the bulk.

Other possibilities that might explain this discrepancy
would be a bound plasmon, or plasmon coupling to the
upper part of the band which is much stronger than to
the lower part. Sziklas** has suggested that bound
plasmons might exist, but only on a negative impurity.
In any event, the final state has no impurity whatsoever,
and we find no reason for the large difference in valence
band coupling needed to produce the feature observed.
Also, emission corresponding to the p density of states
would be quite unexpected, due to the selection rules. It
would seem that a plasmon satellite in this case is a poor
candidate for identification with the 79-eV feature, but an
acceptable alternative is the structure in the emission due
to the multielectron transitions. We view the 3-eV error
of the model calculation as attributable to the simplicity
of our approximations and not significant, while the 6-eV
error in the plasmon satellite model is viewed as a
significant inconsistent discrepancy. We should point out
that a completely different explanation for the unusual
strength on the low-energy side of silicon was offered by
Lyapin*® two decades ago. There, parts of the emission
spectra in the low-energy tail for Si and Ge were assigned
to deep “additional” levels in the valence band.

Of course, silicon does have a well-defined plasmon, as
electron energy-loss measurements demonstrate. If the
low-energy feature is attributed to multielectron transi-
tions, one then might ask, where is the plasmon satellite
in the emission for silicon? Figure 8 shows the silicon
data in the low-energy region with and without the
modeled satellite subtracted. No unusual structure ap-
pears to be introduced due to this process, which suggests
that the satellite could very well in contributing to the
emission, but that it sits in the “saddle” of structure due
to the multielectron transitions, making it difficult to dis-
cern.
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A common experimental approach to obtain the
single-particle zeroth-order emission has been to subtract
a linear background. In view of the present and re-
cent*®*” work, we have found that a simple improvement
is to fit a Lorentzian to the low-energy tail. Even better,
some representation of the zeroth-order emission near the
band minimum should also be included in the fit. Such
Lorentzian backgrounds typically have strengths that are
10-15 % of the main band, and usually have widths of
the order of the main band width. Any estimate of the
bremsstrahlung would be subtracted first.

V1. SUMMARY

Through a modification of a transformation suggested
by Stern and Rehr, we have arrived at a single-particle
formalism to describe soft-x-ray emission and absorption.
This transformation provides a general explanation of the
final-state rule, showing it to be a direct result of ex-
change. The formalism is further applied to the mul-
tielectron processes also accompanying the soft-x-ray
transition, and within an assumption of random phases
accounts for such processes to infinite order. Here we
have modeled the required overlaps, and applied these
methods in the analysis of emission data, with encourag-
ing results.

The previous identification of a plasmon satellite in sil-
icon is shown to be inconsistent with electron energy loss
data. We instead attribute the feature to the emission
due to multielectron processes which produce structure
at energies below the silicon band minimum.
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