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Nonlocal corrections to Fresnel optics: Model calculations
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New' calculations of the Feibelman d parameters belo~ the bulk-plasma frequency are presented
for Srst-principles models of a jelhum metal surface. %e employ for the surface potential-energy
barrier that confines the electrons the results found earlier by Lang and Kohn using a local-density-
functional approach. The dynamic response is calculated both within the random-phase approxi-
mation and vrithin the time-dependent local-density-functional approximation. There is little quali-

tative difference between the two when the density parameter r, =2. Along with the d parameters,
me exhibit the distribution of screening charge and total normal electric Seld. Various structures
that appear in the frequency dependence of the response are identi5ed and discussed.

I. INTRODUCTION

This paper continues our series of studies' of nonlo-
cal corrections to Fresnel optics at metal surfaces based
on calculations of induced screening charge. There has
been considerable recent interest in this problem and
several reviews5 9 are available that discuss the wide
range of application of the results. The sophistication of
the model calculations has been steadily increasing and
here we shall describe results for one of the best available
descriptions of electronic structure at a Sat, jelhum sur-
face. The response calculation can now be done in a
manner consistent with the description of the ground
state; i.e., both include exchange and correlation effects
within a local-density-functional approximation (LDA).
This improvement over the pioneering calculations of
Feibelrnan, ' which ~ere done in the random-phase ap-
proximation (RPA), is of quantitative but not qualitative
importance. SigniScant structures that appear as a func-
tion of frequency are essentially the same in both the
LDA and RPA calculations.

In Sec. II we describe the modifications in our compu-
tational procedure that allow us to calculate the dynamic
screening at any frequency below the bulk plasma fre-
quency co~. Then in Sec. III we present results for a jelli-
um surface with density parameter r, =2. Examples of
both the screening charge and field pro51es in response to
a time-dependent but (nearly) spatially constant perturba-
tion are shown as well as the Feibelman d parameters.
Based on our earher calculations, one can give simple
physical interpretations of the various structures that ap-
pear in the d's.

II. CAI CULATIONAI. METHODS

+5p,„,(x')

Here V, is the (weak and slowly varying} external poten-
tial energy, the integral with Vc is the change in the
Coulomb potential energy, 5p,„, is the change in the
efFective single-particle potential energy due to exchange
and correlation, and Xo is the independent particle sus-
ceptibility. We show explicitly only the dependence on
the spatial coordinate normal to the surface, x; all the
above quantities are at frequency co and wave vector
parallel to the surface Q, the latter to be eventually set to
zero. Like the Coulomb term, 5p„, is linear in the distur-
bance and within LDA is written as

5p„,(x)= V„,(x }5p(x)

with

d~[ne„,(n)]
V„,(x)=

dn2 7
n =no(x}

where e„, is the exchange-correlation energy per electron
in a uniform electron gas of density n and no(x) is the
equilibrium density of electrons at x in our surface prob-
lem.

We so»e (1) by working with Fourier cosine trans-
forms. In this basis (1)becomes

ing the notation and development of Ref. 2.
Start by writing the mean-Seld-integral equation for

the induced electron density in real space, 5p(x), as

5p(x)= I dx'Xo(x, x') V, (x')

x" V x', x" p x"

Our basic computational scheme remains the same as
described in detail before. However, to calculate
efBciently vrith the inclusion of exchange and correlation
elects %'e have changed the quant1tles directly found
from the solution of the mean-field-integral equation. We
brie6y summarize these forrnal modi5cations Srst, follow-

5p(q) = I dq'X, (q, q') V, (q')+5@„,(q')

+ U (q')5p(q')

—yU(q') I dq" U(q")5p(q")

(4)
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where we have used the separability of the o8'-diagonal

part of Vz(q, q'). The factor y is [(Q/n )/4ne2], where e

is the electronic charge, and

u(q) = (5)Q'+q'
If we write V, (q) as y, u(q), where y, is constant, and
de6ne

where V„,= V„,(x~00) is the bulk value of V„,. Com-
bining (2) and (9) yields

5p(q) =y, (1—A, )a(q), (10)

