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Anderson localization is reexamined in the presence of interaction between impurities in two and
three dimensions. The interaction gives rise to local order or, alternatively, to a correlated impurity
probabihty distribution. This distribution is constructed explicitly with use of mean-Seid theory for
a model system of a disordered binary alloy with one of the components modeling the impurities.
The new probabihty distribution is then used to recalculate perturbatively the conductivity, starting
from the metallic limit. %hen the interaction between impurities is repulsive, the conductivity is
found to decrease relative to the noncorrelated case. The results are also analyzed with use of the
renormahzation group. If short-range interactions are considered, the critical exponents are un-

changed but the value of the Sxed-point coupling depends on some model parameters, which we re-
late to the experimental ones. Our results then St qualitatively we11 the experimental data obtained
for two quite dilerent systems. In both cases, by varying the strength of the local order in a way
specific to each experiment, a metal-insulator transition is induced even if, in the absence of any or-
dering, the system is metallic.

I. INTRODU&axON

According to the theory of Anderson localization, '

upon increasing the disorder in a metal, the extended
electronic states of the system become localized. When
this happens, the metallic properties are lost; the system
becomes an insulator. This metal-insulator transition, in
three dimensions (3D},occurs at a finite value of the dis-
order. In 1D and 2D, any nonzero value of the disorder
induces the transition. In the early discussions on Ander-
son localization, the electrons were considered to be
noninteracting. Electron correlations introduce further
complications. In fact the theory becomes so complicat-
ed that it is still not fully understood.

The impurities, which cause the disorder, are general-
ly3 considered to be independently distributed, according
to some probability distribution. They interact with the
electrons via a static, typically short-range interaction.
Physical quantities, like the conductivity, are to be calcu-
lated for a given configuration of impurities and averag-
ing over those configurations is to be done at the final
stage. It is this quenched averaging which makes the
problem complicated, even in the simplest case of in-
dependent impurities. On the other hand, if the metal-
insulator transition occurs for a finite concentration of
impurities, which may be as high as 50%, it is difficult
to imagine how a picture of independent impurities can
be correct. Correlations between impurities are bound to
be present and play a role. Depending on their range,
these correlations may or may not change the universal
properties of the Anderson transition. In any case they
are important for the interpretation of experimental re-
sults. The aim of the present paper is to demonstrate
that it is in fact so (in particular, as far as the fixed-point

value of the theory is concerned).
In Ref. 4 it was shown that a metal-insulator transition

can be induced by a rearrangement of the atoms, pro-
duced by annealing the samples.

'

On the other hand, it.
has been shown in the past that local order between im-
purities may lower the conductivity, alone, independently
of any Anderson localization effect. We are going to ex-
plain how the argument goes, shortly. The same lower-
ing of the conductivity by local (or short-range) order is
also encountered in a very difFerent system, the
Bechgaard salts (TMTSeF)2SCN, where it is experimen-
tally observed that a short-range incommensurate modu-
lation forms, which tends to localize the electrons and de-
crease the conductivity. (Here TMTSeF is an abbrevia-
tion for tetramethyltetraselenafulvalene. }

In the present work we examine, in 3D and 2D, how
local order between the impurities, produced when in-
teractions among them are taken into account, modifies
both the Drude value of the conductivity (as was done in
3D in Ref. 5), and also the Anderson-type localization
contribution. More precisely, we calculate the effect of
this local order on each term of the standard perturbation
theory [in terms of 1/(kFl)t used to study localization
(kF stands for the Fermi momentum, / for the mean free
path}. In this work we only consider noninteracting elec-
trons. Vfe were initially motivated by the experimental
result of Ref. 4. However, we beheve that the validity of
our theory is much broader. It could, for instance, be
used in connection with the experiments on pressure-
induced metal-insulator transitions as well as with those
of Ref. 6.

I et us 5rst recall the argument concerning the effect of
atomic short-range order on the conductivity. The effect
of atomic short-range order, produced by the interaction
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between the impurities or more generally between any
scattering centers, has been investigated, among others,
in the early work of Refs. 9, 10, and 5. The model intro-
duced in Ref. 9 for spins in 30 was applied soon after, in
Ref. 10, to 3D alloys of nonmagnetic components. The
advantage of this simple model was the following: It pro-
duced a recurrence formula which gave ordering parame-
ters at increasing distances from given atoms as a func-
tion of temperature and interactions. These ordering
functions provided an interpolation between the long-
range order (if any) and the standard short-range order. "
The resulting formulas were simple enough to be easily
incorporated in the calculation of the transport phenome-
na. As a consequence, deviations from the Drude value
cro of the conductivity were obtained due to the local or-
dering of interacting atoms. These deviations physically
resulted from the interference of electronic plane waves
scattered by coupled atoms, analogously to the interfer-
ence of electromagnetic waves propagating through slits
in a screen. This interference is constructive or destruc-
tive, depending on the nature of the interactions. Later
on a particular case was considered, where the coupling
was due to second-order indirect interaction via the elec-
trons, of the Ruderman-Kittel-Kasuya- Yosida (RKKY)
type, between two spins in the case of magnetic impuri-
ties, or between two excess charges, in the nonmagnetic
case. '3 It was pointed out that the indirect interaction
has the same oscillating form as that of the interference
factor, so that their product is positive. As a conse-
quence the deviations from the Drude formula are in the
sense of decreasing the conductiuity, at least for weak
scatterers. ' Were it not for the coupling between the
impurities, the interference term, by itself, would average
to zero and give no contribution (as is the case in the lo-
calization problem with independent impurities, where
only self-interacting paths survive' };for coupled impuri-
ties instead, all paths contribute.

In most experimental studies on localization, the sam-
ples are prepared at high temperature and then quenched
(in the following we will call To the quenching tempera-
ture). In the existing localization theories, To is implicit-
ly inSnite so that the impurities are independent and the
local order is absent. But in actual experiments, To is a1-

ways finite, and thus a local order is present. In systems
which atomically order at some temperature T„ the role
of the local order is maximal in the neighborhood of

9—11
~ ~

In view of recent developments on the theory of An-
derson localization, in a consistent renormalization group
(RG) treatment of the problem one should also renormal-
ize the impurity interactions. If the interactions are of
short range, the critical exponents are not expected to be
changed, whereas the Sxed-point value of the disorder pa-
rameter will defmitively be changed as demonstrated in
the following.

