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Surface electronic structure: Embedded self-consistent calculations
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A new, self-consistent, full-potential method of determining surface electronic structure is de-
scribed in which the surface atomic layers are embedded onto a semi-infinite substrate. An embed-

ding potential, derived from the substrate Green function, is added to the Hamiltonian for the sur-

face region, which can then be solved by conventional surface band-structure techniques —such as
the linear augmented-plane-wave (LAP%) method used here. The resulting method has the accura-

cy of the full-potential LAP% method, without the disadvantages associated with the slab and slab-

superlattice geometries. Results are presented for AlK61) and Ni(001) surfaces.

I. INTRODUCTION

In this paper we describe a new, self-consistent method
for determining surface electronic structure. With this
technique we treat the surface of a semi-infinite crystal
instead of the usual slab or slab superlattice. Such a
treatment is important for experiments such as angle-
resolved photoemission and inverse photoemission spec-
troscopies which probe the spectrum of electronic states;
these states can be very different in a slab from those of a
semi-infinite system. Moreover, our method concentrates
on the actual surface region and provides an economical
way of calculating the self-consistent electronic structure.

The difficulty in solving the Schrodinger equation at a
surface comes from the breakdown of bulk periodicity
perpendicular to the surface. However, the region in
which the potential differs significantly from the bulk is
confined to a few atomic layers near the surface (at least
in a metal). Wave-function matching techniques have
taken advantage of this fact by connecting wave func-
tions from the perfect, three-dimensional solid to those in
vacuum across the surface region. Lang and Kohn used
such a method in their pioneering jellium calculations
where the surface was represented by the boundary of a
semi-in5nite background of uniform positive charge.
Corrections due to the lattice can be included by treating
the pseudopotential as a perturbation to Srst order.
Reasonable work functions and surface energies can be
obtained in this way for s-p -bonded metals; but the jelli-
um model (essentially a one-dimensional model) cannot
be used to find the three-dimensional character of the
charge density, nor can it be used in the case of transition
metals with tightly bound d bands. Appelbaum and
Hamann have formulated a general wave-function match-
ing method in which the wave functions are matched by
means of a transfer matrix in the surface region.
DifFiculty is encountered with the implementation of this
approach because of the continua of bulk states to be

matched, and because the evanescent waves (allowed near
the surface region) are usually neglected.

Calculations of surface electronic structure are now
dominated by methods which treat a slab of finite thick-
ness, thus avoiding the problem of the semi-infinite sub-
strate. The accurate basis-set methods which have been
developed for bulk electronic structure can then be used
with relatively little modification. Calculations based on
either the slab or slab-superlattice geometries have en-

joyed many successes in surface studies; and properties
such as work functions, charge densities, potentials, total
energies, and spin densities have been accurately deter-
mined. However, certain shortcomings are apparent in
the geometries themselves, which limit the accuracy of
the various methods, regardless of how well they treat the
electrostatic or exchange-correlation potentials. Both
slab and slab-superlattice geometries force a surface to be
located in the vicinity of another surface. In the superlat-
tice a surface may interact with other surfaces both
across the vacuum region and across the finite width of
the slab. In slabs, the two surfaces interact through the
(few) atomic layers. These interactions are sizable
enough to split the surface states arising from a single
surface into hybridized pairs. In aluminum the splitting
is nearly 1 eV, even when the slab is nine layers thick.
Although this problem is more acute in nearly-free-
electron metals, it persists in transition metals by split-
ting the nonlocalized Shockley states. Another problem
with these geometries is the absence of true bulk states.
The bulk is only crudely represented by the interior lay-
ers of each slab. Bulk energy-band continua existing at
each wave vector parallel to the surface are condensed
into only a few discrete states, making identi6cation of
surface states and surface resonances fairly arbitrary.
Also, the requirement that slabs be thick enough to
reasonably separate the surfaces makes these calculations
computationally expensive, so that only the simplest
clean surfaces and overlayer coverages can be studied.
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Our approach is to add to the Hamiltonian for the sur-
face region and embedding potential which can describe
the in8uence of the bulk substrate exactly. '5 The Snite
surface region is treated explicitly, and the surface wave
functions are forced by the embedding potential to have
the correct logarit&~ic derivatives on the interface with
the bulk region. By including, through the embedding
potential„ the propagation of the wave functions into the
bulk we accurately describe both discrete surface states
and the bulk continuum. The short metallic screening
length means that we need only include a very few layers
of atoms in the surface region for explicit calculation,
making the method economical, and freeing up computer
resources to make possible the study of more complex
surfaces and over layers.

We have previously published a brief report on Al(001}
using the present surface embedded Green function
(SEGF) method. We now describe the method and some
results in detail. Section II and the appendixes present an
overview of the embedding method and include the addi-
tional terms in the secular equations, the form of basis set
[linear augmented plane waves (I,APW)] which we em-

ploy, and the matrix-element expressions. We show in
Sec. III how we obtain the charge density, electrostatic
potential, and exchange-correlation potential from the
calculated surface Green function. In Secs. IV and V we
present our self-consistent results for the Al(001) and
Ni(001) surfaces along with studies of convergence cri-
teria. Discussion and conclusions follow in section VI.

A. The em~sjissg saethod

The embedding method is based on a variational prin-
ciple in which we define a trial function P(r} only in the
region of space we want to treat explicitly —the surface
region (region I in Fig. 1). This wave function is extend-
ed into the substrate (region II—the bulk crystal) with an
exact solution f of the bulk Schrodinger equation at
some energy e, which matches onto P in amplitude over
the interface S between regions I and II. The expectation
value of the Hamiltonian with P in I and g in II is then
given (in atomic units, with e =A= m = 1) by

3 40 + 3 2+ ) 2r 4 f 2

E—
f d'rl 41'+f d'r 1||iI'

The surface integrals in (1) come from the discontinuity in the derivative BP/Bns and dg/8ns across interface S. The
fundamental principle of embedding is that the integrals through the substrate in Eq. (1) can be eliminated, provided
that the Green function for the perfect crystal can be found, subject to the boundary condition on interface S that

BGo(rs, r' ) =O.

The inverse of Go over S is a generalized logarithmic derivative, relating the derivative of a solution of the Schrodinger
equation in II to the amplitude:

Bf(r )
J" d~rs Go ~(rs, rshP(rs) .

Bns s (3)

Substituting (3) in (1) and making use of a relationship between normalization integrals in II and the energy derivative
of BQIBns, 4 we may write

BG8 + -' r + rs rs rs 0I s /is s s

r rs rs rs rs

(4)

This variational expression for the energy depends exphc-
itly only on P in region I, with Go evaluated over S con-
taining all the information about the substrate.

To minimize E, let us expand P in terms of a set of
basis functions:

f(r)=pa;X;(r) .

%'e then obtain a matrix equation for the coelicients a;:

a(G ),,H J+(Go ' )~+(E—e) aj =Eg Oja~,
J J

where

B+J.
H,J ——f d rX,'(r)HXJ(r}+ —,

' f d~r, X,'.

(7)
(G ),,=f d'r, f d'r,'X,'(rs)Go '(rs rs)XJ(rs)
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and

0J = f d rX,'(r)X, (r) .