Up to this point our analysis has followed that used
earlier. Now we depart slightly from it to write

5p,„,(q}=y,(1—A, ) V„,g (q},

f dq u (q)5p(q)
Ve

K(q, q') =So(q, q')u (q'),

then (4) may be expressed as

5p(q) = f dq'E (q, q')[y, (1—k)+5}M,„,(q')/u (q')

(6) with

a(q)= f dq'I (q, q')g(q'),

where

I"(x,x')=5(x —x')V„, /V„, (x) . (12)

+5p(q')] .
Substituting (9)—(12) into (8) yields an integral equation
for g,

y8
f dq' I (q, q') E(q, q'—), g(q') E(q, q'—) f dq" 1(q', q")g(q") = f dq'K(q, q') .

u(q')

The computational task of solving (13) is clarified if we note the diagonal singularities in the I and K matrices

I'(q, q') =5(q —q')+ I (q, q'),

E(q q )=&o,a(q)u(q)5(q q')+K(q—, q') .

Here Xo s(q) is the bulk susceptibility, related to the RPA dielectric function es(q) by

ea(q)=1 &o, a(q)u (q—)

Incorporating (14)-(16), (13) becomes

y8 VB
eIi(q)+[ez(q) 1] g(—q) —f dq' K(q, q') 1+, es(q)I (q, q'—} g (q')

u(q) u(q')

—f dq' f dq" K(q, q')I'(q', q")g(q")=1 e~(q}—+ f dq'E(q, q'),

(13)

(14)

(16)

(17)

es(q)v(q) f dq'K(q, q')v—(q') =1, (18)

which was treated in Ref. 2.
Our numerical method of solving either (17) or (18)

consists of approximating ihe integral equation by a ma-
trix equation of 6nite dimension. The complicated ma-
trix is E(q, q ), whose 5 function and principal value
singularities must be analytically isolated. In fact we
build this matrix in one long program and then store it.
Two further short programs construct I and carry
through the matrix algebra of (17) or (18}.

Our new formal analysis has been designed to minimize
the numerical problems with the second matrix, I'(q, q')
in (17). By rewriting (8) as an equation for g(q) (i.e.,
5p,„,) rather than for a(q) (i.e., 5p), we need to transform

which is the basic integral equation we solve. To make it
reduce to the one solved for the RPA, one sets
Vs, =0=1, so g(q)=a(q). Then writing a(q)=v(q) —1,
the equation for v(q) is

1/V„,(x) rather than V„,(x}. This is convenient because

V„,(x) if determined from (3) diverges roughly as
no ~ (x) when x moves into vacuum. Hence the matrix
I shows less sensitivity to the origin of the cosine trans-
forms than does its inverse. The physical picture is that
both 5p„,(x)/V„, and 5p(x) eventually tend to zero out-
side the metal, but are related by (2). Given that we can
solve the relevant integral equations only to a fixed accu-
racy, it is numerically preferable to solve for the larger
quantity, 5p„,(x)/V„„ from an integral equation and
then find the smaller quantity 5p from (2), rather than the
other way around.

Since we have already described the formal structure of
K (q, q')~, we comment here only on the new features that
arise in the present calculations. %e now use about half
as many mesh points as before, both to save time and be-
cause we have a better sense of where they are needed.
The spatial variation of the single-particle orbitals near
the surface is found from a Noumerov integration rou-
tine. " These wave functions are computed, stored, and
then combined to form K(q, q'). The slowest step comes
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E(q, q')=0 for q, q'~q, , (19)

from the double surface integral, Eq. (73) in Ref. 2. Un-
like the procedure of Gies, Gerhardts, and Maniv' we
must redo everything when the frequency is changed. In
the k integrations over occupied states we have found it
helpful to do analytically, where possible, cases that in-
volve explicit factors of (A k /2m —BIO)'~, as in the N
functions of Eq. (67}in Ref. 2. This improvement is espe-
cially important for extending the calcu1ations beIow
0.3coz, no matter what the surface-barrier shape. The
matrix elements of K(q, q'} for q or q' greater than
several times the Fermi wave vector kF are of negligible
consequence. To avoid the considerable effort of their ac-
curate calculation, we simply set 2-

