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The universality of the relation between binding energy and interatomic separation occurs for me-
tallic and covalent bonds in a wide range of situations, spanning diatomic-molecule energetics,
chemisorption, bimetallic adhesion, cohesion in solids, and even interactions in nuclear matter.
This has intrigued physicists for some time, and here we provide some insights into its origin. We
considered the electron density distribution as the variable linking the total energy and interparticle
separation. In the spirit of effective-medium theory, a host electron density as seen by each atom
was computed. We found that in every case (cohesion, chemisorption, and diatomic molecules), the
host electron density was, to a good approximation, a simple exponential function of interparticle
separation. This arises primarily because of the essentially exponential decay of the electron density
into vacancy sites, into interstitial regions, into the vacuum from surfaces, or into the vacuum from
isolated atoms. This suggested a scaling of the electron density which provides a universal relation-
ship between the scaled interatomic separation and the scaled electron density. This density scaling
is key. We applied the scaling of the electron density to impurity-binding-energy—host-electron-
density curves computed via the effective-medium approximation. A universal energy-electron-
density relationship resulted. This could be combined with the previously noted universal relation
between scaled electron density and interparticle separation to yield the universal binding-
energy-distance relation. First-principles values of cohesive energies of solids and the energetics of
certain diatomic molecules were also correlated with host electron densities, despite the fact that
these types of energies are fundamentally different from each other and from impurity binding ener-
gies. We found a universal relationship between energies and host electron densities for cohesion
and certain diatomic molecules which was the same as the one discovered for impurity binding en-
ergies. This, together with the universal relationship between electron density and interatomic sep-
aration, helps one to understand how a single energy-distance relation could describe chemisorption
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and cohesion as well as diatomic energetics.

I. INTRODUCTION

A universal relation between the cohesive energy and
the lattice constant of metals has been discovered.! The
same universal form has also been shown to describe the
relation between energy and separation in bimetallic
adhesion, "? metallic and covalent bonds in chemisorp-
tion* and in certain diatomic molecules,* and even nu-
clear matter.® (For reviews, see Ref. 6.) This universal
relation has been extended beyond metallic cohesion to
obtain’ a universal equation of state (pressure-volume re-

lation) for all classes of solids in compression and
moderate expansion. It has been demonstrated’ that the
additional energy terms that lead to relations between to-
tal energies and interatomic spacings in ionic and van der
Waals solids which differ qualitatively from those of me-
tallic or covalent solids contribute only a slowly varying
part to the pressure-volume (P-V) relation. Recently
even finite-temperature effects, such as the temperature
dependence of the thermal expansion in all classes of
solids and the melting temperatures of metals, have been
successfully treated® using the universal equation of state.

The universality of this relation between total energy
and interatomic distance provides an intriguing
unification between a number of phenomena which are
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apparently quite different. However, while there have
been qualitative discussions about the origins of this
universal behavior, no comprehensive explanation for it
has yet been offered. The universal binding-energy rela-
tion (UBER) is valid over a wide range of phenomena and
is also accurate—the agreement with experiment or
first-principles theory is generally within the limits of ex-
perimental or theoretical error. As a consequence, any
investigation of its origin must explain the breadth in its
range of validity and also its accuracy. We do not claim
to provide a rigorous derivation of the UBER, but rather
a quantitative development which hopefully provides in-
sight into its origin. We concentrate particularly on the
UBER in the context of bulk cohesion of metals and co-
valently bonded solids, chemisorption on metal surfaces,
and bonding in certain diatomic molecules.

We begin, in Sec. II, with a brief review of the UBER
where we discuss the range of its validity as well as its
limitations. In Sec. III we present a discussion of some
general considerations regarding the origins of the UBER
and lay out the broad outlines of our arguments. We
concentrate on electron-density distributions as the quan-
tities linking the total energy and interatomic spacings.
In the next section, Sec. IV, we focus our attention on the
UBER in the specific context of chemisorption of atoms
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on metal surfaces. We note that there is a universal (ex-
ponential) form for the surface electron density as a func-
tion of the coordinate perpendicular to the surface. Next
we consider the binding energy of impurities in uniform
electron gases as a function of electron-gas density via the
effective-medium theory proposed by Stott and Zarem-
ba’~!! and by Norskov and Lang.!? Our universal
electron-density —distance relation suggests a way to scale
the total-energy—density relation. We find a universal
energy—electron-density relation, which when combined
with the universal density-distance relation yields our
UBER. In Sec. V we discuss cohesion in bulk metals and
covalently bonded solids, and consider diatomic mole-
cules in Sec. VI. There we find universal relations be-
tween electron density and distance and between total en-
ergy and host-electron density which are identical in
form to those found for chemisorption. These lead to a
universal relationship between total energy and intera-
tomic separation which is the same for chemisorption,
cohesion, and diatomic energetics. We conclude with a
summary and a general discussion in Sec. VII.