Our paper is organized as follows. In Sec. II we ca1cu-
late in 3D and 2D the correlated distribution function
following the ideas of Ref. 10. Section III contains the
derivation, by standard technique, ' of the modi6ed
Drude formula via the eSect of the normal ladder dia-
gram in the particle-hole channel oNi, in Sec. IV we cal-

culate the weak localization contribution through the
maximally crossed diagram o Mc in the presence of im-

purity correlations. In Sec. V we analyze our perturba-
tive result, in particular when the interactions are of the
indirect RKKY type. In Sec. VI we repeat the analysis
by using the renormalization group. In Sec. VII we dis-
cuss our results in connection with the experimental cases
of Refs. 4 and 6.

II. THE IMPURIiY PROSASII.I.z.Y DISTRIBUTION
IN THE PRESENCE QF I.OCAX. ORDER

BETWEEN SCAx r ERXNG ATOMS

In this section we recall the main steps of Ref. 10 by re-
formulating them in a way convenient for our further dis-
cussions. In particular we give explicitly the probability
distribution of the impurity conSgurations in the pres-
ence of impurity interactions. Physical quantities, like
the conductivity„calculated in Secs. III and IV will have
to be averaged over impurity conSgurations. In doing so,
we show that the problem is identical to the one of com-
puting the local order between impurities, or any scatter-
ing center, as was done in Ref. 10.

Following Ref. 10, we imagine our system to be a
binary alloy. The two components of the alloy, A and B,
occupy the N sites of a D-dimensional hypercubic lattice.
Let the B component represent the host atoms with con-
centration 1 —c and A represent the impurities with con-
centration c. Both A and B will scatter the conduction
electrons. The aim is to determine P(S„S2,. . . , S~),
the probability that at sites R„Rz, . . . , RN, the atoms
are in states S&,S2, . . . , S&, respectively, where each
Sk ——A or B. If the atoms are completely uncorrelated,
P(Si,Si, . . . , SN)=P(Si)P(Si) P(S~), and P(Sk)
=c or 1 —c, depending on whether S„=A or B. We
want the simplest P(S, ,Si, . . . , SN} which, however,
contains the correlations between atoms as a consequence
of their interactions. We introduce P(Sk

~
S, ), the condi-

tional probability of finding an atom at lattice site Rk in
state Sk„provided that site R; is occupied by an atom in
state S, We have

lim P(SJ,
~
S;)=P(sp) .

]Rk —R,. t

From the law of mass action we get

P(Ak ISi) 1 —c E
P(Bk i S;) c k~T

where kji is the Boltzmann constant. Here Ak (Bk) cor-
responds to an A (B) atom at site Rk and E is the energy
difFerence between con5gurations which difFer only be ex-
changing an A atom at site Rk with a 8 atom at infinity
from the arbitrary chosen site R,-. Note that

P(B„ I S, )=1—P( A, IS,. ) .

Within the approximation of Ref. 10 where only nearest-
neighbor interactions were considered, in the mean-6eld
approximation, E =E& —E2 where
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&i = g [V~~P(~k ~ I
S;)+V aP(&/ ~ I

S )]
S, =A, B

P(S;)P(Sk
~
S;)=P(Sk}.

+z[cV„„+(1—c)V„a],

&2= y[VAJ/P(~k+d IS )+-VBBP(&/+d IS )]
(4)

One obtains

( U(r)) =[V„c+V//(1 —c)]+5(r—R)=U, . (12)

+z [(cV„//+(1 —c)V////] .

gs denotes summation over nearest neighbors at distance
d, and z is their number (k +d is the simplNed notation
for Rk+d). V„z, V&/i, and V„// are the interaction ener-
gies between pairs of nearest neighbors, AA, 88, and
AB, respectively. Putting (4) back into {2},one obtains a
somewhat complicated formula for P ( Ak

~
S;}. However,

with

We choose V„c+ Vz(1 —c) as the origin of the potentials
and therefore in second order mill require
([U(r)—U, ][U(r')—U, ])=Uz. The calculation of U2
is given in the Appendix. One obtains

21
U2 ——c ( 1 —c)( Vq —Vs )—

N

X g 5(r —Rk } 5(r' —R„)—c(l —c)W

k ks To

)& y5(r' —R, —d)

one gets, to the lowest order in W/(ks T),

P{Ak ~S;)=c 1 — g[P(A/, +~ ~S;)—c](1—c)W

8

Equation (6) is valid for Rk&l/l;. If Rk —E.; one has—

P(A/,
~ A/, }=1, P(A/, ~Bk)=0.

(6)

The P's are related to the local order introduced in for-
mula (1) of Ref. 10. All the above formulas so far have
been derived in Ref. 10.

The full normalized probability distribution function is
constructed from the P (S„~S; ) as follows:

N N

P(S„S~,. . . , S~)=—g P(S/) g P(Sk ~S;) . (8}
i=1 k=1

(k~ij

Equation (8) is then the "minimal" distribution function
in the sense that it contains the minimum information
about the interaction between the atoms.

Let us now calculate those averages, by means of (8),
which will be needed to obtain the conductivity of our
system. We assume that the electrons at point r are
affected by a contact potential of the form

U(r}= y V(S, )5(r—R„),
k

V(S„)= V„or Vs. Then the interaction Hamiltonian in
the second quantized formalism is

Hl f dr U(r)g (r)it——/(r), (10)

where il/(r) and i/{/ (r) are electron creation and annihila-
tion fjeld operators. The conductivity of the system mill
be calculated using perturbation theory in HI. Each term
of the perturbation series will have to be averaged over
the impurity configurations„using (8). This means we
will have to calculate (U(r)), (U(r)U(r')), etc. The
calculation of ( U(r) ) is easily performed, using the rela-
tion

&(p, ~„)=g G(p', ~„)
~

U(p —p')
~

' (14)

where

i U(p —p')
i

=c(1—c)( V„—Vs)2

c (1—c)W ~,(p p).g
kB TO

(15)

[ p —p'
[
=

~ q [ =2k~sin(8/2} . (16}

~
U(p —p')

~
is the Fourier transform of ( U(r)U(r') ).