l

LK
~0

I
I

l

where the cutom wave vector q, lies between three and
four times kz. We also have numerical difficulties with
the matrix elements for arbitrarily small q', due to the
Coulomb factor u(q') in (7). However, since the results
for g(q) seem to be smooth functions of q as q~0, we
can extrapolate if necessary to the smallest values of q
from larger, more numerically tractable values. The
above remarks apply to any surface-barrier model for
which the wave functions are found by numerical integra-
tion. By solving a single-step barrier model with either
numerical or analytical wave functions we were able to
check the validity of the various cutoffs and extrapola-
tions.

We end this section by pointing out how the in-
gredients differ between a calculation with a Lang-Kohn
barrier'I and one with a step barrier. Since the Lang-
Kohn barrier is more diffuse, we need to use in that case
a larger value of the parameter a, which is the distance
between where the occupied wave functions have become
negligible in vacuum and where the effective potential en-
ergy in the metal has saturated as its bulk value. This
larger value of a leads to a more rapid modulation of all
wave-vector dependences and requires a finer mesh when
we convert integrals to sums. The more difFuse barrier
also enhances the phase shift P(k} that an electron with
normal wave vector k in bulk undergoes when scattering
from it, as shown in Fig. 1. Note especially the large and
rapid variation of P when the electron's normal kinetic
energy, A' k /2m, is close to the total barrier height. We
must be careful when choosing our integration meshes to
have extra points in this energy region if it is accessible
by the final-state electrons. We remark that a better
treatment of the surface barrier, in which its deviation
from its vacuum limit asymptoticaHy varies as an image
attraction proportional to

~
x

~
rather than going ex-

ponentially in x as in LDA, would exacerbate the prob-
lem. The near singular structure in P near the photo-
emission threshold extends through the whole calculation
to lnffuence structure III g (q), Iz(q), 5p(x), and di(& ).

SS

and

rl(x) =kF f dx'5p(x'),
0

d, = f "
dx x5p(x) f"dx 5p(x) . (22)

Here kz is the bulk Fermi wave vector and the origin for
x in these equations has been placed where the cosine
transforms begin, which is far enough into vacuum for
the occupied wave functions to have decayed to negligible
values. Our program calculates the above quantities
from the function v(q) using

I I I

+) 0 I

K/kF ~&-&/&p —— ——k/kF~ +4/+p

FIG. 1. Phase shift P vs normal wave vector k or E for two
di8erent surface barriers. The wave function for motion normal
to the surface plane is assumed to vary as sin[(e/ez)' kFx +P]
for x p0 where the potential energy has saturated at its bulk
value which we set to zero. The solid (dashed) curves give the
real (imaginary) part of P. The wave vectors, scaled by the Fer-
mi wave vector kF, are found from the normal kinetic-energy e,

scaled by the Fermi energy sF. The LK curves are for the
Lang-Kohn barrier at r, =2 (Ref. 13), while the SS curves are
for a single-step barrier model of Al (Refs. 2 and 3) with
r, =2.07. The work functions for the two barriers difFer by
0.05sF. The small difFerences in the bulk density parameters
and in the work functions are not the cause of the large
diff' reneces in P.

IIX. RKSUI TS

The quantities we present are a normalized 5p(x),
I)(x), and dI, where

5p(x) =—f cos(qx)
2 ~ dg v(q) —1

o k~ 1/e~ —1

r

Il(x) =— sin(qx)
2 dq . v(q) —1

0 g' 1/es —1

(23}

kz f dx 5p(x)=1, (20)
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FIG. 2. Feibelman d parameters vs frequency by RPA calcu-
lations. The solid curve is from the present calculation for a
Lang-Kohn barrier model at r, =2, while the dashed curve
represents the results of Feibebnan for the sane model. The
crosses are from a calculation for a single-step barrier model of
Al, whose parameters are given in the text.