II. UNIVERSAL BINDING-ENERGY RELATION

The universality of the relationship between binding
energy and atomic separation has been demonstrated by
scaling the different binding-energy-distance curves onto
the same universal curve by a simple procedure. We
must point out that we are referring to variations of the
total energy of the system as a particular length is varied
and not to a pair-potential approximation. In all cases
the energies are measured with reference to infinite sepa-
ration between atoms in the case of cohesion and diatom-
ic molecules, or between adsorbate and substrate in the
case of chemisorption, or between metal surfaces in the
case of bimetallic adhesion. We do not attempt to take
the system through a phase transition such as the Mott
transition, but rather consider energetics within phases.
The prescription for scaling is simple,

E*=E/AE , (1a)
a*=(a—a,)/l . (1b)

Here E is the energy, a is the interatomic spacing, AE is
the minimum value of the energy or the equilibrium bind-
ing energy, a,, is the equilibrium interatomic separation,
and / is a scaling length. In the cases of cohesion in bulk
metals and bimetallic adhesion, the scaling length was
originally taken to be the screening length, but it is more
conveniently and universally defined so that the second
derivative of the scaled energy-distance curve is unity at
equilibrium,

(2)

AE 172
(d’E /da?), ]

Figure 1 shows representative scaled energy-distance
curves, E*(a*), for cohesion, bimetallic adhesion, chem-
isorption, and a diatomic molecule. The range and accu-
racy of the UBER is clearly evident. It has been shown
that the Rydberg function
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FIG. 1. Scaled binding energy E* plotted against the scaled
separation a* for representative cases of cohesion, bimetallic
adhesion, chemisorption at a jellium surface, and a diatomic
molecule. The solid line is a plot of the Rydberg function. The
sources of the unscaled results are listed in Fig. 1, Ref. 1.

E*(a*)=—(1+a*)e " 3)

is an accurate approximation to the UBER. The solid
line in Figs. 1-4 is a plot of the function in Eq. (3). Fig-
ures 2—4 show similar plots of E* versus a* for bimetal-
lic adhesion, cohesion, and chemisorption at a metallic
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FIG. 2. Scaled adhesive energy E* plotted against scaled
separation a * for representative metal pairs. The solid line is a
plot of the Rydberg function. Unscaled adhesive energies are
from Ref. 2.
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FIG. 3. Scaled cohesive energy E* plotted against scaled in-
teratomic separation a * for representative solids. The solid line
is a plot of the Rydberg function. The sources of the unscaled
results are listed in Ref. 1.

surface. These show the universality of the UBER and
that the plots in Fig. 2—4 are truly representative of their
respective classes.

It has been realized that the origins of the particular
form of the UBER and its universal character probably
lie in the fact that, in all the cases considered, bonding re-
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FIG. 4. Scaled binding energy E * plotted against scaled sep-
aration (from the surface) a* for representative cases of chem-
isorption on a metal surface. The solid line is a plot of the Ryd-
berg function. See Fig. 3, Ref. 3 for the sources of the unscaled
results.
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sults mainly from overlap of the tails of atomiclike wave
functions. Hence, the UBER is not expected to apply in
situations of ionic bonding between filled shells (e.g., al-
kali halides), or of van der Waals bonding. When atomic
separations become very large, the overlap between atom-
ic wave functions becomes small and the interaction be-
tween atoms becomes mostly of the van der Waals type.
Thus the UBER is not expected to be valid at large in-
teratomic spacings (on the far right of Fig. 1). On the
other hand, when atoms are squeezed very close to each
other, significant overlap may develop between their
cores. One would expect the shell structure of the core to
be element specific and so the UBER is likely not valid at
very small interatomic spacing (on the far left of Fig. 1).
At this juncture we must point out that the restriction to
covalent and metallic bonding applied to UBER does not
hold for P-V relation deduced from it. This is because
even in ionic and van der Waals solids at equilibrium
there is significant overlap between the “tails” of atomic
wave functions centered on nearest neighbors. This sug-
gests that for van der Waals solids in compression the
effect of the overlap becomes dominant. For ionic solids
in compression, the total energy is expected to be a sum
of an overlap part, described by the UBER, and an ionic
part. This ionic energy part varies more slowly with in-
teratomic separation than the covalent energy and hence
contributes a relatively constant term to the pressure
whose variation with volume (or interatomic separation)
is negligible compared to that of the pressure arising
from the variation of the overlap energy. Consequently,
on compression, when the overlap term is expected to be-
come increasingly dominant, the shape of the P-V relation
is essentially the same for all classes of solids.” This is
also true for modest expansion, such as thermal expan-
sion, as shown in Ref. 8. Nevertheless, it is well to keep
in mind, as discussed above, that in cases where there is
significant transfer of charge between different atoms, the
contribution to the total energy arising from the interion-
ic Coulomb interaction is in addition to the covalent or
metallic (overlap) bonding that is described by the
UBER.

A second point to remember is that universality in
cohesion has been demonstrated only for cases where the
crystal structure remains unchanged as the lattice con-
stant is varied, i.e., for a “breathing” mode. This ex-
cludes such variations as crystal deformations that
change the symmetry in a continuous fashion, as in shear,
for example. While we will for the present omit such sit-
uations because the universality of binding-energy rela-
tions for such variations of interatomic separation has
not been demonstrated, universality of binding-
energy—distance relations in these situations cannot be
ruled out. A related restriction applies in the case of
chemisorption. The UBER has been demonstrated so far
only for the case when the adsorbed atom is moved per-
pendicular to the plane of the substrate. We have formu-
lated a method'? which is as simple and convenient to use
as the UBER for those cases where paths of atomic
motions are not constrained. An example application
might be the formation and propagation of cracks in
solids. In this method lattice defect energies are deter-
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mined via perturbation theory on a crystal whose lattice
constant is chosen optimally. The crystal energies are
given by the UBER, and the perturbation energy can be
formulated simply.

