
PHYSICAL REVIEW 8 VOLUME 37, NUMBER l 1 JANUARY 1988

Percolation suwi Cosserat elasticity: Exact results on a deter»I»stic fractal
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The elastic problem in tvro&imensional percolation is investigated on a hierarchical lattice, in
the context of Cosserat elasticity (or granular elasticity). For this regular fractal, the exponent of
elastic moduli (T/v) is slightly smaller than the expected value (r/v+2) deduced from the con-
ductivity exponent (r/v) T.he correction is related to the distribution of a new geometric param-
eter (the "eccentricity"). We also discuss the inequalities 1+dv& T &t+2v, the anisotropy of
the elastic response, and the case of scalar elasticity.

The critical behavior of elasticity in lattice percolation
has motivated various studies. ' " By now, four micro-
scopic models of elasticity have been considered, ' 3 s each
of them describing a different kind of real system. In this
article, we are concerned with the two-dimensional form
of what Fengs has named the "granular model. " In this
case, the elastic energy W of the network depends on the
displacement u~ R~-R~ of each site i, and on its in-
plane rotation 8;:

2~ ~(,tks(u(, )f+k~[(u(J)~ 2(8-;+8g)(ixR(/)]'
&v&
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where i is the unit vector normal to the plane and p~j 1

or 0 with respective probabilities p and 1-p (note the
convention 8;J 8~-8/ which also holds for u and R).
This expression can be understood as the potential ener-

gy of a random network of rigid disks with elastic junc-
tions (depleted granular medium). An equivalent pic-
tures 'n is also a percolating network of elastic bars rigid-
ly joined at nodes ("fibrous" medium), such as the honey-
comb studied in the experiment of Allain et a/. " In this
case, the three bond stiffnesses k t, k&, and kse are, respec-
tively, associated with an elongation, a shear, '2 and a pure
bending'3 of the bars. Because of the presence of angular
elasticity, this model is conceptually close to the "bond-
bending" model, 5 and both of them are expected to be
equivalent with respect to the critical properties. In par-
ticular, when the three bond stiffnesses are nonzero, the
backbone of the infinite clusters, and also the percolation
threshold p„are identical to those defined from geometric
conncctivity.

Contrary to the central-forces model, the present one
does not lead to the usual, symmetric theory of elasticity
when considered from a macroscopic viewpoint. For
length scales larger than the correlation length g-(p—p, ) ", such a lattice constitutes what is called in
mechanics a "Cosserat continuum. "' In particular, the
elastic energy density involves both the symmetric part of
the strain u,p —, (8,up+8ptr, ), and the antisymmetric
part ro~y ~

2 (8g Qy 8yQ» ):~ l

2w ~kngg~Qpp+ 2@Q(gpnep+2P (CO~y 8) +0' (V8), (2)

where A., p, p', and cr' are the generalized Lame co-
eScients which describe an isotropic medium. The Cos-
serat theory belongs to a class of unusual theories of
asymmetric elasticity, 's which are expected to take into
account the infiuence of a microstructure in a material.
This microstructure may be a grain in a granular materi-
al, or a crystallite in a polycrystal, and the classical theory
is just an approximation, which is enough for most prob-
lems of practical interest. A novelty introduced by these
theories was the appearance of couple stresses'4 in the
equilibrium equations, in addition to the usual stresses. In
our case„ this corresponds to the propagation of bending
moments '3 in the chains of the backbone.

In this article, we study the elastic properties of a frac-
tal model of the backbone, for this kind of elasticity. Its
predictions are in rfect agreement with the previous
theoretical works: 3 s the critical exponent T of the usual
elastic moduli A, -p-(p-p, )"is larger than the conduc-
tivity exponent r of a factor of order 2v. The new result is
that this factor is in fact slightly smaller than 2v, and that
the correction involves the distribution of a new geometric
parameter, the "ectx:ntricity" of the chains relative to
their end points. Thus, our estimate T~3.87 is just
bounded between those which are, respectively, deduced
from the red bonds' contribution 1+2v~3.67, and
from the "scalar analogy" s between bending and conduct-
ing 1+v2~3.9 .7These two bounds will also be derived
again in the context of Cosserat elasticity. A more de-
tailed derivation of some of these results is also available
in a separate publication, ' but is focused on a less realis-
tic representation of the backbone.

