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Thermoelectric power in disordered electronic systems near the Anderson transition
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The number-density-heat-density correlation function g„&(q;co)for a noninteracting disordered

electronic system, is evaluated at small wave vector and frequency by diagrammatic techniques and

shown to meet its general hydrodynamic requirements. This analysis leads us to the conclusion that

the ratio of the coeScient Q of thermoelectric power and of the temperature T diverges at the local-

ization transition.

In this paper we evaluate the wave-vector- and
frequency-dependent number-density-heat-density corre-
lation function X„&(q;c0)in the hydrodynamic limit for a
noninteracting disordered electronic system, by using di-
agrammatic techniques. Standard scaling arguments al-
low us then to extend the results near the Anderson tran-
sition. Evaluation of the "mixed" correlation function
X Q proves to be quite interesting, since it shows novel
features (namely, the occurrence of a double pole) with
respect to the well-studied number-density correlation
function X„„.' The present work completes the analysis
of the thermal properties of noninteracting disordered
electronic systems carried out in Ref. 2 via the evaluation
of the heat-density correlation function g&&.

Our analysis enables us to predict the scaling behavior
of the coefficient of thermoelectric power Q (that relates
the voltage drop produced by a temperature gradient in
open-circuit conditions3) near the Anderson transition.
Our result for Q is, however, in contrast with a previous
perturbation calculation in the presence of nonmagnetic
impurities, which led to a noncritical behavior for Q. Be-
fore embarking on the details of the perturbative analysis,
it is thus worthwhile to give an alternative argument
based on an exact expression for the transport coefficients
provided by Chester and Thellung, which yields quite
generally the scaling behavior of Q. The following argu-
ment to predict the scaling behavior of Q parallels the
derivation by Sivan and Imry within the context of a mul-
tichannel Landauer approach.

For a system which can be described by a sum of one-
particle Hamiltonians, is has been shown that the kinetic
coeScients I.;~ can be cast in the form

enter the linear equations for the number (j) and heat

(J&) currents

(j)= L»Vp—L,2T—'VT,

(Jg) = L~, Vp—Lg2T —'VT (2b)

L =(n /3)k T12 8 dE
I

Lzz ——(n /3)k&T S(p),

(3b)

(3c)

which are valid irrespective of the amount of disorder.
Equations (3}are suitable to relate the critical behavior of
o, «, and Q near the Anderson transition. In fact, from
the knowledge of the power-law behavior of the electrical
conductivity near the Anderson transition, namely,

S (p) =o(p)/e'-(IJ, E, )', —

where p, —E, is the difference between the Fermi energy
and the mabihty edge E, and s is the conductivity ex-
ponent, ' we can obtain both the Wiedemann-Franz law
in the form «/T-(p 'E, }' as T +—0, ~ as well as—the
asymptotic behavior of L,2,

set on by gradients of the thermodynamic parameters,
and are related to the electrical conductivity o =e2L»,
the thermal conductivity «=(L11L22 L12 }(TLll }

and the coeScient of thermoelectric power Q
=L&z(eTL» )

' (e being the electronic charge).
The Sommerfeld expansion can be used to obtain the

low-temperature leading contributions to L;, ,

(3a)

L)) ———I dE S(E} (la) T2(p E )s —1

I.i2 ——I.2)
——— E E —p S E+ oo df(E)

dE
For the coeScient of thermoelectric power we then Snd

(lb)

L22 ———J dE(E p, ) S(E)—
dE

(1c)
dS (E)

dE
S(p} '-T(p E,)—

where f(E)=II+exp[(E p)/ksT]I ' is t—he Fermi
function, T is the temperature, and p is the chemical po-
tential. In Eqs. (1) the function S(E) includes all
system-dependent features through the density of states
and the current matrix elements. The coef6cients I.;J

that is, Q/T diverges at the localization threshold. In
the presence of nonmagnetic impurities the exponent s is
given by s =1+0(e ) with e=d —2 (d being the dimen-
sionality). " At the same order L iz —T is thus

unalected by the locahzation transition. In the presence
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of magnetic impurities, on the other hand, s equals —,
' at

two lo-op order, ' which yields L i2 —T (p E—, )