One final point must be mentioned. The UBER has
been demonstrated to be valid so far only when there are
fermions shaping the underlying interactions in the sys-
tem. In this vein, the UBER has been shown to be appl-
icable, for instance, to nucleon-nucleon interactions and
to a surface-energy-bulk-binding-energy relation in nu-
clear matter.> Here we will not concern ourselves with
the UBER in the context of nuclear matter but will focus
on cohesion in metals, chemisorption on metal surfaces,
and diatomic molecule energetics subject to the limita-
tions discussed above.

III. GENERAL CONSIDERATIONS

Before we begin considering the UBER in the specific
context of one of the phenomena already mentioned,
some general comments on its features are in order which
illustrate the complexity of the challenge of determining
the origin of the UBER. First, as the scaling is done [see
Egs. (1)], the scaling parameters are the equilibrium
values of the energy and the curvature of the energy.
That is, the energy-distance relations are assumed to be
described by a two-parameter function given the equilib-
rium spacing. This is not necessarily true. Nevertheless,
let us presume for the moment that a two-parameter
function suffices. Of course each term in the energy ex-
pression must have the dimension of energy regardless of
its dependence on length. For simplicity then, let us
combine these two parameters into two new parameters,
one of which has the dimension of length and the other
has the dimension of energy. Hence, the scaling parame-
ters can be conveniently chosen to be an energy and a
length as has been done in Egs. (1). Moreover, an a priori
expectation that the energy-distance relation should be
described by a two-parameter function is reasonable since
the relation is so simple and smooth, as can be seen from
Figs. 1-4. If the plot of energy against distance had a
more wavy character or were not analytical (as might be
the case through a phase transition), this expectation
might be less reasonable. As it is, the fact that one can
reproduce the anharmonic character of the relation by
specifying only the harmonic part at the minimum, even
when the curvature changes sign at separations not too
far from the minimum, must be considered quite remark-
able.

Some sense of the apparent complexity of the diverse
phenomena covered by the UBER is obtained by noting
that the relation between the cohesive energy and lattice
constant in a transition-metal like molybdenum or copper
has the same form as the binding-energy—distance rela-
tion for an oxygen atom chemisorbed on a simple metal
like aluminum. The electrons involved in some material
combinations are of s or p or hybridized s-p character,
with the addition of d symmetry in some others, and even
of f character in yet others. The mystery is that all such
cases should behave in the same way as far as the
energy-distance relation is considered. For instance, the
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characteristic ranges of electronic states with the
different symmetry characters are quite varied and often
the exponential tails of the electron clouds are character-
istically preceded by a maximum. One might argue that
the differences between different symmetries is largely ob-
literated by two effects. First, there can be significant hy-
bridization between electrons of different symmetries.
Also the total energy is an integral over all space of a
functional of the total electron density and the integral
tends to smooth out the differences between the different
symmetries. Some of these points will be further clarified
later in this paper.

While those arguments have some validity, we take the
following approach to the problem. We consider the
electron-density distribution as a primary variable, in
keeping with density-functional theory.'* The electron-
density distribution is the link between the total energy
and interparticle spacings. We first look for simple fami-
ly functions which describe how the “host’ electron den-
sities (i.e., the electron densities seen by a given atom as
produced by all other atoms in the system) depend on in-
terparticle spacings. We then turn to the total energy as
a function of electron density. Impurity embedding ener-
gies as a function of electron densities are obtained via
the effective-medium approximation. Cohesive energies
as a function of electron densities are obtained via
augmented-spherical-wave!> or relativistic Hartree-
Fock'® techniques. Total energies in the case of chem-
isorption and diatomic molecules are determined by a
variety of other techniques. Thus when we find a univer-
sal relationship covering all of these phenomena, it is un-
likely due to a particular theoretical approximation. This
conclusion is further supported by numerous tests against
experimental results (see, e.g., Refs. 1, 4, 7, and 8). We
will see that the form of the universal scaling of the elec-
tron densities suggests a way to scale the relations be-
tween total energy and host-electron densities, leading to
a universal relationship. When this relationship is com-
bined with the universal form between host electron den-
sities and interparticle spacings, we obtain the universal
relation between total energy and interparticle spacing,
which was our goal. Further, we find that the same
universal forms for the relationship between host-electron
density and distance and between total energy and host-
electron densities apply to chemisorption, cohesion, and
the energetics of certain diatomics. This is important to
the understanding of why a single relationship between
total energy and interparticle spacings applies to all of
these phenomena.

We start by.considering the case of chemisorption. We
will first see that variation of the electron density outside
a jellium surface with distance is of a simple exponential
form for all jellium bulk densities. This suggests a simple
exponential relationship between a* and the scaled elec-
tron density n*, as well as a scaling prescription to obtain
n*. Using this prescription, we then find that the varia-
tion of the embedding energy—in the effective-medium
approximation—with host-electron (jellium) density is of
the same form for all species of embedded atom. We ar-
gue that it is because the density-distance and energy-
density relations are of universal form —the same for all



6636
adsorbates and  substrates—that the binding-
energy—distance relations are universal. We further

show that the universal binding-energy —distance relation
that follows from combining the universal embedding-
energy—electron-density relation and the universal jelli-
um density-distance relation is the same as the UBER
found in the original work.!~® We suggest that in the
case of cohesion the cohesive energy can be correlated
with local electron densities at more than one point in the
host solid and that in the case of diatomic molecules the
binding energy can be correlated with the local electron
density of either of the two atoms. We examine two pos-
sible choices for the point in a bulk solid at which the
electron density is evaluated, namely the center of a va-
canty site and an interstitial point halfway between
nearest neighbors.