We recover in (15) the scattering potential modi6ed by lo-
cal order obtained in Ref. 10. Here co„denote the Matsu-
bara frequencies of the electron and 8 is the polar angle
between the D-dimensional vectors p and y'. Later we
will require the average of (15) over the direction of d
which will lead to

sin(qd)z I 30,
ID = g exp(/q d) = q. d

zJO(qd} in 2D . (17)

In (17), Jo is the Bessel function of the first kind of index
zero' and, on the right-hand side, q and d denote abso-
lute values. Using (14}, the Dyson equation for the
Green's function, to lowest order in 1/(kFl'), can be
solved with the result

(13)
In (13) the temperature T has been replaced by the
quenching temperature mentioned in the Introduction.
In the weak U limit, when we assume that the scattering
of an electron by the same atom more than twice can be
neglected' we need to retain only Uz.

Finally let us calculate the effect of U2 on the one-
particle Green's function. We assume that the electronic
mean free path l' (deSned below), is large. The calcula-
tion of the one-particle Green's function to lowest order
in 1/(kFI'), where kF is the Fermi momentum, then fol-
lows that given in Refs. 16 and 17.

The self-energy to second order in U is given by
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G '( p, co„)=i c7)„—gF,
l

t'O„=to„+ —,sgn(co„)27'
Here e =p /2 in atomic units (a.u. ) and sF is the Fermi
energy. The elastic scattering time is given by

mN(sF)Nc(1 —c)(V„—Vs) f d8(si n8) 1 — ID, 3D
0 k, T;

N(sF)¹(1—c)( V„—Vs ) I 18 1 — ID, 2D .
o k, T,

(19)

For independent scatterers ( W=O), 1/r' reduces to

1—=2mN(sF )Nc (1—c)( V„—Vs )
To

N(sF) is the density of states for one spin direction at the
Fermi energy, in a.u. :

k~ 30
N(sF)= .

20.1

With (17) and (16), the angular integrals in (19) can be
done and yield

IH. MODIFICATIONS TO THE DRUDE FORMULA
OF THE CONDUCTIVII 7 DUE TO THE COUPLINGS

BETWEEN SCATTERING ATOMS'
CALCULATION OF cr N1

In this section we calculate how the usual Drude ex-
pression oo of the conductivity is modified when the
scattering atoms interact via the coupiing 8'. %e thus
compute the normal ladder (NL) diagram of Fig. 1(a),
yielding the conductivity contribution 0&z. To do so we
need to compute first the current vertex correction in the
particle hole channel A of Fig. 2(a) as usual s'7

cf

A(p«@««+U«p«@««) P+ I «t
Go(P «@««+|«)Go(P «~n )

(2m)

c(1—c)Wz»n'(kF~)1— 30
~o ka To (kFd)

X A(p', co„+„,p', t0„)

x
I

U(p' —p) I

' . (23)

1 J(kd) 2D
go kq To

If Wp0 it is clear that 1/v' g 1/~o. One finds regions
where some atoms A (or 8), spread randomly, happen to
be surrounded by a first-neighbor shell of 8 (or A). Such
regions are far apart so that l'=kFr' is large than the
mean free path corresponding to complete disorder
Io=kr'To. For 8 +0, 1n contrast, the tendency to segre-
gate renders l' smaller than lo.

%e choose co„~0. %'r&t&ng

A(p«@««yu'«p«@n ) =O'Y (24)

kFy=kF+kFy f ~GoGo ~
U

~

cos8
(2n. )

(25)

and multiplying both sides of (23) by p one obtains, with

I p I

—
I
p'

I
-kF with kF the Fermi momentum,

I
i
I

I

«

X

O, w„

~~n+v

FIG. 1. The two contributions to the conductivity: 4',a) the
one due to the normal ladder, a&L, (b} the one due to the multi-

ply crossed one, crMc. Solid lines denote electron Green's func-
tions. Crosses stand for repeated (in6nitely many times} corre-
lated impurity scatterings.

FIG. 2. Vertex contributions entering in the calculation of
the conductivity: (a) A imphed in nN„[Eq. (23)], {h) 1 imphed
in a Mc [Eq. (38)].
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where p p'=p+2cos8.
One then obtains

IrN(&F) f ~

U
~

sin8cos8d8, 3D

N(&F) f i
U

i
cos8d8, 2D .

(27)

e(oI„+„)e{—a)„)

N~ +'P
Using

~

U
~

derived in the preceding section, with
V= V„—V one gets

c}pz sin[2kFd sin(8/2))
IrN (sF)¹(1—c)V f d 8cos8 sin8 1—

0 ks To 2kFd s111(8/2)

N(eF)¹(1—c)V f d8cos8 1 — Jo(2kFd sin(8/2)), 2D .
0 8 0

30

(28)

The calculations are straightforward using standard integrals. 's We give the result under the form needed in (26}and in
the following:

I II

1
1

c(1—c)H'z 1

~o ka To (kFd)2

sin(kFd)
cos(kFd)— —sin2(kFd}, 3D

(29)

1+ [JI(kFd) —Jo(kFd)], 2D .
~o ks To

Jo and J, are the Bessel functions of the tirst kind of respective indices zero and one. ' '
We now calculate the "normal ladder" conductivity IrNI [diagram of Fig. 1(a)]. The current-current correlation

function K projected on the x axis is given by

K„„= 2T y. — ,Go(p, m„+, )Go(p, ~„)(~p)„, .d p
(2Ir)

(30)

Using (24) and (25),

CO= ECO~

One straightforwardly obtains

(31)

where N,& is the el'ective number of electrons per unit volume:

kF'/(3Ir ), 3D

kF/2', 2D . (33)

Then in terms of the Drude formula pro corresponding to independent scatterers (in a.u. ),

o=&. N&o .