The recursive rule of construction of our model is sug-
gested in Fig. 1, as an infiation process. After yt iterations,
the Euclidian distance between the end points A and 8 is
equal to L(n) (1+J2)"L(0). This object is just the
hierarchical model of the backbone on which de Arc-
angelis er al. ' have studied the voltage moments, but
with some additional geometric specifications. Following
this reference, we can calculate some typical exponents,
such as the fractal dimension of the red bonds d,~, the
one of the backbone dpp, the exponent (~ of the electric
resistance (R-L~), and also gsAw which describes the
scaling of the average number of steps in the set of all
self-avoiding walks: NsAw-I. + . They are compared
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define conjugated stresses F~ (Fgn, Mgg) of 'vga.
These stresses can also be understood as the decomposi-
tion of the external stresses of Fig. 1, which is suggested in
Figs. 2(a) and 2(b). F~ is simply the force which is
transmitted from A to 8, and M~n is the part of the pure
bending of the moments M~n 2 (M~-Mg~). The
"deformability matrix" S E ' plays the role of the
electric resistance in a generalized Ohm's law:

FBA

FIG. 1. T~o successive stages of iteration of the hierarchical
model under study, and the stresses which can be exerted on its
end points. Note that static equilibrium implies Fgg+Fg~ 0
and M~+Meg+LFQ 0.

in Table I with the known percolation values in two di-
mensions. The agreement is rough but comparable with
that obtained by Mandelbrot and Given's on a Koch
curve. Note that in our case, the distribution of the red
bonds is more realistic, since their gyration radii &ujf)'~2

and &u&2&'~2 relative to the point 0 of Fig. 1 are both
nonzero and therefore scale like I.. This property of per-
colation clusters has been numerically checked by Kan-
tor, '7 and is very important in their elastic behavior. s

We now define another geometric parameter as the "ec-
centricity" GG, where G is the gravity center of the red
bonds, and 0 is the center of the end points A and 8 (see
Fig. 1). This parameter will be very important in the
loops' behavior. It scales like L, just as the gyration radii,
but vanishes when it is averaged over the two possible
configurations of the chain between A and 8. It seems
rather justified to expect a similar property for percolation
clusters, but with a continuous distribution of eccentricity
instead of a binary one.

We now need a way to describe the elasticity of our
structure between its two end points. It is first important
to realize that the bond interaction in Eq. (1) is not the
most general expression of a rotationally invariant elastic
energy. In the general case, the three bond stiffnesses

must be replaced' with a 3X3 symmetrical matrix 3K,
which can be called the "stiffness matrix. " Thus we can
write the elastic energy stored up between A and 8 as

2Ugg vugg
' E v~ with 'vugg (v~, Hgn ) and vga

ups —
2 (Hg+Hn)(ixk~). If both the axes (Gut)

and (Qu~) were axes of symmetry, this quadratic form
would become diagonal as in Eq. (I). It is convenient to

S Se F~a

,Se See, Mgn

where designates the dyadic product between two vec-
tors, and where rt is the position of the center of (A; —~A;)
relative to 0, center of (A8): r; —,

' (GA; —~+ GA;). We
can deduce from these equations some qualitative indica-
tions concerning the scaling behavior of the deformabili-
ties. In the first equation, the bending deformability is
additive, just like the electric resistance R. This sug-
gests that the scaling exponents of these two quantities

AB
L

MAB F„B

~M

The scalar See and the tensor S can be called, respectively,
the "bending" and "stretching" deformabilities. Se is a
possible coupling vector which will be related later to the

eccentricity. One can describe our structure with E as

well as with 3S, but it is easier to renormalize S. In par-

ticular, one can derive series formulas for 3S, but with
some cautions since M~n is nonconservative as in the
theory of beams, 's and v~n is nonadditive. This gives, 'o

for a series combination of N elastic elements (A;-~A;),
between the two terminals Ao A and A~ 8:

See g See ~

i~1

S,-g fS,"'-S"'(z~r;)1, (4)
i~1
NS-g [S"'-Sy"'(i&r ) —(ixr )SS"'

1

+S~'(i~r;) e(ixr;)l,

TABLE I. Comparison of some typical exponents of our
model ~ith their equivalents in 2D percolation.