All of these electrons densities vary in the same univer-
sal way with interatomic separation as the electron densi-
ty from the jellium substrate varies with distance. We
show that the relation between cohesive energy and elec-
tron density deduced for either of the two choices for the
site in the bulk solid is of the same universal form as that
found between embedding energy and host jellium densi-
ty in Sec. IV and as that found between diatomic binding
energy and the electron density of one of the atoms in
Sec. VI. So, we conclude that the arguments put forward
regarding the origin of universality in the binding-
energy—distance relations in chemisorption also hold for
cohesion in bulk solids and bonding in certain diatomic
molecules.

IV. CHEMISORPTION

A. Effective-medium approximation

A simple method of computing the energies of impuri-
ties in solids has been proposed recently by Stott and
Zaremba’~'! and Norskov and Lang.!? These authors
realize, quite correctly, that a key to the total energy lies
in a local electron density. Their method approximates
the energy required to move the impurity from vacuum
into the bulk as the energy of embedding the impurity
atom in a homogeneous electron gas or jellium of the
same density as the local host-electron density at the im-
purity site. These embedding energies need only be com-
puted once for each species of impurity atom and then,
knowing the host-electron density at the impurity site,
the procedure involves simply looking up a number in a
table of energies and electron densities. This estimate, re-
ferred to variously as the quasi-atom approximation, the
effective-medium approximation, or the uniform density
approximation, can be systematically improved upon by
including the higher-order perturbative corrections to ac-
count for the fact. that the electron density in the actual
host is not uniform in the vicinity of the impurity. This
method, which we shall hereafter refer to as the
effective-medium approximation (EMA), has been suc-
cessfully used to compute binding energies for vacancy
entrapment of impurities in bulk metals®!° and for chem-
isorption on metal (jellium) surfaces.®!?> In this section,
we approach the energetics of chemisorption through the
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EMA. If the embedding energies as a function of host-
electron density should have a complex form, then it
would be unlikely that they could be simply scaled into a
universal form.

The embedding energies for a number of atomic species
have been computed and plotted as functions of the host
jellium electron densities by a number of authors!'!!%!4
using different methods within the local-density approxi-
mation (LDA). The plots of embedding energy versus
host jellium density fall into two categories. Those for
the inert gases show an almost linear rise in the energy
with increasing density starting from zero energy at zero
density. This is a reflection of the filled electron shells of
these atoms and their consequent chemical inertness.
The plots for all other atoms show an initial decrease in
the embedding energy as the density increases. The ener-
gy then reaches a minimum and starts increasing, becom-
ing large and positive at large densities. Overall, the
plots for all these atoms look remarkably alike and are
simple in form. This raises the question whether these
plots reflect the same underlying functional relation be-
tween embedding energy E and jellium density n for all
atoms (except, of course, the inert-gas atoms). In other
words, one asks whether the curves for different atoms
can all be simply transformed to one universal curve.

Tabular results for embedding energies as functions of
jellium density were available for the computations of
Stott and Zaremba!” but not for those of Puska, Niem-
inen, and Manninen.'® The difficulty with these data, as
well as with some of the plots of Stott and Zaremba!®!! is
that for a number of atomic species the data and plots do
not cover sufficiently low densities for the energy to reach
the minimum. In the other cases, the number of data
points in the regions of interest for the UBER, i.e., for
negative energies, is too small to obtain a meaningful fit
with any function.

As a result we had to resort to obtaining additional
data by reading points off the published curves of Refs.
11 and 18. Those curves that did not reach the energy
minimum, e.g., that for Be in Ref. 11, were ignored for
the present purpose. The remaining curves, as obtained
from the relevant publications, were photographically en-
larged and points were read off the enlarged curves using
a digitizing tablet connected to an IBM PC-AT comput-
er. The data thus obtained were then smoothed by a
least-mean-square spline-fitting procedure and finally us-
able data were generated by evaluating the spline func-
tion at a number of points in the relevant range. This is
not a very accurate procedure, with the possibility of er-
rors being introduced at every stage, but we felt that un-
der the circumstances this was the best possible solution.
A plot of the data thus generated compares very well
with the original plots of Refs. 11 and 14. However, we
also discovered that the results of the two groups (Refs.
9-11 and Ref. 14) can sometimes differ significantly.
Nevertheless, as we will show below, we find that the
different embedding-energy—electron-density curves can
be described by the same functional form and scaled onto
one universal curve.

It must be pointed out that we were not interested in
all of the high-density, positive-energy portion of any
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embedding-energy—electron-density curve since in prac-
tice it is difficult to reach such high compressions. These
correspond to the far left of Fig. 1. The very-low-density
part corresponds to the area on the far right of Fig. 1 and
is the area where the LDA begins to fail and van der
Waals effects start becoming important. Stott and
Zaremba have noted this!' and point out that their re-
sults are suspect for electron densities much lower than
the value at the minimum. Consequently, we have con-
centrated on that portion of each curve which lies be-
tween about n,,/2 on the low-density side and E,, /2 on
the high-density side, where the subscript m corresponds
to the values at the energy minimum.