- eq &(e) 1—«a
cff

m o @i 1 —1/es

where es =1—co~/aP is the long-wavelength limit of the
bulk dielectric function. Equations (22) and (25) are valid

only if u &mz.
As discussed before, within a local optics (Fresnel)

model of a single interface 5p is a 5 function and g is a
unit step function. They represent, respectively, the sheet
of screening charge produced by the metal and the conse-
quent jump in the normal component of the total electric
field. Our interest lies with how these singular behaviors
across a (fictitious) matching plane are smeared out in

more realistic models.
We begin by showing RPA results in Fig. 2 for the

Feibelman d parameters. We have plotted the origin-
independent quantity di-dl, where the constant, posi-
tive background charge density (the jellium) sits in
x & di. For the models treated here the imaginary part of
di —di, Im(di —dl ), must be negative for co & co~ since it

is directly related to the absorption of energy. However,
the real part of di —di, Re(di —di ), may have either sign
and indeed for the Lang-Kohn barrier passes through
zero at about co/co =0.8.

For comparison with the new calculations, we also plot
Feibelman's results for the same jellium model and re-
sults for a simpler, single-step barrier model. One sees
that our values agree quite well with Feibelman's except
for u close to ~&. By using diferent integration meshes
and extrapolations it appears that our answers for
~ ~ 0.9~& are uncertain by at least +O. l A, which can al-

most account for the differences with Feibelman, espe-
cially since the inaccuracy in his results is not stated. At
lower c0 our absolute accuracy improves and we have no
trouble going below co~/2, where Feibelman had to stop
his calculations due to numerical difficulties. However,
our relative 1naccuracy in 1m(&i di) for ~ &O. lai~ p«-
eludes a useful determination of its limiting slope.

The other results shown in Fig. 2 are for a single-step
barrier model of Al. In this model, r, =2.07 and the
surface-barrier height scaled by the Fermi energy is
1.356, rather than 1.304, as in the rz ——2 Lang-Kohn
model. These minor numerical changes are not responsi-
ble for the large difFerences in the calculated d parame-
ters. Rather it is change in the shape of the potential-
energy barrier at the surface of the metal that leads to the
differences. We will discuss speciffc features below after
we describe the modifjIcations due to the inclusion of ex-
change and correlation in the dynamic response.

These changes are shown in Fig. 3 and are relatively
minor. On a quahtative level, at least for r, =2, there is

no significant difFerence between the RPA and the LDA
results. This is also apparent in Fig. 4, which shows the
induced screening charge profile at co/co =0.55 based on
the solution of either (17) or (18). There are quantitative
difFerences, such as the enhancement in Fig. 3 of the lim-

iting slope of Im{di —di) in LDA; but the large-scale
structures, to which we now turn, are essentially the
same.

At the extremes of our frequency range there are com-
mon patterns of behavior which are seen in all model cal-
culations. As F0~0, Im(di —di) goes linearly to zero
while Re(di —di ) saturates at the static image plane posi-
tion. The actual values of the corresponding limiting
slope and intercept are sensitive functions of the surface-
barrier model. At the other extreme as co~co, both the
real and imaginary parts of d~ diverge due to the inci-
pient excitation of the bulk plasmon. The divergence is
weaker than (co—

co&)
' but we cannot determine wheth-

er it is proportional to the analytic estimate (co—cg }
of simpler models.

Our difficulty in extracting quantitative measures of
the limiting behaviors is only partly due to our numerical
problems near ~=0 or ~=co . The situation is also com-
plicated by the small frequency range over which the lim-
iting behavior appears to hold. There are two specific
structures in the curves whose form is clearly different
from the limiting behavior, but whose locations for r, =2
are close to the extremes. %'e associate the low-
frequency structure with the threshold for photoemission,
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which occurs at cu/c0~ =0.23 for the r, =2, Lang-Kohn
barrier. As ru rises through this level there is a steplike
increase in Im(d& dll) and a correspo dng dp
Re(dt —di). A.t a qualitative level the eN'ect is also
present in the single-step barrier results of Fig. 2, but the
size of the absorption is nearly an order of magnitude less
than for the Lang-Kohn barrier. We remark that the
present single-step results dim'er below the photoemission
threshold from those presented in Ref. 3. The latter
shows a minimum in —Imdt versus r0 which arose from
numerical problems that have now been corrected. How-
ever, we still trust the structure shown in calculations on
another single-step barrier model' and we did confirm
that the minimum in —Imdt seen there occurs when one
sweeps either frequency or barrier height through a
threshold for photoemission.