H; is the matrix element of the Hamiltonian in region I,
with an additional surface integral which ensures Hermi-
ticity. ( Go

'
),.J is the matrix element of Go '—

the embedding potential c—onverting the calculation for
region I into a calculation for I joined onto the substrate
II. The energy-derivative term, entering (4) from the nor-
malization of the wave function in the substrate, gives a
first-order correction so that Go is evaluated at the right
energy. Go is in fact a pseudopotential, describing the
scattering of the electrons incident on the substrate from
region I. The relationship between the energy derivative
of Go

' and the normalization integrals through region II
is identical to that for an ordinary pseudopotential, be-
tween its energy derivative and the "orthogonality hole"
in the atomic core.

Normally we calculate the Green function for the sur-
face region, which we can similarly expand in terms of
our basis functions:

G(r, r', E)=g g,,(E)X,(r)X,'(r'),

~l= ill

I i I I Bulk

where g&J. satisfies

g[Hk+«0 ');k —Eok]g'k, «)=&ij '

k

and by evaluating the embedding potential 60 ' at the en-
ergy E at which we are working, the energy-derivative
terms in (6) disappear. From the Green function we can
find the surface density of states and the charge density
(see Sec. III).

S. The embedding potential

The interface between the surface region and the sub-
strate might be taken as surface S in Fig. 1, weaVing its
way between the muflin-tin (MT) spheres. However, it
would be diflicult to evaluate the matrix-element integrals
in this awkwardly shaped region I. It is, in fact, possible
to transfer Go ' from surface S to a more convenient Sat
surface So, with a constant potential in between (Fig. 1).
This follows from the properties of the embedding varia-
tional principle (4): by varying P we can show that E is
stationary when

FIG. 1. The surface region I is separated from the substrate
regibn II by a complicated interface S. However, an effective
embedding interface So can be de6ned.

derivative which we call G 0 . If we now minimize (4)
with G 0

' substituted for Go ', and extend region I right
up to the plane So, we obtain a wave function (() which
satisfies (10). Because it has a logarithmic derivative
G 0

' on So, it must have logarithmic derivative Go ' on
S; thus, it is the solution we require.

The embedding potential is directly related to the
reflection properties of the perfect crystal. First let us
use the two-dimensional Bloch properties of the wave
functions so that the embedding potential at wave vector
K can be expanded over So in a Fourier series (we drop
the tilde on 6 0 '):

GO, K. (R,R') =—X Go, K (m, m ')
A

HP=EP in region I

and

ay(r )Zan = 2 f d'—r'[G

(10)
Xexp[i(K .R—K "R')],

—(E—s)BGO '/M]$(rs ) .

Not only must P satisfy the Schrodinger equation in re-
gion I, but it roust also have the right logarithmic deriva-
tive on S. Now, given a logarithmic derivative on S, ~e
can integrate the Schrodinger equation through the con-
stant potential to surface So to fMd a nels logarithmic

R is the component of r parallel to the surface, Gr is a
surface reciprocal-lattice vector, and A is the area of the
surface unit mesh. %e now truncate the perfect crystal
at So, with a constant potential continued to the left. If a
plane wave exp(iK R)exp(ik, z ) is incident on the crys-
tal, it will be scattered, and the total vrave function to the
left of Scan be written as
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its(r) =exp(iK R)exp(ik, z)

+JR ~ exp(iK "R)exp(y z. ),
find that 13-surface reciprocal-lattice vectors are ade-
quate for expanding Go ' in the fairly close-packed sur-

faces me have studied.

Go x' ———,'y(1 —R)(1+8 ) (14)

At the present time we determine 8, and thus Go ', us-

ing a muSn-tin potential in the substrate. The layer-
doubling method, described by Pendry and used in low-

energy electron difi'raction (LEED) and photoemission
calculations, provides a simple way of determining R
with this form of potentiaL7 The crystal is divided up
into layers, and multiple-scattering techniques are used to
determine the refiection and transmission properties of a
single layer. These can be used to find the refiection and
transmission properties of a pair of layers and the process
repeated to 4,8, . . . layers. With a small imaginary part
to the energy, this process converges rapidly to give the
refiection matrix R for the semi-infinite substrate. It is
not a serious approximation to use the MT potential in
the substrate, provided the band structure is good. The
short screening length ensures that deficiencies in the
substrate potential do not propagate far into the surface
region, where we use the full potential without shape ap-
proximations.

The embedding potential does not depend on the po-
tential in region I, and it can be tabulated once for all,
over the energy mesh at which we intend to determine
the surface Green function G [see Eq. (8)]. Typically we

l

where R is the refiection matrix and Il: i. y —=K +k,2.

The Fourier coeScients of g and df/Bnz on 8 are then

given by

g .=5 ~ +R .

=y ( —5 ~ +R ~ ).
So by inverting Eq. (3) we find that Go K is given by

C. LAP' Slits fwlctiQII am4 Imtflx eleNkemts

cos(k„z), n even,

sin(k„z), n odd,

(15a}

(15b)

where

k„=nnlD,
with n even for the symmetric case (+ ) and n odd for
the antisymmetric case ( —) under the refiection z~ —z,
aild

D is the film thickness and D ( & D) defines the wave vec-
tors perpendicular to the surface. Inside the MT spheres
the LAPW is composed of radial functions u& and ener-

gy derivatives i) i
—solutions of the scalar relativistic

equation with the spherically symmetric part of the atom-
ic potential at an energy parameter E&

LAP%'s provide an accurate and convenient basis for
the wave functions or Green function in region I. As in
conventional slab calculations, these are constructed by
dividing space into three regions: the interstitial
region —where the potential is relatively fiat, muffin-tin

(MT) spheres around each atom —where the major com-
ponent of the potential is spherically symmetric, and the
vacuum region —where the potential has a strong z
dependence, but a relatively weak x and y dependence.
In the interstitial region the LAPW's are plane waves of
the from

X+ „(r)
=&'2/Qexp(i K R)

&mEr .

X+„(r) Ag+ (K) BL+, (K) l

( )
—g ~ (K) xuf Is+ g (K} xul Is IL, (&')x

I.,a

(16a}

(16b)

We normally go up to l =8 in this expression. The A and
8 coeScients are determined by matching X and its radial
derivative across the surface of the MT spheres (see Ap-
pendix A). Finally, in the vacuum region we solve the
Schrodinger equation with the planar-averaged part of
the potential at some energy E„to give a z dependent
function u (z) and its energy derivative u~(z}. The
LAP%' in this region is a linear combination of these and
a tw'0-dlmenslonal plane %'ave:

X*„(r)=[a(m, n)u (z)+P (rn, a)u (z)]exp(iK R} .

The a and P coeScients are chosen so that X and BX/Bz
are continuous at the vacuum-slab boundary (see Appen-
dix A).