Percolation

Model

0.75'1

'0.786

0.97'

1.040

'From Refs. 15 and 16, and references therein.

1.3'
1.247 1.S72

FIG. 2. The external stresses can be analyzed as the superpo-
sition of a bending (a), and of a stretching (b) with M~—r LFQ (rotational equilibrium). Because of the eccentri-
city QG, the bending will induced an elongation of one side of
the loops, and a contraction of the other [(c) and (d)l.
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and Ses-L~) could be rather close (g= gg). In
««, because of the existence of loops, we can only apply
this argument to the series combination of the red bonds,
which underestimates Sss and R Therefore we can only
say that both exponents have the same lower bound:
f& dying and gg & dgyg.

Let us now consider the second equation. We under-
stand a bit more about the relationship between the cou-
pling vector Ss and the eccentricity, for which we can now

give a better definition: AG ~~~'~rt~Qt~ where the
sums are performed both over the red bonds and over the
loops. In particular, because of the eccentricity contribu-
tion in S@ the bending of our structure [Fig. 2(a)j should
involve an elongation fFig. 2(c)J, in addition to the ex-
pected end-point rotations. It is important to realize that
this effect will induce opposed elongations in loops [see
Figs. 2(c) and 2(d)1. This implies than an "electric" s dis-
tribution of moments (with no forces) fiowing from A to 8
is not the correct distribution of stresses in the case of Fig.
2(a), since it would induce incompatible displacements.
The correct distribution of stresses minimizes the elastic
energy y Sss(M~) z, and therefore Sss is smaller than its
"electric" estimate deduced from a complete analogy be-
tween Sss and R This argument is equivalent to that re-
cently applied by Rouxs to the macrolinks of the back-
bone, and leads to the inequality ((gjt. The new idea
proposed here is that this inequality is just a consequence
of the "eccentricity" of the pattern.

Finally, we note that the dependence of the stretching
deformability upon the gyration radii discussed by Kantor
and Webman3 and by Feng, s is contained in the bending

terms of $. Because of their r z dependence, these terms
are expected to dominate the influence of the others.
A similar idea can be applied to Ss, which suggests the

following scaling laws: S-LSs-LzSss-Lt+ with, as
we have seen, d~ & g & gg. These results generalize the
conclusions of Refs. 3, 6, and 9. Their field of relevance is
of course not restricted to our hierarchical model, but this
one now allows for a direct check of these qualitative ar-
guments.

We note first that the stiff'ness matrix 3K 3S ' is ad-
ditive in a parallel combination, since 3v~ is the same for
all the chains. Also, because of the symmetries of our

fractal, its stretching matrix S is diagonal in the frame-
work (ttll, tt ~) of Fig. 1, and its Ss vector is reduced to an
Ssll component. We finally get the recursion relation be-
tween two scales L and L' L(1+%2):

(Slw)'
Sss -'Sss-

2Sll

3 L (SN, )'
~2$ell+ LSse

2 2 2 2 ll

2 SL~+S~ —Lse~

~L 2 1 L$,.-($. )

S~ SN+ yS~ —(1+J2)LSD(+ —+ L Ses.