One gets, to fIrst order in W/(ks To ),

(34}

NL

zc (1—e}8' 1
0

ks To (kFd)2

sIn(kFd)
cos(kFd }— —sin (kFd), 3D

One easily veriSes that the 30 result is exactly the one obtained in Ref. 10.
We mention the approximate forms of (35) which are valid when kFd ~pl. Using asymptotic expansions of the

Bessel functions' in the 20 case, we obtain
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kFd &)1

c(1 c)gz cos(2k~d)
oo 1—

2 '30
ke To (k~d)2

c(1 c)~z 2 siil(2kFd)

ke To m (kFd)

(36)

These formulas wiH be useful in Sec. V, where we discuss the case when 8'is given by the indirect exchange interaction
of the RKKY type. The asymptotic forms for 8' then are proportional, respectively, to cos(2kzd)/(kFd) in 3D and
—sin(2kzd)/(kid) in 2D so that the overall o „„in (36) is decreased compared to o 0, whatever ki d ( ~~ 1) is.

IV. MOMFICATIONS OF THE LOCAL»4TION CONTRIBUTION TO THE CONDUc:x. xVn Y
DUE TO THE COUPLINGS BETWEEN SCA'I 1KRING ATOMS: CALCULATION OF +Me

We now turn to the calculation of the multiply crossed diagram of Fig. 1(b) usually responsible for the localization of
the electrons. ' As is well known and clear in Fig. 1(b), one first needs to calculate the ladder correction I' in the
particle-particle channel of Fig. 2(b}. Writing for simplicity,

I
U(p' —p) I

'=z I:1+5z(
I

p' —p I }f .
We write the Bethe-Salpeter equation for I as follows:

d

1(p p' 03n+~'p' p con)=Zli+5Z(
I

p' —p I ))+ J eG0(k 03n+~)Go(p+p' —k@n)Zll+5Z(
I
k —p I )1

(2m )e

(37)

X I'(k, p', co„+„',p+p' —k, p, co„) . (38)

Then we iterate the above equation, retaining terms only of first order in W/To, as it has been done in the preceding
section. One finally arrives at

with

z
1 —Z8

Z2
Z g '3'-P"+ [e'i"3 (d)+ 'i"8 ( —1)]+ 3 (d)A ( —d)

ke To d I —Z8 ( I Z8)— (39)

A(kd)=e*' +~' G (k cu )G (p+p' —k ro )e*'"'ddk
0 & a+u 0 & n (40)

8 =
d Go(k, ei„+„)Go(p+p' —k, co„) .

(2~)'
(41)

(42)

Note, however, that in (39), terms of first order in Z have been taken care of in the preceding section. We then define I"
as the particle-particle ladder I' without those terms. Diagrammatically, the first-order corrections in 5Z to I are
given in Fig. 3. 8 can be easily computed to yield

2rre( co„+„)e(—co„)N(s~ )
8(p+p' ~.}= "

1
1 DkF I

p+p'I—'(~')'
NU+

(recall that D is the dimension). In (42) 1/r is given by formula (19). Note that in order to obtain the full expression
for I" valid to lowest order in 5Z, 8, in the first term of (39), has to be further expanded using (19) and (20).

The calculation of A (kd } requires a tedious but straightforward algebra. Defining

p+p'=Q, a=kid,

2' ( E.p )
A (+d)= 'o +

1 0!
N~+

70

g d cosa sina
1 Qd a

N~+
Vo

(43)

Z 224Q
1

GPq +
Vo

cosa sina (Q d) sina 3 cosa 3 sina+ +a2 a3 Q2d2 a a2 a3
30

(44)
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2mN(eF )A(+d)=e"'~' J (a)kO

COU +
To

kFg q.d
1 Qd

QP~ +
Fo

T

J,(a) (q.d}2 21,(a)
. 2kFQ

Q Zd 2

QP~ +
Vo

—&o(a) (45)

(47)

The above expressions are vahd up to second order in Q. With all these ingredients, we can now compute the contribu-
tion oMc to the conductivity given by the multiply crossed diagram of Fig. 1(b). The contribution of the multiply
crossed diagram to the current-current correlation function reads

d" d" '
K = 2TX—f q f dp„p,'I'(p+p', oi„)Go(p@ + )Go(p oi )Go(p oi + )Go(p @ ) . (46)

(2~}" (2~}' " '
We use (43) and the diffusion coefficient

kz~~o
Do

Finally we obtain, for crMc,

+MC

2rrN(eF)r' f dQ QI"(co„=O}, 3D
m'

2

2nN(sF)r' f dg QI"(o)„=0), 2D .
1/L

(48)

As usual, the. lower cutoff'in 2D involves the macroscopic linear size L of the system. I"(co„=O)in (48) is given by

I"(co„=O)=

1 1 zc (1—c)W cos(2a) sin(2a) 1 —cos(2a) sin a
2~N(e~)ro Dog ks To2 1+ 2 3 4 22o,'a

1+ [J,(a) —3Jo(a)], 2D .
2n'N(eF) o Dog 8 0

30
(49)

1 zc(1—c)Wl+ cos(kFd)
77 Io s o

T

1

(kFd)
(50)0MC—

We wish to make here the following remark: in contrast with what could be thought a priori, the (1—ZB) denomina-
tor in the fourth term of (39) cancels with a similar term coming from the expansion to first order in W/(ks To) of the
first term. This remark is crucial since a term in (1—ZB) ' in I" involves the usual pole (Dog +oi„) ' while

(1—ZB) would imply (Dog +co„),i.e., a stronger singularity than the one usually involved in localization theory.
In other words, at least to first order in W j(ks To), the singularity remains of the same kind as for independent scatter-
ers. In (48) ~' has to be expressed by (19) and (20};l'= kzr' and lo k~ro. Fin—a—lly,

Slil( kid ) —sin (krd), 3D
kFd

Note that in the absence of coupling between the scatter-
ing atoms, for W=O, one recovers the localization formu-
las

aMc( W =0)= ~

30
m Io

1
ln —,20 .