Since they contain a, u inside the atom, and u, u in the
vacuum region, the LAPW's can represent an accurate
solution of the wave equations in these regions over a
considerable range about the parametrized energies EI
and E„.The plane waves also provide a rapidly conver-
gent representation of the wave functions in the intersti-
tial region, where the potential only varies relatively
slowly. The choice of D is, to some extent, arbitrary. It
should be somewhat larger than D to give .the plane
waves in Eq. (15}a range of matching conditions onto the
vacuum solutions (17). Moreover, we require a range of
logarithmic derivatives on the embedding plane at So.
We shall discuss this in detail in Sec. IVA. With the
embedding surface shifted to So, halAvay between atomic
planes (see Fig. 2), caps of the surface muffin-tin spheres
are apparently chopped off'. Actually, the contribution of
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the entire muffin-tin potential to the surface Hamiltonian
is included, and only the interstital contribution with the
Sat potential between S and So is modiSed.

Although the basis functions are constructed by divid-

ing region I into the film muffin-tin form, the matrix ele-
ments are evaluated with the full potential. This is ex-
pressed in the interstitial region in the form

cos(k„z)

V(r)=g V~„exp(iG R)X ' . k '+Viz+Viz + g [V +exp(G z)+V exp( —6 z)]exp(iG .R) .
PFl, tl m (~0)

where the collective angular-momentum index
I.=II,I I. In the vacuum region we have the partial
Fourier expansion

V(r)=g V (z)exp(iG R) . (20)

The matrix elements of the kinetic-energy operator, plus
the muffin-tin part of the potential [the spherically sym-
metric part of Eq. (19}],and the m =0 term in (20) can be
found in a straightforward manner, the results being out-
lined in the Appendixes. The addition of the matrix ele-

The V „areFourier coefficients in an expansion over
surface reciprocal-lattice vectors G and wave vectors
k„,as in Eq. (15). The remaining terms come from the
solution of Poisson's equation in our surface geometry
(see Sec. III 8). Inside the MT spheres we expand V in
spherical harmonics:

(19)

ment of the normal derivative (7} ensures Hermiticity.
The matrix elements of each term in (18) through the in-
terstitial region can also be evaluated analytically, apart
from correction terms when MT spheres protrude
through the embedding plane (see Appendix C). Finally,
the matrix elements of the remaining parts of (19) and
(20) must be evaluated numerically; for the MT region
this is quite time consuming, since the potential and the
wave functions all involve separate summations over 1,m.

The matrix element of the embedding potential is trivi-
al with LAPW basis functions:

cos(k„g)
sin(k g)

cos(k„g)
X(GO )m'm sin(k„g)

where g is the z coordinate of the embedding surface So
(Fig. 2}. If m or m' exceeds the maximum reciprocal-
lattice vector in the expansion for Go ', the matrix ele-
ment is set equal to its free-electron value, without
signiffcant loss of accuracy. This term is the only
energy-dependent part of the Hamiltonian, so it is very
easy to determine the Green function G, Eqs. (8) and (9),
over any energy range required.

I

lNT

I
I BULK

III. SELFWONSISTENT CHARGE DENSITY
AND POTENTIAL

A. The charge density

The local density of states o (r, E)—the charge density
of electrons at a particular energy —can be found im-
mediately from the Green function given'by (8) and (9):

cr(r, E)=g
~ P, (r)

~

5(E E,)—
=—ImG(r, r;E+ie) .1

(, +0/2
z 0

FIG. 2. The interstitial, muSn-tin, vacuum, and bulk re-
gions. %hen taken to be halfway between atomic planes, the
embedding interface So slices through surface and bulk muin
tins.

By integrating o over the occupied states, we can then
find the charge density p(r}. The integral is most
economically evaluated by contour integration, making
use of the analyticity of 6 in the upper half plane. %'e
use a semicircular contour, starting ofF at some energy
below the bottom of the valence band, and 6nishing back
on the real axis at the bulk Fermi energy:
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p(r)= —lm J dE G(r, r;E) with the semicircle in the upper ha)f plane . (23)

Even if the density of states is structured along the real
axis, G varies smoothly along the contour except where it
approaches structure along the real axis at Ez. Gauss-
Chebychev provides a good numerical technique for car-
rying out the integration, particularly since it concen-
trates the sampling points near the ends of the range—
just where significant structure may appear in the in-
tegrand. We find that 15-31 sampling points are ade-
quate, except for metals such as Ni where there is a peak
in the density of states at Ez. In these cases we use 63
sampling points. In comparing timings of this embedding
method with slab calculations, this represents the number
of matrix inversions for evaluating the Green function,
independent of the size of the system. In a slab calcula-
tion, a single matrix diagonalization is required to find

l

the discrete eigenvalues, but the number of eigenstates
scales with the size.

In addition to the integral over energy, we must sum
over wave vectors K in the surface Brillouin zone. Here
we sample at the special K points given by Cunningham.
Typically we use 10 points in the irreducible part of the
surface BZ, using symmetry to determine the contribu-
tion to the charge density of equivalent parts of the zone.
Problems might be encountered in this special point sam-
pling is sharp features (such as surface states or reso-
nances) cross the Fermi energy —in other words, the
sampling of partly filled bands. The remedy in such cases
is simply to increase the number of K points.

The charge density itself is reexpanded in the same
form as the potential:

cos(k„z)

g p „exp(iG R) &( ', , ', with r in the interstitial region,sill( „z)
rn, n

p(r)= g pL FL(8,(p), with r in MT spheres,

g p (z)exp(iG~ R), with r in vacuum .

(24a)

(24b)

(24c)

As in other applications of the I.APW method, 1=8 is
sufficient in the spherical-harmonic expansion. These
reexpansions are relatively easy to evaluate from the dou-
ble expansion of the Green's function, Eqs. (8}, (15), and
(17). To Eq. (24) is added the charge density of the core
levels, which we find by solving the Dirac equation in the
spherical part of the atomic potentials.

An important difference between the SEGF method
and slab calculations is that here the occupation of states
is determined by the bulk Fermi energy, whereas in slab
calculations it is determined by the total number of elec-
trons in the finite system. This means that the surface re-
gion is not constrained to be charge neutral, and that the
total number of electrons in the whole system
(surface+ substrate} is not automatically conserved. In
fact, the process of selfwonsistency (Sec. IIIB) ensures
that the surface is almost neutral. If our assumption is
correct that the potential beyond the embedding plane is
nearly the same as in the bulk, the total number of elec-
trons will be almost exactly conserved. For studies of
work function and surface electronic structure this is all
that is required. However, it is straightforward to
achieve exact conservation of the number of electrons by
adding a small, constant potential to the Hamiltonian in
region I: this represents the potential produced by any
residual transfer of electrons between regions I and II.
The total number of electrons in the system can be found

I

cos(kEz }
p(r)=g p „exp(iG R)x

Nf p 5

I

from a generalized surface phase shift, ' given in terms of
the embedded surface Hamiitonian, and we shaH give an
example of this in Sec. IV C.

S. The yotential

Because the surface geometry difFers from that in slab
calculations, the method of determining the potential
must be modified. The electrostatic potential must now
be found by solving Poisson's equation subject to the
boundary conditions that there is no electric field as z
tends to —DD (the total system is neutral at self-
consistency}, and the potential matches to the bulk poten-
tial on the interface with the substrate.