B. Surface electron densities

The EMA allows for a straight forward computation of
the embedding energy given the host-electron density.
Now we will concentrate on the computation of that elec-
tron density. It has been shown' that the electron-density
distribution outside a jellium surface can be described by
a universal function. In Ref. 1 the electron density and
the distance were scaled by a simple prescription, analo-
gous to Egs. (1),

A=n/ng,,
a=(a—a,)/A, (4)

where a,, was taken to be zero (at the edge of the positive
background), n, was set equal to n ,, the jellium density,
and A was taken to be the Thomas-Fermi screening
length I1g. It was shown that when so scaled, the varia-
tion of the electron density at a jellium surface was of a
universal form for all bulk jellium densities, ignoring
Friedel oscillations below the surface. It was further
shown that a reasonable charge-conserving fit to the
scaled data was

(1—0.54¢'922)  for a <0 ;
7= —1.02a ~ (5)
0.46¢ , fora>o0.

Since typically the adsorbate does not penetrate between
the surface atoms, for now we will consider @> 0. Hence,

n=ngyexp[—(a —a,, )/A] (6)

is an accurate representation of the electron density seen
by adsorbates, where for Eq. (5) ng=0.46n , and a,, =0.
Because the relation is exponential, the values of n, and
a,, are coupled but one of them can be chosen arbitrarily;
that is, if ny and a,, are replaced by n, and ay, with
ng=nqexp[ —(ag—a,,)/A)], Eq. (6) remains unchanged.
Therefore, we can conveniently choose a,, and n, to be
the equilibrium distance and the substrate electron densi-
ty n,,, respectively, at the equilibrium position for a par-
ticular adatom.

Electron-density distributions at surfaces and around
other defects in real metals, including transition metals,
can now be computed from first principles using, for ex-
ample, the self-consistent local orbital method.'® Here
we choose a simpler approach. We simply overlap the
electron densities of the constituent free atoms. (We have
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computed the free-atom electron densities within the
LDA with Wigner correlation in a Herman-Skillman®
scheme.) Our reasons are as follows. First, and foremost,
we do not use these electron densities to compute other
quantities such as total energies, but rather only aim to
correlate computed chemisorption energies with them.
Secondly, it turns out that this correlation is rather in-
sensitive to the details of how the electron density is ob-
tained. For example, we will see that in the case of
cohesion in bulk metals either the interstitial or the va-
cancy site densities yield the same scaled energy-density
relation to a good approximation.

Electron densities outside metal surfaces, obtained by
this simple overlap of single-atom densities, can be fitted
to the function in Eq. (6) and scaled in the same way as
the jellium surface densities, i.e., using Egs. (4). The
scaled density-distance relations for some representative
metals are shown in Fig. 5. We have computed surface
densities as a function of z, the distance from the surface,
for a number of metals at different symmetry points in
the two-dimensional (100) unit cell of the surface as noted
in the inset. We find that the fit to Eq. (6) is very good.
This is true despite the fact that instead of a one-
dimensional jellium surface we now have three-
dimensional crystalline surfaces with not only s- and p-
symmetry electron orbitals but also d orbitals.

It is important at this point to make a few further com-
ments about our scheme of overlapping atomic densities.
First, the contributions to the resultant net electron den-
sity from nearest- and next-nearest-neighbor (and farther)
rings of atoms varies as z is changed, but the total density
is not necessarily dominated by the nearest-neighbor con-
tribution. The contribution from the other rings can be
as large as half of the total. The other important point is
that the effects of self-consistency and screening are ex-
pected to make the variation of density with distance
smoother. Thus in some sense our approach of overlap-

Scaled Electron Density, n

-2.0 -1.0 0.0 1.0 2.0
Scaled Distance, a

FIG. 5. Scaled electron density 7 plotted against scaled dis-
tance from the surface @ for different sites on the (100) surfaces
of Cu, Al, and Rh as noted in the inset. The solid line
represents an exponential function e ~%, The origin, =0, is tak-
en 1.5 interplanar spacings toward the vacuum from a plane
through the nuclei of the surface layer of atoms. The range in
distance includes one interplanar spacing.
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ping atomic electron densities provides a more difficult
test for scaling than would the exact density distribution.
Both of these observations will hold true for the case of a
bulk solid when we consider the variations of a vacancy-
site and an interstitial ‘“bond-site” electron density with
lattice constant in Sec. V.

If we presume then that the relation n (a) has the same
form for all metals surfaces, i.e., is universal, and if we
can show that the relation E (n) has the same form in all
situations, i.e., for all atomic species, clearly the relation
E (a) must be of a universal form for all cases of chem-
isorption on a jellium surface. This will be our approach
throughout this paper and we will show that there are
universal functions E*(n*) and n*(a*) which are the
same for chemisorption, cohesion, and certain diatomic
molecules.

