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Conductivity of Kondo-type systems in the presence of crystal fields

%ei Guo and Peter M. Levy
Department ofPhysics, New York Uniuersity, 4 Washington Place, ¹wFork, ¹wFork 70003

(Received 22 July 1987; revised manuscript received 30 November 19S7)

By starting with the expression for the conductivity of Kondo-type systems in the presence of
crystal Selds as calculated by the Kubo formalism, me derive the expression found from the
Boltzmann equation. To rewrite the compact Kubo expression in the more cumbersome expression
found in the semiclassical Boltzmann approach, we use a generalization of the optical theorem to
finite-temperature propagators. Also, we calculate the conductivity through third order in the cou-
pling constant J= V~/E~ and obtain agreement arith previous results.

The efFects of crystal fields on such properties as the
susceptibility and conductivity in Kondo systems have
been extensively studied by Maekawa, Takahashi, Kashi-
ba, and Tachiki. ' In their work the Kubo formalism is
properly used to obtain these properties. However, in
one article the conductivity is found by using the
Boltzmann-equation approach. Although the final result
is correct, a factor is missing in the expression for the re-
laxation time, which accounts for inelastic-scattering pro-
cesses due to transitions between crystal-Seld levels.
When one uses the proper expression for the relaxation
time, the conventional optical theorem as used in the ex-
tant derivation is inapplicable. Here we derive the ap-
propriate extension of this theorem for finite-temperature
propagator s.

I

There are at least two ways to calculate the resistivity
(conductivity) of alloys containing Kondo-type impurities
that are subject to crystal fields. In a semiclassical ap-
proach one solves the Boltzmann equation in the
relaxation-time approximation and uses the resulting
electron relaxation time to evaluate the conductivity
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Note we have set Pi= 1. The transport relaxation time for
inelastic scattering of conduction electrons, due to transi-
tions between crystal field levels of the magnetic impuri-
ties, is given as
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where the inelasticity is characterized by the factor
R ( m, m ', sk ) which is defined as

R (m, m', st, )=[1—f (sz)(1 —e )] ' (3)

and f(ek)=(1+e ") ', ek ——p /2m —
JM, where p is the

chemical potential. The factor 8 is just 1 when the
scattering is elastic.

In the second approach the dc conductivity is ex-
pressed in terms of the current-current correlation func-
tion by the Kubo formula

r

cr= lim Im I d~ 'e(T,J( ).Jr(0))
1

~~o 3vco 0

eJ=——g kCt Ci,
k, cr

and v is the volume. For Kondo ions, Fulde and Peschel
have shown that when one neglects vertex corrections the
dc conductivity is given by Eq. (1), but with a relaxation
time given by

where X,(to) is the self-energy of the conduction elec-
trons. This form of the relaxation time looks consider-
ably simpler than the one arrived at in the semiclassical
approach, and it is by no means obvious that the two ex-
pressions, Eqs. (2) and (5), are equal. Here we will show
their equality, i.e., by starting with Eq. (5) we will derive
Eq. (2) by using the Anderson model of local moments in
metals. To establish the link between these expressions,
we use a generalization of the optical theorem to systems
at finite temperatures.

In the limit of infinite intra-atonic Coulomb energy for
the Anderson model, the restriction of one local electron
per site can be accounted for by introducing a slave bo-
son. By introducing this auxiliary particle, the local f
electron operators entering the Anderson Hamiltonian
obey fermion commutation relations, instead of the more
complicated ones for the original problem. In terms of
slave bosons the Anderson Hamiltonian in the presence
of a crystalline electric 6eld is written as
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N, is the number of sites, and the restriction of one local
electron per site is given by Q = l. When we limit our-
selves to spherical mixing, only the 1=3 partial-wave
component of the conduction electron is scattered by the
mixing interaction Vz . After averaging over the posi-
tions i of the Kondo impurities one Snds that when all
the scattering is limited to one angular-momentum chan-
nel, there are no vertex corrections to the current-current
correlation function. 7 For the Anderson model the self-
energy of the conduction electrons is

X,(kcr, co)=c; g ~
Vz

~

6 f(co),

where c; is the concentration of magnetic ions and the re-
laxation time (5) is given as

'(k, cr)=2c; g ~
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where p (co} is the local 4f-electron spectral density
function.

In the limit of large degeneracy of the 4f state, vertex
corrections to self-energy loops can be neglected, and the
4f spectral density function is

X fdf4 I V),

The density of states for conduction electrons is p((), and

f (g) is the Fermi function. These equations are equally
valid for strong couphng, T & Tk, as for weak coupling
T ~ Tk, where T'i, is the Kondo temperature.