The first stage of calculating the electrostatic potential
is to find the Fourier expansion of a pseudowharge-
density p extended through the whole region between
—Dl2 and + Dl2 (Fig. 2}. We require that p=p in the
interstitial region, and that p have the same multipole
moments as the actual charge density inside the muffin-
tin spheres. We then solve Poisson's equation with p
throughout this region while ignoring the MT spheres.
Next, the potential inside the spheres can be found by
solving Poisson's equation with the actual MT charge,
subject to the boundary condition that the potential
match the known value at the MT-sphere boundary.
First, we extend the Fourier expansion of p, Eq. (24), into
the spheres, and subtract om'this term within the spheres:

cos(k„z)
+pe(r rMT ) gpL—FL(8,y) —g p „exp(iG R)X ';„(.k )

' for ~z
~
~D/2.

A I tAF PR

(25)
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Here 8 is a step function equal to 1 if r is inside the MT sphere a, and zero otherwise. We can then write

cos(k„z)
p(r) =g p „exp(iG .R) X ',. (k )

'+ g p~ „d, (r),
ltd, 1l

(26)

where p~„d, is a charge density lying within muSn-tin a with the same multipole moments as the expression in
square brackets in Eq. (25). Weinert has shown how to construct a convenient form of p „d, which can be readily
Fourier transformed. "

We now work with p(r), which we expand as

cos(k„z)

p(r)=+ P „exp(iG R)X ';„(k (26')
N1, Pl

Il

The general solution of Poisson's equation, the electrostatic charge density V (r), corresponding to this charge density,
is given by

cos(k„z)

V"(r}=A++' '
zexp(iG R)X;„(k )

'+Bz

—2npoozz+g'[V +exp(G z)+ V exp( —G z)]exp(iG R), (27)

where A, 8, V +, and V are fitted to the boundary
conditions, as described below.

In the vacuum region we solve Poisson's equation with
the charge density expressed in the form

p(r)=gp (z)exp(iG R) .

For each Fourier component the electrostatic potential
satis6es

d V"(z)
+Gz V (z)=4irp (z),

Z2

which we solve subject to the boundary condition that
V (r) goes to a constant, with zero electric field, as
z~ —oo. This leaves solutions of the homogeneous
equation in the vacuum region, i"+g' V"' exp(G z),
which must be fitted by boundary conditions at
z= D/2, the int—erface between the vacuum and the
slab. These conditions, that V and BV"/Bz are continu-
ous, give two equations for each Fourier component
parallel to the surface. However, for each G there are
three unknowns: A, 8, and C for G =0 and V +,V, and V"' for nonzero G . The additional bound-

I

I

ary condition comes from the continuity in V" at the in-
terface between the surface and substrate. The bulk elec-
trostatic potential at random points on the interface is
read in and a least-squares fit is performed to fully deter-
mine all constants in the potential.

Our expression for the electrostatic potential in the in-
terstitial region now has the same form as in Eqs. (18)
and (20). We leave the linear, quadratic, and exponential
terms explicitly in (18), instead of Fourier transforming
them, avoiding errors arising from a finite expansion.
The expression for the electrostatic potential is valid over
the surface of the muffin-tin spheres, providing us with
the required boundary condition for integrating Poisson's
equation within each sphere. This gives us the potential
expanded in the form

V (r)=g VL (r)FL(Q} . (30)

To the electrostatic potential we add the exchange-
correlation potential, in the local density approximation,
to construct the total one-electron potential. We have
found it sufficient in the MT sphere and vacuum regions
to use two terms in a Taylor series expansion:

, dV"'
V"'(poo(r)/&4m )+g' (poo(r)/&4m. )pl Fl (8,$), with r in MT spheres,

dp
V"'(p(r)) = '

V"'(po(z) }++' (po(z))p (z)exp(iG .R), with r in vacuum .

(31a)

(31b)

The mean-square error in these expansions is of the order
of 10 hartree. In the interstitial region the Taylor
series expansion is not suSciently accurate; so, instead,
we do a least-squares St of typically 100 points to 50
star-of-k functions. The root-mean-square error in this
procedure is about 3 & 10 hartrees.

IV. Al(001}RESULTS

A. Convergence criteria

To test the convergence of the SEGF method we exam-
ine first a non-self-consistent calculation of the Al(001)
charge density, comparing results with one and two lay-
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FIG. 6. Double-layer total valence charge density in the (110)bulk Al plane: 100 LAP%'s, D=12 a.u.

the case of single-layer Al(001) at about 100 plane
waves —the results suddenly become nonsensical. How-
ever, increasing the number of basis functions restores
sensible behavior; and with 120 or more I.APW's, the
Al(001) surface density of states and charge density are
very close to the results with less than 100. The instabili-
ty may be associated with the choice of embedding
plane —because we electively require an integration of
the Schrodinger equation from the surface of protruding
muffin-tins to the plane itself. Using an embedding plane
to the bulk side of the muffin-tins, while not as sym-
metric, eliminates this annoying behavior in most cases.

Most of the parameters in the basis set and the rest of
the self-consistent calculation are the same as in conven-
tional I.AP%-slab calculations. One important addition-
al parameter is the number of reciprocal lattice vectors
used to expand the embedding potential. In the Al work
9—13 reciprocal-lattice vectors are adequate.

8. VVork function

The calculated work function for a given surface de-
pends critically on the distribution of charge near the sur-
face. Thus, the agreement between the experimental
work function and theory often provides a good indica-
tion of the accuracy of the computational method. The
most recent work function measurement for Al(001}
yielded a value of 4.41+0.03 eV. ' (An earher measure-
ment gave 4.2 eV. '

) Previous theoretical values include
4.2 eV for the jellium model, ' 5.5 eV for a three-layer

slab, '4 4.7 eV for a nine-layer slab, '5 and 4.53 eV for a
nine-layer full-potential I.APW-slab calculation. '6

We have performed two self-consistent SEGF calcula-
tions: one for a single embedded layer of atoms, and one
for a double layer. Our calculated work functions are
4.63 and 4.50 eV for the single and double layer, respec-
tively. The difficulty in obtaining an accurate Al(001)
work function in slab calculations is probably associated
with the discretization of the states in a system of finite
thickness. Broad continua of bulk states are crudely
represented by a few (discrete} states. This is likely to be
a more serious problem in nearly-free-electron metals like
aluminum than it would be in transition metals having s
large density of 1 states.

Since the SEGF method correctly treats the continua
of bulk states through the embedding potential, and also
allows the proper decay of surface states into the bulk, it
is to be expected that accurate work functions may be ob-
tained with only s few atomic layers. Our double-layer
result is closer to experiment than all previous work.
Even the single-layer work function is superior to all but
the nine-layer full-potential I,AP%'. Thus the SEGF
method is capable of providing accurate results using a
fraction of the computational resources of other methods.

C. Total charge density

Our calculated total charge density for the double layer
is displayed in Fig. 7. Charge density contours are in
units of valence electrons per bulk unit cell —so the 3.0
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which would give a range of values for the electrostatic
potential along the embedding surface.