C. Free-electron gas E (n)

We will next give an example which suggests that the
correct scaling procedure to obtain E*(n*) is not
straightforward. The total energy of a solid modeled as a
crystalline array of positive-point charges immersed in
homogeneous electron gas can be shown?! to have the
form

E=An2/3__Bn1/3 , (7)

where n is the electron density and 4 and B are known
constants. The first term on the right-hand side arises
from the electron kinetic energy and the second from
electrostatic and exchange energies. The relation in Eq.
(7) becomes more interesting when combined with Eq. (6),

E—qle e —am)/k'__B,e—(a Y @)
with

A'=An2P=AE ,

B'=Bn)*=2AE , 9)

AM=3A=V2l,

and a,, chosen so that ny=n,,. This form is identical to
that of the Morse potential commonly used in the context
of diatomic molecules and can be scaled to the dimen-
sionless form

Etze—\/_Za'_ze—a*/\/i 10

with a * defined as in Eq. (1b). The Morse function also is
a good representation of the UBER depicted in Fig. 1.

Thus the form given in Eq. (7) appears to connect free-
electron solids with diatomic molecules and as such be-
comes a prime candidate to test for a universal
energy—electron-density relationship. Further, a plot of
this energy function versus the density » has a form that
at first sight appears remarkably similar to those of the
embedding energy plots. This prompts one to further ask
if the embedding energy curves are actually of the same
form as for this model system. The function of Eq. (7)
can be put into the dimensionless form

E*=nl}—2n_, (11)
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by scaling the electron density and energy in terms of the
position and depth of the energy minimum

ng=m'1"?,

E*=E/AE ,

(12)

where 7 is defined by Egs. (4) with ny=n,, and where the
position and depth of the minimum are given by

3
o |-
mT 24 |7
(13)
B2
AE—4A.

So the procedure is to compute AE and n,, via Eq. (13)
for each atomic species whose embedding energies have
been determined by the EMA, and then the E (n) can be
reduced to dimensionless form by scaling according to
Egs. (12). If Eq. (7) does indeed describe the data all the
reduced points should lie directly on a plot of the func-
tion given in Eq. (11).

The results of this procedure are disappointing. The
scaled relations are not at all close as can be seen from
Fig. 6 which shows the scaled values of the embedding
energies for nitrogen and oxygen as obtained from Refs.
11 and 18. The solid line in Fig. 6 is a plot of the func-
tion in Eq. (11). Clearly the function of Eq. (7) is not ap-
propriate despite initial appearances.

Incidentally, Fig. 6 also shows apparent differences in
the shapes of the curves obtained by the two independent
groups. These differences are due to the two groups ob-
taining different results, but we will see that when the
correct scaling procedure is brought forward the
differences will be much smaller.

D. Universal function for E (n)

The failure of our attempt to scale the embedding-
energy—electron-density curves onto the free-electron-gas
energy-density curves compelled us to realize that (a) we
were not using the right functional form to fit the curves,
and/or (b) we were not scaling the variables in an ap-
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FIG. 6. Data obtained from Refs. 11 and 18 (as explained in
the text) have been scaled according to Eq. (12). The solid line
is a plot of Eq. (11).
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propriate way. Let us first reexamine the scaling, Eq.
(12). First, the scaling of E (E*=E /AE) is most certain-
ly correct since it is exactly what was done to obtain the
universal energy-separation relation [Eq. (1a)]. There is a
problem with the density scaling, however, which is re-
vealed by combining Egs. (1b) and (6),

F=e—a I/t (14)

If there is to be a universal relationship between total en-
ergy and electron density, then there must be a one to one
correspondence between the scaled electron densities and
the scaled separations. This correspondence in fact
would connect the universal energy—electron-density re-
lation with the universal energy-separation relation.
Clearly, Eq. (13) does not provide a one to one relation-
ship, since the quantity

y=AsI (15)

could be expected to be different for different solids. The
form of Eq. (6) does suggest a one to one scaling of the
form

n*=e=" . (16)

Combining Eqs. (6) and (16), we have

Y
(17)

In analogy to the scaling of the distance in the UBER
[see Eq. (2) and the discussion above it], the second
derivative with respect to n* of E*(n*) at equilibrium is
set equal to unity. This defines ¥ in terms of the second
derivative of E (n) at equilibrium through Eq. (17) as

11 AE 172

v Ny |(@%E/dn?),

(18)

The analogy between the energy-separation scaling and
energy-density scaling is obvious upon comparing Egs.
(18) and (2). In fact, combining Egs. (2), (18), and (6)
leads to Eq. (15) as it should.

Now let us carry out the scaling of the embedding-
energy—electron-density curves of Refs. 11 and 18 ac-
cording to Egs. (17) and (18) and with E*=E /AE. The
results are shown in Fig. 7 for some representative impur-
ity elements. One can see that there is in fact a universal
embedding-energy —electron-density relation. The solid
line in Fig. 7 which represents the data well is of the form

E*=—(1—=Inn*)n*, (19)

with E* defined as in Eq. (1a) and n* defined through Eq.
(17). Combining Egs. (1a), (17), and (19), we have

4
n n

ny,

E=—AE|l—yIn (20)

m

As before, AE and n,, are the depth and electron density,
respectively, at the energy minimum. Comparing Eqgs.
(20) and (7), we see that not only did we not have one-to-
one scaling of the density in Sec. IV C, but we also did
not have the correct functional form.
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FIG. 7. Plot of scaled embedding energy against
n*=(n/n,, )", where n is the electron density and n,, is the po-
sition of the minimum on the curve. Data obtained from Refs.
11 and 18 (as explained in the text) have been scaled according

to Eq. (14) and E*=E /AE. The solid line is a plot of the func-
tion given in Eq. (19).