This perturbative result for the total conductivity wiB
be analyzed in the next section.

FIG. 3. Diagrammatic representation of the 6rst-order
corrections in 5Z to I '. The dotted line denotes 5Z; the shaded
blocks correspond to the direct ladder, calculated with 5Z=O.
The single line stands for the Green's function with 5Z=O,
whereas the double line is the 6rst correction in 5Z.
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V. ANALYSIS OF THE PKRTURSATIVK RESULT
OBTAINED FOR o „~)

AND THE PARTI(CULAR CASK
%HERE THE ATOMS INFRACT

VIA A RKKY-TYPE $V

The results for o ~t given by (35) and aMc given by (50)
are the key results of our paper. The total conductivity
o ««& is then given by

total NL+ +MC ' (52)

The local order efkct between the atoms will depend
on the strength and sign of Wand on the oscillating func-
tions of kid. Note, however, that in 2D the sign of the
localization term 0MC only depends on the sign of W.
This will be of importance in the next section. In 3D, it
is interesting to point out that it is the same oscillating
function of kid which altogether decreases {increases)
crit with respect to oo, for W&0 (&0) and enhances {di-
minishes) the localization term +Me. This is not so in 2D
where a different oscillating function enters (J, —Jo in

a ~„compared to Jf alone in o Mc).
So far W'was not made explicit. It may contain several

contributions: direct {ofchemical origin for instance), as
well as indirect ones (mediated by the electrons). It was
given in formula (5} in terms of the three quantities V„„,
Vzz, and Vz. In fact for a binary alloy undergoing an
order-disorder transition at some temperature T„W is
related to T, through T, =zc (1—c)W, at a second-order
transition within the Bragg-Williams approximation, "
for two independent sublattices. In that case, W is posi-
tive, i.e., two atoms of the same kind repel each other,
while different atoms attract one another. A measure of
W is then given once T, is known. In contrast, when W
is negative, there is no ordering transition, the system
tends to segregate: the atoms of the same kind attract
each other, while different atoms repel. Various contri-
butions may enter in the values of V„z, Vzz, and V„z.
Our purpose is not to enter into these details here. We
wish, in the present section, to concentrate on one partic-
ular case, where the A (and 8) atoms can be considered
as point charges interacting with their neighbors not
directly but via an interaction carried by the electrons.
Such an interaction is analogous to the Ruderman-
Kittel-Kasuya-Yosida (RKKY) indirect interaction be-
tween magnetic impurities. ' Then, as is well known, '2 a
second-order perturbation calculation gives, in 3D,

sin(2kzd )—2kzd cos(2kzd )
W(d) =co3n

(2k~d
(53)

where the oscillating function of 2k~d is just the Fourier
transform of the I.indhard function: c03o (as well as
co2o used below) is proportional to (1/e„)(J,„+J,~—2J,&J,a) where the J's are the interaction energies be-
tween the electrons and the A (or the 8}charges. There-
fore co3n (~zo) is a positive quantity. The RKKY calcu-
lation can be easily performed in 2D {Ref.21) and yields

W(d)=a)2o[JO(k~d)No(kid}+ J,(kid)N, (k~d)]; (54)

cos( 2kpl )
W{d) = co3O 3, 3D .

k~d)) & (2k~d)
(55}

Similarly in 2D, using asymptotic expansions of the
Bessel functions

sin{2k~d)
W(d) = —

cozen 2, 2D .
kid))1 (2k~d)2

(56)

In our case of charged impurities the prefactor co's will be
different from the expressions given above in the RKKY
case.

Then our formulas (36) for o'zL (where we retain the
leading term in 1/kid in the interference contribution),
combined with (55) and (56) give

+NL
kFd ))1

(2k~d)5
T

c(1—c)z stn (2kzd)
0'0 l 2

ks ~0 (2k~d)

3D

2D,
(57)

Then o zt is always decreased compared to pro, whatever
the value of kid »1 is. The 3D result has already been
found and discussed in Ref. 5, as mentioned earlier. Here
we just showed that the same tendency holds in 2D as
well.

Combining (57) with (50) and (55), in 3D to leading or-
der in 1/kFd, we get

c(1 c)z cos (2kFd)
0 tota&=00 l —

* - 3o
ks&0 (2kFd)

3 c (1—c}z1+ co
4m(s~ro) ks 70

cos (2k~d)

(2k~d)

Equation (58) shows that the local order between the
atoms in 3D always decreases o~„compared to 00 (for
co3n &0) whatever k&d »1 is and renders cr Mc more neg-
ative. In other words, the presence of a 5nite interaction
of RKKY type enhances the Anderson localization eftect.
In 2D instead, while the local order decreases 0.&L, as it
does in 3D, its eNect on AM& remains oscillating.

No and N, are the Bessel functions of the second kind'
of respective indices zero and one. Note that compared
to the spin problem involving the RKKY interaction, in
case of charged impurities, an additional complication
arises. This is related to the fact that charges are
screened, whereas spins are not. As a result the indirect
interaction is slightly changed. ' However, when

kid »1 (which is the case in normal metals even when d
is the nearest-neighbor distance), the asymptotic formulas
for the indirect interactions are given both in the spin
and the charge cases by
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VI. RENORM&~. ~~aTION GROUP ANAI. VSIS

In this section, we analyze the results of Secs. III and
IV using the renormalization group (RG) approach
There are a number of ways the RG can be applied to the
Anderson locallzRtloll problclli ill thc absence of llltcl'ac-
tions (some of the approaches are listed in Refs. 22-26).
For concreteness we are going to use the method of Ref.
26. In that work the RG equations were derived by
parametrizing the transformation by the choice of the
normalization point of the "vertex" function, defined by

D~ ——DoH . (59)