Ting, Houghton, and Senna, by taking into account
the quantum interference in bvo dimensions due to the
efkct of nonmagnetic impurities at the one-loop approxi-
mation, found the same logarithmically singular contri-
bution to 0 and I.,z, thereby suggesting the same ex-
ponentiation for these two quantities and Q/T=const at
the transition. We believe that the results (5) and (6) are
instead correct since, in the presence of nonmagnetic im-
purities, the one-loop contribution to o (E}is independent
of E and thus does not contribute to L iz according to Eq.
(3b). s This conclusion is supported by the following per-
turbative analysis.

L,2 can be obtained by calculating either the current-
current or the density-density correlation functions. We
prefer to adopt the latter approach since it allows for a
systematic use of %'ard identities and for a direct com-

parison vvith the analysis of the nonlinear o model. 1.&2

will thus be obtained as the "rapid" limit

L,~
=—lim lim 1m[X„g(q;co)]

co~0 q~o q

Here X„&(q;co)is the Fourier transform of the number-
density-heat-density correlation function

X„&(r—r', r t'—) = i8—(t —t')([p(r, t),A(r', t')]),
where p and R are the number and grand-canonical
Harniltonian densities, respectively, and the overbar on
the thermal average denotes a quenched impurity aver-
age. Specifically, me consider an on-site impurity poten-
tial u (r) with Gaussian distribution u (r}u (r')
=u i 5(r —r').

The Fourier transform of the temperature function
corresponding to (8) can be written as2

g„&(q;Qi)=—V ' fdr fdr'e 'q" "ksT g [25(r—r') G(r, r;co„) i( 2—co„+Q&)G(r, r', co„+Q&)G(r', r;co„)],

where V is the volume occupied by the system, co„andQz are fermionic and bosonic Matsubara frequencies, respective-
ly, and G(r, r';co„}=[ice„—ho(r)] 5(r —r') is the temperature single-particle Green's function associated with the
one-particle Hamiltonian ho{r)= —V /2m+m�(r) —p (at fixed conSguration of disorder). Upon taking the analytic
continuation of Eq. (9) to the upper side of the real frequency axis and transforming the sum over the fermionic fre-
quencies ~„into an integral along the real axis, X„&(q;co)for small values of q and co is naturally partitioned into a
"static" part (that survives in the hmit co~0) and a "dynamic" part:

X„~(q;co)=X'„'&+X/&"(q;co),

where

(10a)

X" = dE(E —ijt, )v(E) = T—
dE

=
aT

„

is a thermodynamic derivative, and (co~0)

X„~g"(q;co)=(i')/n V) f dE(E —p) fdr f dr'e 'q" "G„(r,r', E —@+co)G„(r',r;E —p) .

(10b)

(10c)

In the static part (10b) we have used the identity and introduced the average single-particle density of
states (including spin degeneracy)

dGa ( g)(r«r«E) = —fdr Gs ( g~(r«r «E}G (sg){r «r E)«
v(E) = (2/m )Im[Ga(r, r—;E —p)] . (12)

that holds for the retarded (advanced) single-particle
Green's function

Gz ~ ~~ (r, r';E) =[Eki5—ho(r)] '5(r —r') (5~0+ ),

The average of the product Gz 6„entering the dynam-
ic part (10c) has been extensively considered in the litera-
ture. ' Both a direct perturbative evaluation and the non-
linear o -model analysis provide

V ' fdr fdr'e 'q" ''
zG(r, r'; E@+co)G„(r',r;E —p)=

D (E)q —iso
(13)
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where D (E) is by defimtion the difFusion coetficient at en-
ergy E and is logarithmically singular as a function of ro

in two dimensions.
Insertion of Eqs. (10b), (10c), and (13) into Eq. (10a)

eventually yields

( ) f + dE(E )
v(E)D(E)q df (E)
D (E)q i ca—

(14)

which can be thought of as resulting from a superposition
of diIFusive modes at different energies. In the low-
temperature limit the integral in Eq. (14) can be calculat-
ed by the Sommerfeld expansion, giving

to this order.
In the presence of nonmagnetic impurities, the one-

loop correction to S{E)(which leads to the Anderson lo-
calization) is given by 5S(E)=(2n ) 'in[air{E)] which
shows only an irrelevant dependence on E [via r(E)]
since the prefactor is constant. No logarithmic contribu-
tion is thus present in I.I2. This result is consistent, at
the order here considered, with the scaling behavior (5)
with s =1.