Another indication of the validity of the form in Eq.
(20) which in fact takes us full circle back to Fig. 1 is
found by combining Eq. (19) with Eq. (16). This yields
Eq. (3) which is plotted as the solid line in Figs. 1-4. So
we see that a combination of the universal
energy—electron-density relation we obtained from the
effective-medium approximation with the universal sur-
face electron-density—distance relation yields the univer-
sal energy-separation relation. Putting it another way,
the universal energy-separation relation is due to sub-
strate electron densities being a simple exponential form
in the vicinity of adsorbates and embedding energies be-
ing a universal function of host-electron densities. One
could not have easily guessed the form of Eq. (20) and
presumably that is why it had not been recognized that
the embedding energies computed in the effective-
medium approximation are of universal form.

We have come a long way now, but we still have quite
a way to go. First, it is well known that the effective-
medium approximation results we have used have inaccu-
racies. Secondly, we have so far considered only chem-
isorption, and we know that there is a single energy rela-
tion which ties together chemisorption, cohesion, and di-
atomic energetics. We will see that despite its inaccura-
cies, the effective-medium approximation gives the same
E*(n*) that is obtained from more accurate cohesion
and diatomic calculations. Moreover, this is true even
though we are comparing impurity embedding energies
with cohesive energies and diatomic binding energies.
Presumably, the inaccuracies of the effective-medium ap-
proximation are contained primarily in AE and
(d2E/dn2),,m, and not in the shape of the E*(n*).

Presumably also the additional energy terms that
differentiate between cohesion and embedding energies
also are of the same, universal form as are the embedding
energies to an accuracy sufficient that they can be scaled
in the same way. We will deal with these and other ques-
tions in more detail in the remainder of this paper.
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V. COHESION

A. Cohesive energies as a function of host-electron densities

As noted above, energies of cohesion are fundamental-
ly different from impurity embedding energies. In
cohesion, we assemble the solid from atoms that are orig-
inally isolated, as opposed to adding an impurity atom to
an already assembled host. Cohesive energies must there-
fore be computed by methods different from effective-
medium theory. Cohesive energies have been computed
from first principles using various numerical methods as
discussed below. Given the results of those computa-
tions, one might still wish to correlate them with a host-
electron density where the host in this case for a given
atom is all the other atoms in the elemental solid. In this
way one makes a connection with the impurity or embed-
ding problem, while making sure that the cohesive ener-
gies have been computed properly.

This electron density would of course vary with crys-
talline lattice constant. One might, in the spirit of the
EMA, wish to take the host-electron density to be that
found at the center of a vacancy. Alternatively, it might
be argued that the relevant electron density is the elec-
tron density in the region where most of the interatomic
bonding occurs, i.e., midway between nearest neighbors.
Here we explore both possibilities. We will investigate
the variation of the electron density with lattice constant
at the two aforementioned sites. We will show that the
variation with lattice constant of the electron density at
either point does have the same form for all metals, or at
least for the large number of metals tested, and that this
form is that of Eq. (6). We will further show that the re-
lation between cohesive energy and the electron density
at either point has the same functional form for all the
metals tested and that this form is the same as that of the
relation between embedding energy and jellium density
found in the previous section.

B. “Vacancy-site” electron density

Initially, as explained above, we concentrate on the
vacancy-site electron density. This is the electron density
n, at a lattice site Ry which originates from atoms at all
other sites R;, i£0. Using the scheme of overlapping
atomic electron densities, the “off-site” electron density
at a lattice site may be written as

n,= Y pr—R;).
i(0)

(21a)

Here, p(r) is the free-atom electron density, R; is the po-
sition of the ith atom, and the sum runs over all atomic
sites except the one at the vacancy site, i=0. The
Herman-Skillman free-atom electron density being spher-
ically symmetric, this expression can be simplified to

n,= 3 Nypld;), 21b)

j=1

where N; is the number of jth-neighbor atoms and d; is
the distance to the jth-neighbor atoms. Both {N;} and
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{d;} depend on the lattice structure of the solid in ques-
tion.

We have computed the quantity n, as a function of the
lattice constant for a number of metals ranging from the
simple metals, such as lithium and sodium, through the
transition metals, such as nickel, to the noble metals, e.g.,
silver and gold. In order to exhibit the universal form of
the variation of this electron density with lattice constant
we initially scaled the density n, and the lattice constant
a for each metal to dimensionless quantities as in Eq. (4),
with a,, the equilibrium lattice constant, no=n,(a,,),
and A the Thomas-Fermi screening length (derived from
no) of the metal in question. The results of this scaling
are presented in Fig. 8 which shows plots of # versus @
for some representative metals. The range of @ in Fig. 8
and, indeed, in Figs. 9-11 as well, was chosen so that the
volume per atom in the host crystal varied from 0.5 of
the equilibrium value to 2.0 of the equilibrium value.

It is clear that the scaling is not very accurate. This is
perhaps not surprising given the approximations made,
particularly the use of the Thomas-Fermi scattering
length. While that screening length worked well for jelli-
um surfaces, clearly vacancies in, e.g., Ba or Rh are not
closely represented by jellium surfaces.