II'=Z&II(LZ& ', O'ZI ),
—1o =Zx go

In (61) go is the dimensionless conductance used as the
coupling constant of the theory and ZI is independent of
L. The parameter of the transformation leading from
normalization point A, to A,

' is

(62)

The RG equations are derived in the standard way (for
details see Ref. 26 in terms of Zz &I ). In 2+@ dimensions
the equation for 0, the 6xed-point coupling, is

(63}

The nontrivial value of o" is obtained by calculating
ZI, &I in perturbation theory. Using (50) (which is
enough to lowest order in e) (63) leads to

1
1

zc(1 —c)WJI(k d)+
k T 1 F

A few comments are necessary concerning this result.
First, the perturbative results obtained in the preceding
section for the maximally crossed diagram are valid only
in the weak scattering limit. This means the concentra-
tloli Qf llllpllrltlcs c has to bc sinall, Rnd 1 —c 1 111 (64)
(and in all the pre~ious formulas for o Mc). Secondly, as
explained in the Introduction, in a consistent RG theory
the interaction between impurities should also be renor-
malized. If only the direct interactions are considered,
this, however, may not be so. 8'and To enter our formu-
las for the conductivity through the averaging process. If
8' is independent of the electronic motion the dynamics
of the impurities gives rise only to a correlated probabili-
ty distribution. The electronic properties are recalculat-
ed with this mod16ed dlstrlbutlon. The lnteI'action be"
tween the impurities parametrizes their distribution.
(For each $V there is another distribution. ) Clearly, in
this case, 8' does not have to be renormalized. On the

Here D„ is the renormalized difFusion constant. The
function II depends on L. The normahzation point is
defined by

II'(L =A, ) =IINp ——1,

other hand, if 8' includes an indirect RKKY-type in-
teraction, it certainly has to be renormalized (at least its
indirect part). The RKKY interaction between the im-
purities is mediated by the electrons. If these become lo-
calized, the RKKY interaction is strongly modified. This
means the impurity distribution and the electronic
motion are coupled. Besides the fixed point (64) a fixed-
point probability distribution should be derived, which
stin might be parametrized by the direct interaction and
To. This complicated renormalization is not carried out
in the present paper.

As stated earlier we do not expect the universal proper-
ties of the Anderson transition to change in the presence
of short-range correlations between impurities. Indeed,
the critical exponents are unchanged in the present calcu-
lation. In contrast, if either long-range or marginal in-
direct interactions are involved, the critical exponents
might change. An example of marginality is the
RKKY-type interaction given by (55} and (56) with d re-
placed by

~
R; —RJ ~, the distance between impurities at

sites R; and R . The result (64) allows us to interpret a
number of experimental results, as will be demonstrated
in ihe next section.

VII. DISCUSSION AND COMPARISON
%'ITH EXPERIMENTS

Our theoretical study of the effect of short-range order
on the conductivity was first motivated by the experimen-
tal results of Ref. 4. In that reference it was shown that a
metal-insulator transition can be induced by annealing.
Al, Ge, „samples (0.7 p x & 0.4) were prepared by coeva-
poration at 5 K, still in the metallic regime, although in
an atomically disordered amorphous state. The metal-
insulator transition was subsequently studied by measur-
ing the conductivity down to 0.25 K. In this way the
transition was established to take place for xo-0.475. In
another series of experiments the samples were annealed
to some higher temperatures, and then requenched again
to 5 K. It was found that this procedure, at a given value
of the annealing temperature T, (dependent on x), in-

duced the metal-insulator transition. This occurred even
in samples which initially, when prepared at 5 K, were
metallic. The more metallic the samples were at 5 K (the
bigger was x) the higher T, values were required to in-

duce the metal-insulator transition. The explanation of
this interesting phenomenon, as given in Ref. 4, was
based on the assumption that annealing increased the mi-
croscopic disorder. At T, the disorder reaches locally its
critical value and the metal-insulator transition takes
place. The critical value itself (fixed point of the disor-
der) was assumed in Ref. 4 to be independent of anneal-
ing.

In what follows, using the results of the previous sec-
tions, we attempt to give an alternative explanation of
these experimental Sndings. The metal-insulator transi-
tion induced by annealing, according to our view, is a re-
sult of a microscopic mechanism, quite different from the
one proposed in Ref. 4. It is reasonable to assume that,
upon annealing, the thermal motion (even modest) is
sumcient for the atoms to locally rearranged in an ener-
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getically more favorable state, so that a short-range order
tends to form. The higher T„ the more efi'ective are the
interactions, i.e., the short-range ordering. In our model
instead, the short-range order is more eScient for lower
values of To. There are a number of differences between
the experiments of Ref. 4 and our basic hypotheses: (a}
the initial disorder is established in a difFerent way (co-
evaporation at low T in Ref. 4, compared to quenching
from a high-temperature To in our model); (b) the
Al, Ge, „samples have an amorphous structure while
we are supposed to deal with a crystal with a well-defined
nearest-neighbor distance d and a fixed number of nearest
neighbors x; and (c) increasing T, in Ref. 4 corresponds,
as mentioned above, to decreasing To in our case (the
simplest relation between T, and To may be T, ~ 1/To).
Due to these difFerences, it is not possible to make a
quantitative comparison between our results and those of
Ref. 4. However, it is clear that, qualitatively, they fit the
experimental tendency well. As shown in the present pa-
per, interactions between impurities give rise to a short-
range order which may enhance the localization efFect.
Our perturbative result in 3D, Eq. (58), indicates that
upon annealing (if we use the above correspondence
T, -1/To), for fixed c [=(1—x) in Ref. 4] the system
loses its metallic properties. In 2+@ dimensions, using
the results of the RG analysis of Sec. VI, we obtain that
o', for Sxed c, increases with T, [Eq. (64) with W&0].
In other words, compared with an initially disordered
state yielding a sample in the metallic regime, the estab-
lishment of a small amount of short-range (local) order
may be suScient to switch the sample to scale towards an
insulator. The fact that the fixed point depends continu-
ously on T, (or To } might seem surprising at first sight.
In view of the discussion in Sec. VI, it is not so. To (or
T, } parametrizes the impurity distribution function. The
result that the value of the fixed point depends on the
probability distribution used to calculate the quenched
average quantities is quite reasonable. The critical ex-
ponents, on the other hand, are the same for the annealed
system as for the original one. This is another manifesta-
tion of universality.