In the presence of magnetic impurities, on the other
hand, the first correction in the 2+@ expansion gives
5S(E)=e [4n oo(E)] 'ln[ror{E)] with a prefactor that
depends explicitly on E via oo(E)." L,2 acquires thus a
logarithmic correction:

2

X„g(q;ro)= —(rr /3)k&T
(Dqz —ice)2 L,i ——Li2I1 —e [2e oo(}u)] in[co~(p, )]I . (20)

&& [v'D q i (v'D—+vD')co], (15)

where all quantities 0, v' =d v(E) /dE, D (E), and
D'=dD(E)/dE are evaluated at E=}u. According to
Eq. (15),X„gshows a double pole which is not present in
either X„„orXgg. ' The form (15) is in agreement with
the general hydrodynamic structure

DqDgX„gq +iL i2fd
X„g(q;co)=q2

(D„qz i ai ){Dg—q iso)— (16)

which can be obtained by the methods «Ref 11
Eq. (16) D„and Dg are the number and heat diSuslon
coefficients, respectively, that are known to coincide with
D for noninteracting disordered elo:trons. Comparison
of Eq. (15) with Eq. (16) then gives

X'„'g— (m /3)ksT —v', (17a)

L.„=(S/3)k,'T' (17b)

S(E)=v(E)D(E) . (18)

In the continuous model we are considering, to zero-
loop order (i.e., when no quantum interference is present}
S(E) is given by ao(E)/e =v(E)DO(E) with diffusion
coe%cient Do(E}=2m(E)Em 'd '. ' Here r(E) is the
scattering time in the Born approximation, which is
speci5ied by the consistency condition

nv(E)r(E)u =1 . (19)

Equation (17b) then gives

L i2 (n /3)ka T v(p)Do(——p, )p

which are both correct in view of Eqs. (10b) and {7).
Equation (17b) is then consistent with Eq. (3b) provided
we identify"

At the fixed- oint value for the dimensionless conduc-
tance e /(2 o')=(e/2)'~, upon exponentiation of the
expression {20)for L, z we obtain the scaling behavior

L„T2-co '~ -P-(p E,)— (21)

where we have introduced the localization length
g-(p E, )

" w—ith exponent v=(2e) ' in the present
case. Agreement with Eq. (5} is thus recovered in both
cases.

It is worthwhile at this point to try a comparison of
these results with experiments. To our knowledge, the
available experimental data on thermal power are on pal-
ladium, palladium-gold, ' and bismuth's thin films,
where, owing to their two-dimensional character, the lo-
calization transition should not occur. In these cases a
comparison with the predictions of the theory can then
possibly be made in the weak-localization regime only,
where the same logarithmic increase of the resistivity
should be observed for the thermal power in the absence
of magnetic efFects. The available data in the literature
are not detailed enough in this region to allow for a com-
parison with the theory. Experiments in three-
dimensional systems would provide further useful infor-
mation near the transition. One should, however, be
aware of the fact that it might be necessary to extend the
theory to include the electron-electron interaction, espe-
cially when a spin-orbit coupling is present as in the ma-
terials thus far considered.

In conclusion, we have presented a perturbative calcu-
lation for the number-density-heat-density correlation
function of a noninteracting disordered electromc system,
and derived from it both the hydrodynamic expression
for this function and the scaling behavior of the
coeScients of thermoelectric power near the Anderson
transition.

Nore added in pI'oof. After submission of this paper,
we became aware of the work by V. V. Afonin, Yu. M.
Gal'perin, and V. I.. Gurevich, Zh. Eksp. Teor. Fiz. 87,
335 (1984) [Sov. Phys. —JETP 60, 194 (1984)], where the
incorrect result of Ref. 4 was questioned and corrected in
agreement with our result.
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