These recursion relations must be initiated with the
bond deformabilities Sll(0) kll ', $~(0) k&', Sllll(0)

0, and Sss(0) kill'. AsymPtotically, a fixed Point is

reached, the properties of which do not depend on the
selected initial values (universality):

cr'-(p-p, )"and Z-tt-tt'-(p-p, ) r, (8)

with t' v(g+d-2) and T~v(g+d) ~t'+2v where
d 2 is the Euclidean dimension. Knowing that
d~ & g & (tt and d~ I/v, we obtain the inequalities
1+(d-2)v&t'&t or equivalently 1+dv( T(t+2v.
In this way we retrieve, in a more general form, the two
bounds for T of Refs. 3, 6, and 9. Note that cr'behaves to
some extent like a conductivity for the rotations, the fiow
of

charades
being replaced with the propagation of couple

stresses 4 in the material. Nevertheless, we stress the fact
that, contrary to what is often conjectured, t' diff'ers

from t, and consequently T differs from t+2v, because of
the eccA:ntricity distribution in percolation clusters.

Now, we can get an estimate of t' and T from our value
/=0. 903 and from' v 3, which gives

t'~1.20 and T~3.87.

These values are to be compared with t v(Q+d
-2)~1.3 and with the two bounds for T, 1+2v~3.67
and t+2v~ 3.97. Of course our estimate must be taken
with some caution since it is impossible to evaluate its de-
gree of accuracy. Because of the roughness of the fit in
Table I, it is reasonable to estimate T of order 3.8 or 3.9.

~0.0286, , ~0.103,
L Sgg L Sgg

Sell ~0.127, L Sss +~.
LSD

One can deduce from (5) and (6) the asymptotic scal-
ing laws. For large L,

S~-«, S~-«+', Sll-S.-«+'
with (~0.903. These results agree with the above quali-
tative discussion. One can check in Table I the inequali-
ties d~ & g & gtt, where we observe that g is appreciably
reduced from gtt. This was to be expected from Eq. 5(a),
which differs from its equivalent in the electric case (R'

yR) from an eccentricity correction. This correction
results from the incompatibihty effect discussed above. It
means that conduction and bending are not equivalent in

general, because of the eccentricity distribution.
In the percolation case, the reality is, of course, much

more comPlicated. The scaling law $-LSs-LzSss
-L~+z holds as an average over a random distribution,
and the incompatibility effects will also involve an Ss&
component. However, we can derive the counterpart of
this scahng law in the homogeneous range (L»g), by
adapting the usual scaling argument, ' which relates the
electric conductivity cr-(p-p, )' with the conductance
G-L ~" in the fractal range. In the case of cr' (respec-
tively, A., tt, tt') G must be replaced by Kss-L ~ (respec-

tively, K-L ~~+ ), which gives
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In particular, the recent numerical simulations of Zabil-
itzky et al. , which give T 3.96+'0.04, suggest that the
correction to t+ 2v could be smaller than in our hierarchi-
cal model. Further studies are needed to define the order
of magnitude of this incompatibility correction.

Finally, it is noteworthy that the hierarchical model
reproduces the anisotropy of the elastic response observed
by Kantor 7 The ratio of transverse to elongation defor-
mabilities S~/St ~3.61 is larger than 1, and is consistent
with his estimate 3.4+'0.2 deduced from the distribution
of red bonds. This anisotropy disappears in the case of the
Born model' (scalar elasticity) which can be viewed as the
limiting case kee~ +~ of Eq. (1). This corresponds to
an unstable fixed point of the transformation (6):
S~/Sg 1, LSeI/St 0, and L See/St 0, which leads to
St-S&-R-Ljj, and consequently to de Gennes'
finding' T t. The asymptotic value S~/St 1 expresses

the return to isotropy which is observed in numerical
simulations:7 Near threshold, the x and y coordinates
split into two independent scalar problems, which yields
E/Is 1 for the asymptotic ratio of bulk to shear moduli.
Instead of this value, the anisotropy discussed above im-
plies that this ratio is larger than 1 for a Cosserat material
at threshold, which agrees with the numerical data.

Extensions of this work to higher dimensions are now in

progress. It is clear that the incompatibility eff'ect will

also occur, and thus, intuitively, I expect an incompatibili-
ty correction t+2v —T & 0 for any dimension d & 6.

I am indebted to J. C. Charmet, H. Peerhossaini, and
W. Rochefort for helpful comments concerning the
manuscript, and to C. Allain and M. Cloitre for stimulat-
ing discussions.
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