The total charge in the surface region of the two-layer
calculation is 5.893e, but the total change in charge from
the generaHzed phase shift (see Ref. 10), is 5.982e. This is
very close to exact overaI1 charge neutrahty, and is
achieved automatically in the self-consistency procedure.

FIG. 7. Self-consistent total valence charge density in the
(100) bulk Al plane: 80 I.AP%"s, 8=12 a.u. (Vacuum is at the
left. ) Successive contours dicer by OA electrons per bulk unit
cell. The dashed curve represents the embedding surface S.

contour should figure prominently in plots of aluminum.
We have chosen the (100) plane in order to show both
first and second layer atoms. Comparing with Fig. 1 of
Ref. 15, we see much the same distribution of charge. In
each figure the 3.4 contour is defiected toward nearest-
neighbor atoms. Also, rectangular contours of 3.0 elec-
trons per unit cell may be found in the fourfold intersti-
tial regioQs.

In our double-layer plot we see that this 3.0 contour
has reduced symmetry near the embedding surface
(displayed as the dashed line). This is due to the last
boundary condition imposed on the electrostatic
potential —that the surface potential match the potential
of the underlying bulk along the interface with the sub-
strate. In this case the bulk potential has a muSn-tin
form; and since the interface lies entirely in the intersti-
tial region, the electrostatic potential along it must be
everywhere equal to the bulk muSn-tin constant. This
means that there is no lowering of the electrostatic poten-
tial along lines connecting atoms in the lowest surface
layer to their near neighbors in the bulk. Thus, the elec-
tronic charge density along such lines is reduced from
that bctwccll IlcaI' nclghbol's 111 thc sllIfacc rcgloll. This
gives the observed asymmetry in the 3.0 and other con-
tours. We see, however, that the healing length for any
sllch 111lpcrfcctloll lll thc boundary colldltloll Is qllltc
short. In fact, the charge density is still fairly accurate
across the embedding surface since it is constructed from
wave functions which match on to exact solutions in the
bulk. The problem may be eliminated altogether by mak-
ing use of a warped muSn-tin potential for the bulk

The surface density of states at I from our double lay-
er is shown in Fig. 8. The energy has been shifted ofi' the
real axis by 0.001 a.u. So that the discrete surface states
are broadened slightly and can be found with the same
numerical techniques that we use in the continuum. The
surface state is very prominent, and is located only 0.007
a.u. (0.18 eV) above the bottom of the bulk band gap be-
tween 0.204 to 0.243 a.u. in the figure. (The Fermi ener-

gy is at 0.3085 a.u. relative to the bulk muSn-tin zero. )
Both the absolute position of this state, 2.65 eV below
EI, and, more significantly, its energy relative to the bot-
tom of the band gap are in good agreement with experi-
ment. '7 The band gap itself is much narrower than the
experimental value (1.06 eV compared with 1.68 eV),
with the upper band edge apparently 0.6 eV too low; this
problem in the bulk electronic structure may be due to
inadequacies in the local density model for exchange
correlation.

The charge&ensity contours of our I surface state
(Fig. 9) are very similar to those of Krakauer, Posternak,
Freeman, and Koellmg. ' We observe a slightly greater
charge density on the vacuum side of the topmost atomic
layer. Between the atomic layers the charge density is
rather fiat, peaking at approximately 0.4 electrons per
bulk unit cell. This is a Shockley state resulting from the
change in the boundary condition on the wave functions
at the surface. It decays only slowly into the bulk'S with
a decay length that is estimated to be 7 atomic layers. '

012
E (a.u3

FIG. 8. The Al(001) surface density of states at I . Full
curve, top layer of atoms; dashed curve, second layer. Imagi-
nary part of energy =0.001 a.u.
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2-

FIG. 9. The Al(001) I" surface state charge density in units of
electrons per bulk unit cell.

0.20

E (G.u. )

0.28

FIG. 10. The Al(001) surface density of states at I in the top
layer of atoms. Imaginary part of energy =0.005 a.u.

A pair of such states, arising from the two surfaces of a
slab, interact even when the slab is fairly thick. They mix
to form even and odd states split in energy by about 1 eV
in the nine-layer slab calculations.

The I surface state is found to have an asymmetrical
line shape in photoemission, smeared toward low ener-

gy
' this is probably due to the combined effects of

broadening the surface state and the adjacent band edge.
In the bulk the one-dimensional density of states (that is,
at fixed wave vector parallel to the surface) has E
singularities at band edges, which are suppressed at the
surface. However, we see from Fig. 8 that the surface
density of states is fairly constant up to the lower band
edge where it drops off abruptly. %hen this feature is
broadened together with the surface state by working
with an imaginary energy of 0.005 a.u. , an apparently
asymmetric surface peak is produced (Fig. 10), having the
line shape seen experimentally. ' The experimental
broadening could be due to either hole lifetime or instru-
mental effects. The apparent merging of the surface state
with the lower band edge is also the reason for the band
edge not being seen in photoemission experiments from
Mg(0001). At the upper band edge, the surface density of
states is completely rounded off, with no sign of the bulk
E ' singularity even on the second layer of atoms. This
suppression of the density of states at the upper band
edge would give an apparent increase in the band gap in
surface photoemission. However, its el'ect on direct tran-
sition measurements is not obvious, and it is not clear if
this contributes to the increased band gap measured ex-
perimentally compared with band-structure calculations.

Moving out to X in the surface Brillouin zone, a sur-
face state is measured experimentally at 4.55 eV below

EF, associated with the gap at L in the bulk band struc-
ture. ' Our calculation gives the surface state at 0.139
a.u. relative to the zero of energy, with band edges at
0.136 a.u. and 0.148 a.u. ; the non-self-consistent calcula-
tion of Spanjaard, Jepsen, and Marcus also puts the
state very close to the bottom of this narrow gap. The
energy of our state is 4.61 eV below the Fermi energy, in
excellent agreement with experiment.

E. Resonance behavior

For K near I the bulk aluminum band gap remains ab-
solute; however, as one moves out toward the boundary
of the surface zone, other bands cause the gap to narrow
and then close. Photoemission studies show that a sharp
surface peak persists even after the gap closes. ' The gap
closes about midway between I' and M; but the band
effecting the closure is one of 0dd symmetry with respect
to reflection in the I M line. Since the surface state is of
even symmetry it cannot couple to the opposite symmetry
bulk states, and thus remains a true surface state. This
situation persists beyond K=(0.28,0.28), at which wave
vector the surface state is pushed above Ez.