To conclude this part, the efFect of anneahng is to al-
low for rearrangement. By this, the interaction between
scatterers is activated and a correlated impurity distribu-
tion is obtained. This distribution depends continuously
on To ( T, ) and therefore so does the fixed-point value of
the disorder parameter. If the scatterers repel each oth-
er [W&0 in (64)] the critical value o' of the disorder is
increased. This means that the annealing procedure al-
lows the metal-insulator transition to occur at a smaller c
value than in the absence of annealing. These findings
are in complete quahtative agreement with the experi-
mental results of Ref. 4.

Similar remarks apply, still qualitatively, to the experi-
mental results of Refs. 6 on a Bechgaard salt
(TMTSeF}2SCN. This material is metallic at high T.
However, a well&efined cusp in the T dependence of the
resistivity ls observed around 95 K. The behavior of the
resistivity p(T) changes at this temperature. Above it,
p(T) has a metalhc character, whereas below, p( T) corre-
sponds to the bopping mechanism of Mott. These experi-

mental findings correspond to a metal-insulator transition
in the following sense: if the system is quenched from
T &95 K to T=O, the residual conductivity is finite;
quenching from T~95 K, on the other hand, results in a
vanishing conductivity, i.e., an insulator. In Ref. 6, x-ray
studies demonstrate the formation of a short-range in-
commensurate modulation for T&9S K, strengthened
when T approaches that temperature from above. The
source of the modulation is not understood at present.
However, it is clear experimentally that such a short-
range ordering is at the origin of the transition. This ob-
servation, qualitatively, can be easily understood using
our theory. The short-range order increases with de-
creasing T, just as it does in our model (when To de-
creases}. In this sense, our model is more directly applic-
able to the system of Ref. 6 than to that of Ref. 4. Ac-
cording to our theory, the strength of the short-range or-
der, achieved at around 95 K, is suScient to drive the
system insulating in the above sense. In other words, at
T-95 K, o' in Eq. (64) now exceeds (or equals) the ini-
tial disorder (see Fig. 4). It has also been found in Ref. 6
that application of 2 kbar pressure stabilizes the metallic
state down to low temperatures. We believe the eFect of
this pressure is to push oo in Fig. 4 to such a high value
that cannot be reached by a shift of o' due to short-range
order. To check this conjecture, the experiments should
be performed systematically as a function of pressure be-
tween 0 and 2 kbar. As a conclusion we think that the
experimental result of Ref. 6 is another example of elec-
tron localization driven by short-range order, whatever is
its origin.

As far as the theory is concerned, it would be interest-
ing to examine how the range of the interaction between
impurities may aFect the scaling behavior of the system.
In particular, if these interactions introduce further scal-
ing parameters, the critical exponents would most hkely
be changed.

FIG. 4. The dimensionless conductance fixed point o above
(below} which the system scales to a metal (insulator} when the
linear dimension L increases. oo is the initial value of the con-
ductance at the microscopic length scale. The arrow shows how
the local order shifts the phase boundary, when W& 0 [accord-
ing to Eq. (64}].
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APPENDIX

In order to obtain U2 ——&[U(»)—Uo][U(»') Uo]—),
we have to calculate & [V(S/, )—Vo][ V(Sk )—Vo] },
where

P(sk Sk+~)=P(sk)P(sk+u) . (A7)

The above can be checked explicitly by using the form (6)
and the relation (11) together with the fact that P(Sk)
must be independent of k. Therefore

NK, =[& V(S, )&]2=V,'. (AS)

Since in U2 the potentials are measured relative to Vo,
after subtraction ECz does not give any contribution.

Performing the summation over the values of Sk, sk+&
in (A4) one can write

P(S, )P(sk
I S, )P(sk+~ I S, )=P(S/„Sk+q) . (A6)

5,. = A, 8

Here P(sk, sk+z) is the probability (not conditional) that
the atom at E.k is in state Sk, and simultaneously the
nearest-neighbor atom at Rk+& is in state Sk+&. One can
easily convince oneself that since P(Sk, Sk+z) must be in-

dependent of k, for consistency reasons up to order
0(1/T),

Vo= V~c+ Vs(1 —c) {Al) NKi ={V~ —Va }[V~cP(~k+~ I "k }

Let us then calculate & V(Sk )V(Sk )). Since U2 in-
1 2

volves summation over k, and k2, we have to distinguish
two cases according to whethe~ Rk ——Rk or Rk ——Rk

1 2 1 2

+d. It is easy to see that for any other relation between
Rk and Ek the corresponding contrjbutlon to U2 will

be zero. The case Rk ——Rk requires essentially the same
1 2

calculation as U]. One obtains

&v'(s, ))-v,'=—(v„-v, }'.(1—.) .

The second case is considerably more comphcated and
will be worked out in detail. According to the de5nition
of P (S»S2, . . . , S/v ) given by (8)

+ v, {1 c}P—{~,+„ I a, )]+v, v, .

cP(Ak
I 2;)+(1—c)P(Ak I8;)=c .

Using this and (6) in (A9), we finally obtain

(A10)

NK, =c (Vq —V//)

g [P{~k+d+d/ I ~k }—cl
(1—c)W'

d1

Here (3) and P(Sk )=c or (1—c) independently of k have
been used. In order to proceed we note, that because of
(11)

& v(s )v(s )&=—y„v(s )v(s )
1

IsI
+ V.[c{V.-V. )+ Vo]. (Al 1)

where

X QP(s;) g P(S/ IS; )
E l(~i)

where d, denotes nearest neighbors of k +1. Subtracting
Vo from (Al 1) the terms independent of W cancel. Using
then (A2) and (Al 1) we finally obtain

Ui =c(l —c)( V„—Vs)—21
N

Ei ———y v(s/, }p(sk)v(s/, +g)p(s/, +g I sk),1

ISI

E2 ———g g P(S;)V(sk)P(sk
I S;)

fsI i(~k, k+4)

&& v(sk+a )P(s/ +~ I s; } .