To leading order in 1/Nf the 4f spectral density func-
tion is found by using the bare spectral density function
for the pseudo-f-electron, i.e. s's

A (co)=n5(co —E )

so that the 4f spectral function, Eq. (9},is
I—Pru
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where w:—e /Z4f. So to leading order in 1/Nf we

Snd the relaxation time, Eq. (8), is given as
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where Z4f is the partition function, A (co) the spectral
density function for the pseudo-fwlectron (f ), and
8(co) the spectral function for the slave boson. These
spectral functions are determined by self-consistently
solving the equations'

(14)

D (co}=Do(co)+D (co)Xi,(co)D(co), (15)

where the superscripts refer to the order of the hybridiza-
tion coupling constant used to derive the quantity, i.e.,
zero denotes a bare propagator. The zeroth-order boson
propagator is

D (co}=—,o 1

N
(16)

Also, to leading order in 1/Nf the renormalized boson
spectral function corresponds to the propagator shown in
Fig. 1. This renormalized propagator satisSes the Dyson
eqQat1OQ
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FIG. 1. The renormalized boson propagator (bold wiggly
line) in terms of the bare propagator C,thin line) and the lowest-
order boson self-energy represented by the bubble made up from
conduction- (sohd line) and pseudo-f- (dashed} electron propa-
gators.
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and the self-energy of the boson X&(t0) represented by the
bubble in Fig. 1 is given by Eqs. (10d) and (11):

X&(co)=XI, '(t0) =fd t0' g 5(r0' E—)K (t0 t—0' )

When we take the Hermitian adjoint of this expression
and subtract the propagator D(t0) from its adjoint, we

Snd

D (t0) D—(to) =D (t0)[Xb{co) X—b(co)]D(co) . (21)

=+K (t0 —E ) . (17)

As we will presently show by placing Eqs. (16) and (17)
in Eq. (15}and taking the imaginary part, we find the bo-
son spectral density correction to second order in the
mixing parameter V. When used in Eqs. (9} and (8) this
yields the relaxation time correct to fourth order in V.
This procedure is then repeated as in Fig. 1 to produce
higherwrder corrections to the relaxation time. Howev-
er, first we will show how our expression, Eq. (8), can be
written as Eq. (2). By taking the Hermitian adjoint of Eq.
(15) and recognizing that D (t0) has been taken to be
real, 9 we Snd

Dt(ai)=D (ai)+Dt(ai)Xb(ai)D (t0) . (18)

Therefore we can write the bare propagator in terms of
the renormalized one as

8(a))= —ImD(a))

= —D t(c0)ImXb(ai)D (c0) . (22)

By taking the imaginary part of the boson self-energy Eq.
(17), and from the definition of the kernel, Eq. (10e), we
find
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This is the relation we need to relate Eq. (8) to Eq. (2); it
is an extension of the conventional optical theorem to
temperature-dependent propagators.

From our central result of Eq. (21) the boson spectral
density can be written as

D (to) =Dt(to)[1 Xb(te)D—(t0)] .
X&(&k —E +~) . (23)

By placing this in Eq. (15) we find

D{co)=D (co)+D~(t0)Xs(~)D(~)

D(t0)XJ(—co)D (ro)X&(co)D(co) .
When we place Eqs. (22) and (23) in Eq. (14), we find the
relaxation time is
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By defining the elements of a "t matrix" as
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and concomitantly setting ~= e.I, we find
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FIG. 2. The relation of the electron-hole t matrix de5ned by
Eq. (25) to the electrouwlectrou T matrix used for the transition
pmbability in Eq. (2).

=w .R(m', m;sk),
where h~ =—E —E

The t matrix we defined in Eq. (25} describes electron-
hole scattering processes, while the T matrix defined in
Eq. (2) describes electron-electron scattering. The rela-
tion between these two as shown in Fig. 2 is given by
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&k~ I ~r tk~, ~&=(k&,~ ~T [k&,~'&. Q8}

By substituting Eqs. (27) and {28) into Eq. (26) and inter-

changing the variables m and n', we Snd

'(k, ~)=2c; g iii R (m, rn', E„)
««

m«m «cT

As we will be interested in the density about N=0, the
Fernu surface, and as the crystal field splittings are small
compared to the distance of the levels from the Fermi
level, we can set E —~=Ef—~=Ef, in the denomina-
tor of Eq. (31). Furthermore, we can set
p(h ~ +N)~p(0), the conduction electron density of
states at the Fermi level. By setting the hybridization

2 constant (
~ Vi, m ~

& —:V and defining V /Ef as the
el'ective exchange coupling J, we find

Xfi(e,+E, E e ) (29) P4f' (N)=w (1+e~) g f(E E+—N) . (32)
m'

This is the semiclassical expression Eq. (2) for scattering
processes for which the factor (k'cos8')/(kcos8) does
not enter because there are no vertex corrections when all
the scattering takes place in one angular-momentum
channel. This completes the derivation of the semiclassi-
cal expression for the Kubo formula.