A much different situation occurs along I X. The gap
is closed by an even symmetry (with respect to reflection
now in the 1X line) bulk band at about K=(0.26,0).
Beyond this wave vector, the even surface state may cou-
ple with even bulk bands and thus becomes a surface res-
onance. Electronic charge is no longer confined to the
surface and may leak out into the bulk. Experiment,
however, shows that the peak remains sharp. '

In Figs. 11 and 12 we display the calculated surface
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FIG. 11, The surface density of states at K=(0.25,0) in the
top layer of atoms. Imaginary part of energy=0. 001 a.u.
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density of states (DOS) for the surface state at
K=(0.25,0) and the surface resonance at K=(0.40,0).
Although broadened slightly by hybridization, the
(0.40,0) resonance remains very sharp. This occurs be-
cause the coupling is mediated through the (weak) V»,
component of the pseudopotential. This may be seen in
the bulk band structure corresponding to K=(0.40,0),
Pig. 13. The large gap extending from 0.30 to 0.35 har-
trees is mediated by the Vo2o component of the pseudopo-
tential (i.e., b,E=2

~ Voto ~
). Similarly, the small gap ex-

20"

FIG. 13. Projected Al bulk band structure corresponding to
K=(0.40,0).

tending from 0.155 to 0.165 a.u. is mediated by the V„,
component. Thus the bandstructure itself indicates that
the V», component is only a fraction as large as the Vo2o
component. The relative weakness of V», is confirmed
by experiment: I Viii I

=000g» u vs
I Vo2o I

=002gl
a.u.

Once the gap closes along I X the surface resonance
continues to reside in the (020) partial band gap, coupling
only weakly to the bulk bands through V», . We also see
additional surface structure in the small (111)hybridiza-
tion gap, corresponding to the secondary eak seen at
higher binding by Hansson and Flodstrom. ' However,
the weight in this secondary peak remains small, again
corresponding to the relative sizes of V111 and V020 ~

V. Ni(001) RESULTS

030 032

E(a.u.)

FIG. 12. The surface density of states at K=(0.40,0) in the
top layer of atoms. Irnaginarjj part of energy =0.001 a.u.

A. Charge density and work function

%'e have carried out a self-consistent calculation of the
electronic structure of Ni(001) using a single layer embed-
ded onto the substrate. The embedding potential is cal-
culated from a Ni muNI. n-tin potential taken from the
central layer of an earher slab calculation. %ith a layer
thickness a=4.7 a.u. and the distance de6ning plane
waves D=6 a.u. , we 6nd that 80 LAP&'s provide
suScient accuracy. The resulting charge density is
shown in Fig. 14, corresponding to a work function of
5.71 eV, compared with the experimental value of 5.22
eV. There is obviously room for improvement here, par-
ticularly in the choice of embedding potential. Our bulk
band structure (Fig. 15), for example, is somewhat
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FIG. 14. Self-consistent total valence charge density in the
(110)bulk Ni plane: 80 LAP%"s, D=6 a.u. Lowest contour has

@=0.004 a.u, ; successive contours differ by 0.004 a.u.
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PIG. 15. Ni band structure in (001) direction along I X
from the Moruzzi, Janak, and Williams (Ref. 23) potential.

difFerent from that of Moruzzi, Janak, and Williams
having a bandwidth of occupied states of 0.28 a.u. com-
pared with their value of 0.33 a.u. Another source of
difficulty in the calculation is the bulk potential at the in-
terface with the substrate (Sec. III 8), taken as the plane
halfway between atomic layers with the caps of the
muffin tins on either side (Fig. 2). To check the efFect of
the electrostatic boundary condition, we have shifted this
potential by —0.075 a.u., which reduces the work func-
tion to 5.65 eV. It is remarkable that a comparatively
large shift in the potential boundary condition produces
such a small shift in the work function —due, of course,
to the excellent screening in the metal. Although our
work function is too large, it is not out of line with the
values of 5.5 and 5.37 eV found in (spin-polarized) five-
and seven-layer slab calcuiations.

broadening which is large in Ni: for the state at —1.3 eV
this is likely to be of the order of 0.5 eV. However, a
rather featureless peak is seen with a width quite close to
that of the states shown in Fig. 16 between 0.16 a.u. and
the Fermi energy.

100-

B. Surface density of states

The surface density of states at K=O is shown in Fig.
16. The lowest-lying feature, the peak at E=O.OS a.u. is a
weak surface state right at the X& band edge at the top of
the lowest b, , band (Fig. 15). The feature above is associ-
ated with hz bulk states at the surface. The large feature
at 0.166 a.u. , 1.3 eV below the Fermi energy, 1ies just
be1ow the minimum of the upper 6& band, and is a second
surface state of b, , symmetry consisting mainly of the d 2

orbital. ExperimentaBy, there seems no evidence of these
two surface states, ' but this may be due to lifetime

0
—0.100

I-0.025 0.050
E (a.u)

I

0.&25 0.200

FIG. 16. The Ni(001) surface density of states at I .
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FIG. 17. The Ni(001) surface density of states at M.

At M, in the corner of the surface Brillouin zone, we
obtain the surface density of states shown in Fig. 17. The
most prominent feature is a Tamm surface state at 0.215
a.u. , the Fermi energy. This is made up of d„„orbitals,is
highly locahzed on the surface atoms, and, in this calcu-
lation, lies 0.1 eV below the corres nding bulk band. In
their seven-layer slab calculation, Wimmer, Freeman,
and Krakauer find the spin-split majority-spin Tamm
state 0.14 eV below the Fermi energy, pushed above the
corresponding bulk band by 0.24 eV. Experimentally, the
Tamm state is seen 0.05 eV below the Fermi energy, ~s

shifted only slightly upwards from the bulk majority-spin
band which, in a band structure fitted to experiment,
lies 0.10 eV below EF. Clearly our paramagnetic calcula-
tion positions the Tamm state too low in energy; it should
lie just above the bulk band at about 0.220 a.u. This
highlights perhaps the main problem in obtaining accu-
rate densities of states in the SEGF approach —getting a
good bulk potential which is completely compatible with
the surface formalism, preferably using a similar basis
and sampling k-space in an equivalent way in the self-
consisteney procedure. Nevertheless, our single-layer cal-
culation, using a simple choice of bulk potential for the
embedding;- is able to give a reasonable description of the
Ni(001) surface electronic structure.

From this work we see that the SEGF method provides
a simple way of calculating surface electronic structure.
Its advantages are that it gives the electronic structure of
a real semi-infinite system, treating the continuum of bulk
states as well as the discrete surface states correctly, and
that it concentrates on the surface region, requiring only
relatively smaH basis sets. We are presently applying the
method to other metal surfaces, with and without over-
layers, aiid to seillicoildllctors.

Remaining problems with the method are all associat-
ed with our present technique for calculating the embed-
ding potential: using the layer-doubling method with the
muffin-tin potential from a separate bulk calculation for
the substrate. This means that the self-consistency in the
bulk is not completely compatible with that in the
surface —for example, the muSn-tin potential will vary
somewhat with diferent wave vector sampling. Our
simplified treatment of the substrate also restricts our
knowledge of the potential on the interface between bulk
and surface (usual for solving Poisson's equation, see Sec.
III 8). To a large extent, both of these problems are min-
imized by the short screening length in metals; but
difliculties remain, such as the shape of the Al(001)
charge density at the interface with the substrate, and the
poor work function in the single-layer Ni(001) calcula-
tion. The problems should be resolved when we finally
adapt a bulk LAPW program to give the embedding po-
tential on the same footing as the surface potential.
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APPENDIX A: MATCHING CONDITIONS

2

BL = exp(iK R}bI (m, n)FL (m, n),
(Al)

where p is the radius of MT a, centered on (R,z ),

As in the film LAPW formalism, the coeScients of the
radial muSn-tin solutions in Eq. (16}are obtained by re-
quiring that each basis function and its first derivative be
continuous across the MT-sphere boundary for each
angular-momentum component. Thus

24'~
AL ——~ exp(iK R)ai (m, n)I'I (m, n),

ai (m, n)=

Bji(E „p} dii& (p )
iil (p )—ji(E „p)



J. E. INGLESPIELD AND G. A. BENESH

Bul (p )A«..p. ) uI (p )
Bp

~ul a(Pa)
Pa "&,a(Pa)

P 8

Fz* (m, n)= ~ [exp(ik„z )FL'(K~+„)+exp( ik—„za)I'z*(K „)],

Bj)(K „p)

Bp
b& (m, n)=

Bu~ (p )—uI (p)
P

K+„=K +k„z,and K „=K—k„z.