There are significant changes in the profile of the
screening charge density as r0 moves through the photo-
emission threshold. Figure 5 contrasts the behavior on
either side. From Fig. 3 one expects to see an enhance-
ment in the imaginary part of Sp. This does occur, but
the real part of 5p also changes noticeably, shifting to-
wards the jellium and modifying its period of Friedel os-
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FIG. 4. Real and imaginary parts of the induced charge den-
sity vs distance along the surface normal, calculated within ei-
ther LDA (solid curves) or RPA {dashed curves}. The perturba-
tion is at the frequency 0.55co~. The origin has been placed so
the jellium sits in x &Q, and distances are scaled by the bulk
Fermi wave vector kF.

cillations. As discussed in Sec. II, the latter is a conse-
quence of the sharp structure of the phase shift (shown in
Fig. 1) influencing the excited state Green's function
above threshold. We note in passing that the alternate
calculations of Gies, Gerhardts, and Maniv'2 do not
properly describe the photoenussion structure since their
surface potential-energy barrier is for numerical conveni-
ence raised to infinity just outside the jellium, thereby
suppressing the possibility of photoemission.

The other clear structure in Figs. 2 and 3 is centered
about ~=0.8~~. %e interpret it as due to the existence
of an extra surface collective mode (ESCM) and stress
that for r, =2 it is absent from the single-step barrier
model (as well as from the infinite barrier model ' ).
Within hydrodynamic models, such additional modes can
be produced by making the equilibrium density profile
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FIG. 3. Feibelman d parameters vs frequency by either LDA

calculation [(a) dashed curve, (1) sohd curve) or RPA calcula-
tions [(a) solid curve, (h) dashed curve]. Both calculations use
the same Lang-Kohn, r, =2 barrier.

FIG. 5. Real and imaginary parts of the LDA induced
charge density vs distance along the surface normal. The per-
turbing frequency is either just below (co/co~ =O. 1, solid curves)
or just above (~/co~=0. 4, dashed curves) the photoemission
threshold. The abscissa is the same as in Fig. 4.
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suSciently diSuse. These calculations lead to the picture
of the ESCM as plasma waves trapped within a local pla-
teau of the equilibrium profile. ' Although it requires
some extrapolation, we feel that this physical picture is
helpful' ' in understanding the structure found here for
the Lang-Kohn barrier. %e acknowledge that there is no
obvious density plateau in the equilibrium Lang-Kohn
pro6le and that particle-hole excitations are essentially
ignored by models that focus on standing plasma waves.
Still, when we compare the qualitative behavior of the
screening charge and total normal field as co passes
through the "mode, " there is a considerable similarity to
results found in a model that definitely contains a stand-
ing plasma-wave resonance. To this end we plot in Fig.
6 both 5p and g for co near 0.8' . This figure should be
compared to Fig. 3 in Ref. 2, which was calculated for a
(double-step potential barrier) model of one monolayer of
Na on an Al substrate. The resonance behavior is seen
most clearly in the imaginary parts of 5p and il. Note the
dipolar shape of Im5p and the large surface peak in ImrI.
Experimental corroboration of this structure in this dissi-
pative response has been developed from photoemission
studies. ' The real parts of the response properties also
have a characteristic behavior since Re(di —di) moves

rapidly from outside to inside the jellium as cu sweeps
through the mode. This is evident in Fig. 6 as for in-
stance by the shift in the location of Re(g)=0. 5. Note
too the development of a negative dip in both Re(5p) and
Re(ri) outside the jellium. These features are weaker in
the present Lang-Kohn, clean-surface model than they
are in the double-step, overlayer model, " yet we feel that
they are the remnants of the same physical phenomenon.
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