To compare the results we obtain for the conductivity
of Kondo ions in the presence of crystal fields to previous
ones, ' we now calculate the conductivity for T»Tk,
i.e., the weak-coupling regime, by directly evaluating the
boson spectral density Eq. (22). To lowest order we place
the bare boson propagator (16} in Eq. (22} and after in-
tegration over intermediate states we find

X& I Vi, , m I &f«m -N)P(& ~ +N)
2

m'

By placing this density in Eq. (8) and noticing that

y 2 1@2

we find the first contribution to the relaxation time is
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This is just the first term Rk found by Cornut and Coqb-
lin' when one recognizes that we have excluded impurity
scattering from mechanisms other than mixing, i.e., we
set V of Ref. 10 to zero.

To calculate r ' to next order in Jwe consider the first
correction to the boson propagator in Eq. {22),which, by
using the same simplifications as in Eqs. (30}-(32},can be
written as

8'"(N)=py &
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By using Eq. (16) for D (N) and Eq. (17) for Xp'(N) from Eq. (15), we find
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and

[D' 't(N)D' '(N)+D'Oi(N)D'2'(N)]= yReli' -(N E-)—2 (36}

The resultant boson spectral function is
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The 4f spectral density function is

(38)
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2V4p"'(ai)=2, to f '(ai)g f(E . E—+co)QP fdic (39)

And the relaxation time, Eq. (8), to third order in the
coupling J is

(29}, for the Anderson model can be written as in Ref. 2

2c,——piJi g ia f '(co)f (E . E—+ra) '= —2c, @to Im(ko, m
~

t
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By comparing this to Eq. (40) of Ref. 10, we find it agrees
with the second term found by Cornut and Coqblin when
one sets their impurity potential V equal to zero and
when one recognizes that to lowest order in I/Nf the
term with m =m ' =m" does not contribute to ~

We have shown for the infinite-U Anderson model that
the relaxation time and thus the conductivity, at least
through third order in the coupling J, calculated on the
basis of Eq. (5} is identical to that found by using Eq.
(2}.'o Whereas the first is derived on the basis of the
Kubo formalism, the latter comes from a Boltzmann-
equation approach. The relaxation time, Eqs. (5) and

l

T= V+ VGV (42)

in one state
l
ko, m ).

The optical theorem as conventionally used in quan-
tum mechanics" refers to expectation values of the tran-
sition operator and not to thermal averages. Therefore it
is not possible to write, at Snite temperatures, '

On comparing this expression with Eq. (2), used by Cor-
nut and Coqbhn, it is remarkable how such a simple
form, which does not explicitly take note of inelastic pro-
cesses, reproduces the results of the more cumbersome
looking expression. The key observation is that the "r
matrix" in Eq. (41) represents a temperature ensemble
average over the states of the system; it does not have the
conventional meaning as the expectation value of the
transition operator

gf
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As we have shown, when one properly interprets these r

matrices as temperature-dependent propagators or
effective interactions, see Eqs. (15) and (25), the right-
hand side of Eq. (43) contains the inelastic-scattering fac-
tor R(mrrt', ek}, Eq. (3). Thus the sum over the inter-
mediate states on the right-hand side of Eq. (43) contains
this factor which does not appear in the optical theorem
as used in quantum-mechanical scattering theory. "

In summary, we have derived the cumbersome expres-
sion for the relaxation time found by using the
Boltzmann-equation approach from the compact expres-
sion found from the Kubo formula. The transcription
made use of a generalization of the optical theorem to
finite-temperature propagators, Eq. (21}. Also we have

calculated the efFects of crystal 6elds on the conductivity
of the infinite-U Anderson model in the limit of large de-
generacy Nf by using the Kubo formalism. To compare
our results with the weak-coupling calculation of Cornut
and Coqblin we have expanded our results to sixth order
in the mixing parameter Vi, , i.e., to third order in the
eN'ective exchange parameter J.
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