In these formulas the upper sign refers to the even (cosine) LAPW's, and the lower sign refers to the odd (sine) LAPW's.
u& and u& are the solutions of the radial scalar-relativistic wave equation in the MT spheres.

The vacuum coefficients, Eq. (17), are given by

BU cos(k„D/2) sin(k„D/2)
a ( m~ n)= ( D/2)X '

'
(k D/2)

' —0~( —D/2)k+ X
n N

J

BU
—cos(k„D/2) sin(k„D/2)

p*(myn)=
& ( D/2)X '

(k D/2)
'

U~( D/2)k+ X '

(k D/2)
I~

(A2)

where again the upper function refers to even and the lower to odd LAPW's. U (z) and U (z) are the solutions of the
vacuum Schrodinger equation. The geometry is that shown in Fig. 2, with positive z directed into the solid.

APPENDIX 8: OVERLAP IN THE INTERSTITIAL REGION

The contribution to the overlap integral from the interstitial region is

m'n', mn

cos(k„z) cos(k„z)
z exp' — X' X'

J

cos(k„z) cos(k„z)

J d'rexp[i(G~ —G~ ) R]X '

(k )
'X '

MT's a rea
(81)

In the even-even and odd-odd cases this becomes (upper and lower sign, respectively)

5 ~ sin[( k„—k„)D/2] sin[(k„+k„)D/2] sin[( k„,—k„)g] sin[(k„.+k„)g]
D k„—k„ k„.+k„ k„.—k„ k„.+k„

where

0 gp2exp[i(G —G .) R ]leos[(k„—k„)z ]J (K+„,K+„)icos[(k„+k„)z]J (K+,„,, K „)I,
(82)

Ji( I Ki —Kz I pa)
Ja(K, , K2)

In the even-odd case the overlap is given by

—cos[(k„—k„)D/2] cos[(k„,+k„)D/2] cos[(k„—k„)g]
D k. -k. + k. k. +

k. -k.
cos[(k„.+k„)g]

k„.+k„

gp exp[i(G —G . ) R ]I —sin[(k„—k„)z ]J (K~+.„,K~+„)+sin[(k„+k„)z]J (K+„,K „)].

APPENDIX C: HAJHILTONIAN IN THE INTERSTITIAL REGION

The kinetic-energy contribution to the Hamiltonian is obviously

+k„

(83)
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The matrix elements of the potential given by Eq. (18}are evaluated not over the integration region in Appendix 8—
that is, between —D/2 and g with the surface muSn-tin spheres entirely subtracted, but over the shaded region shown
in Fig. 2. To obtain the shaded region, partial surface and substrate muSn-tins must be subtracted from the region be-
tween D—/2 and g. This corresponds to taking zero potential between the "true" embedding surface and the plane to
which the embedding potential is transferred (Sec. II 8). The matrix elements are then

2
dz0 —D/2 20 cell

cos(k„z) cos(k„z)

(

cos(k„z} cos(k„z)
I d rexp[i(G —G ) R]X ';„{k}

'X ';„{k)
'X V(r)

f&Q

cos(k„.z ) cos(k„z)

I d r exp[i(G —G ) R]x '

(k )
'x '

(k )
'x V(r)

p
1'G CSP Of P

(C2)

MuSn tins P are those in the surface region and substrate which cross the embedding plane; and the integrals are over
the caps truncated by the plane z=g. The + sign is for surface MT spheres, correcting the previous integral which
subtracted the entire sphere. The —sign, for substrate muSn tins, makes the correction required by Fig. 2. These
correction terms for P MT spheres must be evaluated numerically.

Apart from these P corrections, the contribution to (C2) from

cos(k„-z)
sin(k z)

L

is then easily evaluated, as in (82) and (83):

a
Hm'n', mn =

2 li=1

[sin(K, g )+sin(K;D /2) ]
[—cos(K; g)+cos(K;D/2)]X '

cos(K;z )

gp exp[i(G +G -—G ) R ]X '

a
Nt Nl cE sm g .z

(
I
G +G ..—G, +K,z I p.}

X
IG +G —G +KzI

(C3)

The coeScients a; with the upper functions, and coeScients b; with the lower functions, come from rewriting the tri-
gonometric functions in the integrals as

cos(k„z) cos(k„-z} cos(k„z) 4

(k )
X ~

(k )
X ~

(k )
=

4 g [a(cos(K(z )+;sill(K;z )] (C4)

with

and

(aiyazya3ya4)=( 1, 1, 1, 1 ) and (b»bz, b3, b4)=(0,0,0,0) for cos(k„z)cos(k„-z)cos(k„z)

(a, ,az, a3,a4)=(0,0,0,0) and (b, ,b2, b3, b4)=( —1, 1, 1, 1) for cos(k„.z)cos(k„-z)sin(k„z),

(a, ,az, ai, a4)=(0,0,0,0) and (b„b2,b3, b4)=(1, —1, 1, 1) for cos(k„.z)sin(k„.z)cos(k„z),

(a„az,a3,a4)=(1,1, —1, —1) and (b, , b2, b3, b4)=(0,0,0,0) for cos(k„.z)sin(k„-z)sin(k„z),

(ai, az, a3, a4)=(1, —1, 1, —1) and (bi, b2, bs, b4)={0,0,0,0) for sin(k„.z)cos(k„-z)sin(k„z),

(a»az, az, a4)={0,0,0,0} and (b&, b2, bi, b4)=(1, 1, 1, —1) for sin(k„z)sin(k„„z)sin(k„z),

«, =(k„.+k„- k„},«z=(k„—k„-+k„),Ki=( —k„+k„-+k„),«4—=(k„+k„-+k„).