(A4)

c8'x y„5(» R/, ) 5(»' R/, )—— y —5(»' Rk —d)—
k k~T ~~

+[P(~k ~ u I ~k) —c]

(A12)

K, corresponds to the term i =k (or k +d) in (A3)
whereas in K2, i&k, k+d. Let us consider Kz. The
summation over S,. = A or 8 in (A5) leads to

Since we are interested in expressions valid to first order
in 1/(k// T) according to (7}it is only the term d = —d, in
(A12} which should be retained. With this one arrives at
the result given in the text by {13),T = To.



37 EFFEC1' OF IMPURITY INTERACTION ON THE ANDERSON. . .

~See, for instance, the review by P. A. Lee and T. V. Ramakrish-
nan, Rev. Mod. Phys. 57, 287 (1985).

~See a recent discussion in M. T. Seal-Monod, Phys. Rev. 8 33,
1948 (1986) and references therein, in particular concerning
the renormalization group results by A. M. Finkelstein, Z.
Phys. 8 56, 189 (1984), and by C. Castellani et al. , Phys. Rev.
8 30, 527 (1984).

See, ho~ever, the work by S. Hikami and E. Brezin, J. Phys.
(Paris) 46, 2021 (1985), and P. %oÃe and R. N. Bhatt, Phys.
Rev. 8 30, 3542 (1984), where correlated random potentials
were used, but no explicit connection with the short-range or-
der between impurities was given.

4J. Lesueur, L. Dumoulin, and P. Nedellec, Phys. Rev. Lett. 55,
2355 (1985); J. Lesueur, Ph.D. thesis, Orsay, 1985 (unpub-
lished).

5M. T. Seal-Monod and J.Friedel, Phys. Rev. 135, A466 (1964).
6S. S. P. Parkin, C. Coulon, R. Moret, and J. P. Pouget, Phys.

Rev. 8 36, 2246 (1987).
7E. Abrahams, P. W. Anderson, D. C. Licciardello, and T. V.

Ramakrishnan, Phys. Rev. Lett. 42, 673 (1979).
~T. F. Rosenbaum, R. F..MiBigan, M. A. Paalanen, G. A. Tho-

mas, R. N. Shatt, and %, Lin, Phys. Rev. 8 K, 7509 (1983).
9P. G. de Gennes and J. Friedel, J. Phys. Chem. Solids 4, 71

(1958).
t M. T. Seal-Monod, J. Phys. Chem. Solids 15, 72 (1960) and

Ph.D. thesis, Orsay, 1963 (unpubhshed).
"See, for instance, the chapters on the statistical mechanics of

order-disorder transformations in R. H. Fowler and E. A.
Guggenheim, Statistical Thermodynamics (Cambridge Uni-
versity Press, Cambridge, 1952).

~~See, or instance, K. Yosida, Phys. Rev. 106, 893 (1957).
'3J. Friedel, Trans. Metall. Soc. AINE 230, 616 (1964); A. 81an-

din, J. L. Deplante, and J. Friedel, J. Phys. Soc. Jpn. Suppl. II
ie, 85 (1963).

' This may not be so for strong scatterers for which the interac-
tion and the interference oscillating functions may di8er by a
phase shift so that the conductivity is not necessarily smaller
than o 0. Actually even for weak scatterers a small phase shift
is always present due to the Snite mean-free-path eN'ect; see,

for instance, P. G. de Gennes, J. Phys. Rad. 23, 630 (1962).
However, according to this work, for most metallic mean free
paths, that small phase shift is not sufBcient to completely re-
verse the relative sign between the interaction and the in-

terference factor.
'5This is clearly explained in the review paper by B. L.

Alt'shuler and A. G. Aronov, in Electron-Electron Interaction
in Disordered Systems, edited by A. L. Efros and M. Po11ack
(North-Holland, Amsterdam, 1985).

' A. A. Abrikosov, L. P. Gor'kov, and I. E. Dzyaloshinski,
Methods of Quantum Field Theory in Statistical Physics
(Prentice-Hall, Englewood Cliff, 1963).

~76. Rickayzen, Green's Functions and Condensed Matter
(Academic, New York, 1980).

' Table of Integrals, Series and Products, edited by I. S. Grad-
shteyn and I. %'. Ryzhik (Academic, New York, 1965).

'9C. N. Watson, Theory of the Besse/ Functions (Cambridge Uni-

versity Press, Cambridge, England, 1958), pp. 199 and 200.
C. Kittel, in Solid State Physics, edited by F. Seitz, D. Turn-
bull, and H. Ehrenreich {Academic, New York, 1968)„Vol.
22, p. 1.

~ M. T. Beal-Monod, Phys. Rev. 8 36, 8835 (1987).
~~E. Domany and S. Sarker, Phys. Rev. 8 23, 6018 (1981).

L. P. Gorkov, A. I. Larkin, and D. E. Khmelnitskii, Pis'ma
lb. Eksp. Tear. Fiz. 30, 248 (1979) [JETP Lett. 30, 228
(1979)].

~4K. B.Efetov, A. I. Larkin, and D. E. Khmelnitskii, Zh. Eksp.
Teor. Fiz. 79, 1120 (1980) [Sov. Phys. —JETP 52 568 (1980)].

~5S. Hikami, Phys. Rev. 8 24, 2671 (1981).
~6C. Castellani, C. Di Castro, G. Forgacs, and E. Tabet, J. Phys.

C 16, 159 (1983).
~7J. Friedel {private communication).
~3A word of caution is needed here. If T, is very high (-200

K) the system crystallizes (Ref. 4) and the Al segregate since
Al and Ge do not mix in the crystalline state. Then our W

would be negative. However, for sma11 T, when the system is
still amorphous it is not clear what the origin of 8' is and,
consequently, what its sign is.