Turning to the matrix element of the linear term V, z, the first integral in (C2) between D/2 and g is eleme—ntary.
To evaluate the integrals over the muon tins a, we expand the plane waves and z in spherical harmonics, giving



J. E. INGLESFIELD AND G. A. BENESH

[cos(«.g) —cos(«.D /2)+«g sin(«g) —«.sin(«D /2)D/2]
Nl, Nt

«2D [ 51 n( «(g) +sin(«(D/2) —«(icos(«(g) —«(cos(«(D/2)D/2]
l

0 g p exp[i(G —G ) R ]
cos(«za) z,j,( IG —G +«;zIp )

'X
sin(«, z )

I
G G,+«.™z

I

—sin(«;z )

cos(«, z }

«jz( I
G —G .+«, z Ip }

I
G —G,+«, z I' (C5)

As above, the coefBcients a; and b, come from the expansion

! cos( k„.z ) cos(k„z)

)
'X '

(k )

' ——
—,
' g [a;cos(«;z)+b;sin(«, z)]
i=1

with

(C6)

(a„a2)=(1,1) and (b„bz}=(0,0) for cos(k„z}cos(k„z),

(a„az)=(0,0) and (b„bz)=(—1, 1) for cos(k„z)sin(k„z),

(a„a2}=(l,—1) and (b„bz)=(0,0) for sin(k„.z)sin(k„z),

and «, =(k„—k„)and «i —(k„.+k„)—.
The matrix elements of the quadratic term are a little more complicated but can be found in an analogous%ay. Most

diflicult are the matrix elements of the exponential terms in Eq. (18}:

.+exp(+6 -z)exp(iG -.R) .

Again the integral between D/2 and g i—s easy, but in the MT spheres we need the integral of

exp[i(G +G,.—6 .) R ]exp(6 -z)exp(i«;z) .

This is a plane wave with complex energy and wave vector, which can be expanded in spherical waves with complex ar-
gument. Upon integrating over the sphere, the only nonvanishing contribution comes from the first term in the expan-
sion, j0(«r ), where «=(x,y), and

2
+G G

I
2+«z g2 +[( I

G +G G
I
z+P g2 )2+4«262 ]1/2]1/2

1
I
—

I
G~+G~" Gm'

I
—«~r+Gm" +—[(IG~+Gm"'—Gm' I

+«i' 6"}—+4«gm" ]'
2

It then follows that

Prz j,((x+iy}p )
d r exp[i(G +G -—G, ).R~]exp(6 -z )exp(i«;z ) =4mp~

0 X +lg

We then find that the contribution to the matrix element from V +exp(6 -z )exp(iG - R) is

(C7)

2 II IH~'„„=V -+ g a; . ' [6 cos(«;g)exp(6 -g)+«;sin(«;g)exp(6 -g)D(6 -+«;)

—6 ..cos(«, D/2)exp( —6 -D /2)+«, sin(«, D /2)exp( —6 -D/2)]

4m j&((x+iy)p )
gp exp[i(G +G -—G ) R ]exp(6 -z )Re exp(i«, z )

(C9)
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2 sr s

Hgl'„,. „=V ., + g b,
' [6 -sin(~;g)exp(6 -g) —n;cos(x,.g)exp(G -g)

D(6 -+;) ™

+6 -sin(a;D/2)exp( —6 -D/2)+a';cos(~;D/2)exp( —6 -D/2)]

4m' j&((x+iy)p )
gp exp[i(G +G -—G ) R ]exp(6 -z )Im exp(ia;z . )

X +lg

There is a similar expression for the contribution from V exp( —6 -z)exp(iG - R).

APPENDIX D' OVERLAP IN THE MT SPHERES

The overlap contribution from muffin tin a can be written in terms of coefficients AL+ and Bz~ as

0'.„',. „=g[AP '(m', n')Az* (m, n)+Br* (rn', n')BL (m, n)NI ],
L

(D 1)

where Nr is the normalization of M, (r) through the muffi-tin sphere. (u& and rl& are orthogonal. ) In the even-
even and odd-odd cases, Eq. (Dl) can be rewritten as

0'.„'.. „= p exp[i(G —G .) R ]g(21+1)[al (rn', n')aI ~(m, n)+b'l (m', n')bI (m, n)NI ]
I

X leos[(k„—k„.)z ] Pl( K+„.K+.„)Rcos[( k„+k„.)z ]P,(K+„K„.)I,

where aI and b& are given in Appendix A, and the arguments of the Legendre polynomials are the cosines of the an-
gles between K~E and K~ LE~.

Similarly, in the evenwdd case the overlap is

0' „'.„= p exp[i(G —G .) R ]g(21+1)[ar (m', n')aI (m, n)+bI (m', n')bl (m, n)N~ ]
I

X I sin[(k„—k„)z ]P,(K +„K+ „)+sin[(k„+k„)z ]P,(K +„K„)),
(D3)

APPENDIX E: HAMILTONIAN IN THE MT SPHERES

The matrix element of the nonspherical components of the potential, Eq. {19),must be found numerically. However,
the contribution from the spherical part of the Hamiltonian can be found seminumerically, because u& and u&, are
solutions of the scalar-relativistic equation with potential Vo(r). Analogous to Eq. (D2) we have in the even-even and
odd-odd cases:

p4exp[iG —G }.R ]g(2l+1}[ar (m', n')a~ (m, n)EI
I

+b,.(m', n')b, .(m, n)&u, .[H [ a, .)

+a, {m',n')b& {m,n)(u, [ H
f ri& )

+bI (m', n')aI (m, n)(u,
~
H

~
u& )]

X Icos[(k„—k„)z]P&(K+„K+„}+cos[(k„+k„}z]P,(k+„k „)I.

Because u, satisffes Hul E& u&, and sinc——e ul is orthogonal to u&, we see that (r4&
~
H

~
ul ~) =O. From the

scalar-relativistic equation eve can shiv that
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where we have included the relativistic correction.
In the even-odd case the contribution is

I
I'cl "i, &

and &ttt [H
~

ttt } E——i N
2m@

(E2)

JI"„'.. „= p'.exp[t(G —G . ) R.]y(2l+i)[a, (m', n')a, .(m, n)E, .+b, .(m', n')b, .(m, n)&u, .~a
~
a, .&

1

+ai (m', n')bi (m, n)&tt& ~H
~

t't& }]
X Isin[(k„—k„.}z,]Pi(k+„k~+ „)+sin[(k„+k„)z]Pi(K+„k „)I.

APPENDIX F: OVERLAP IN THE VACUUM REGION

The overlap contribution in the vacuum region is given
by

0 .„,. „=A5 .[a+(m, n')a*(m, n)

+P*(m, n')P*(m, n)N ], (Fl)

where a* and P* are as given in Appendix A. N is the
normalization of U (z) through the vacuum region and A

is the area of the 2D unit cell.

APPENDIX G: HAMII TONIAN
IN THE VACUUM REGION

The matrix element of the planar-averaged part of the
Hamiltonian is given by

where E„is the energy at which u (z) satis6es the
Schrodinger equation with potential Vo(z), Eq. (20}. The
matrix elements of the higher Fourier components of the
potential are found numerically.

APPENDIX H: EMBEDDING CONTRIBUTION
TO THE HAMII TONIAN

The matrix element of the embedding potential is given
by Eq. (21); however, we must also add the derivative
contribution to the Hamiltonian, Eq. (7):

cos(k„g)

& .„.. „=AS IE„[a+(m,n')a*(m, n)

+13+(m, n ')P+( m, n )N ]

+a (m, n'}P+(m, n}I, (Gl)

—sin(k„g)

cos(k„g)

This term ensures the overall hermiticity of 0 .„..
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