The fits can be significantly improved by better choices
for the parameter A. With comparison to the situation of
chemisorption in mind, we have tried to fit the values of
n,(a) with an exponential function as in Eq. (6) allowing
A to vary. We have then scaled the values of n,(a) and a
according to Eq. (4). The fits we have obtained are ex-
tremely accurate. Results of scaling with the optimized
parameters are presented in Figs. 9 and 10. The improve-
ment in the agreement is obvious. The optimum values
of the parameters do not differ significantly from the orig-
inal values for almost all of the metals examined. The
solid line in Figs. 8—10 is the function e ~?. That the
points in Figs. 9 and 10 fall so closely on that line is indi-
cative of how well the function in Eq. (6), which accurate-
ly described the electron-density distributions at jellium
surfaces, also describes the vacancy electron-density dis-
tributions.

Scaled Electron Density, n

Scaled Lattice Constant, a

FIG. 8. Scaled electron density #=n,/n, plotted against
scaled lattice constant @ for some metals. The scaling length A
has been taken as the Thomas-Fermi scaling length /yg. The

solid curve is the function e ~°.
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FIG. 9. Scaled density #=n,/n, plotted against scaled lat-
tice constant @ for some metals. The scaling length A has been
determined by optimizing a fit to an exponential function [Eq.

(6)]. The solid curve is the function e 7%

C. “Bond-site” electron density

One might argue that since cohesion is more like a pro-
cess of interatomic bonding than of embedding a “self-
impurity,” the relevant density to correlate with the
cohesive energy might be that in the bonding region, i.e.,
midway between nearest neighbors (with no vacancy in-
troduced). We have investigated the variation of this
bond-site electron density n, with lattice constant in a
number of a metals. We have computed n, using the
same approximation of overlapping atomic electron den-
sities that was used in the previous section to compute
the vacancy-site density. The values of n,(a) have been
fitted with the exponential function of Eq. (6) and the
values of n, and a have been scaled as in Egs. (4) using
the equilibrium lattice constant a,, and the fitted parame-
ters ny and A. Once again, perhaps surprisingly, the fits
are excellent. The scaled values 7 are plotted against the
scaled lattice constant @ in Fig. 11. The metals chosen

Scaled Electron Density, n

2.0 -1.0 0.0 1.0 20

Scaled Lattice Constant, a

FIG. 10. Scaled density # =n, /n, plotted against scaled lat-
tice constant @ for some more metals. The scaling length A has
been determined by optimizing a fit to an exponential function
[Eq. (6)]. The solid curve is the function e ~7.
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FIG. 11. Scaled density # =n, /n, plotted against scaled lat-
tice constant @ for some representative metals from Figs. 6 and
7. The scaling length A has been determined by optimizing a fit
to an exponential function [Eq. (6)]. The solid curve is the func-

tion e ~%.

for that plot are representative. Again the solid line is
the function e ~%. It is clear from this plot that the varia-
tion of n, with a is very well described by the exponential
function of Eq. (6) for all the metals considered, and so is
of the same, universal form found for vacancies and at
surfaces.

The exponential variation of the bond-site electron
density is perhaps more surprising than that of the
vacancy-site electron density. The bond-site density sam-
ples more of the inner reaches of the atoms (closer to the
core), and might be expected to show deviations from ex-
ponential behavior. We have found, however, as evi-
denced in Fig. 11, that deviations from exponential be-
havior are not significant and the density distributions
can be scaled together as long as one identifies the op-
timal scaling length. The value of this scaling length can-
not be determined a priori because, since we are overlap-
ping atomic densities, screening lengths are not necessari-
ly the appropriate choice. Further, a screening length
prescription for transition metals is less than clear. ??

D. Correlation between cohesive energy
and electron density

We have already discussed the possibility that the
cohesive energy of the solid can be correlated with the
electron density at a suitably chosen point in the crystal.
Since we have, at this juncture, no theoretical basis for
choosing the “best” site for such a correlation, we have
tried to find an ex post facto one. We have used as our
starting points the ‘“raw” computed values of the
cohesive energy as a function of lattice constant E (a) and
the variation of the electron density with lattice constant
n(a), where n is either the vacancy-site density n, or the
bond-site density n,. From a knowledge of these we ob-
tain the relation between cohesive energy and appropriate
electron density E (n). Now we can scale E (n) according
to Egs. (17) and (18) and with E*=E /AE. The results
are shown in Fig. 12 for the vacancy-site density. One
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FIG. 12. Scaled cohesive energies for some metals plotted
against n* =(n/n,, )7. Vacancy-site densities n, have been used
for this plot. Similar results obtained using bond-site densities
n, are indistinguishable from those shown here after scaling.
The solid line is a plot of the function given in Eq. (19).

can see first of all that there is a universal relationship be-
tween total energy and electron density. This is true even
though now we have not only a simple metal (K), but also
a noble metal (Cu), a transition metal (Mo), a band-
overlap metal (Ba), and rare-earth metals (Yb,Eu). We
find virtually an identical E*(n*) when the bond-site
density is used, and so it does not matter which of the
two sites we choose as far as the scaling properties of
E (n) are concerned.

The solid curve is a plot of the expression given in Eq.
(19). One can see that the agreement is excellent. Com-
bining Egs. (16) and (19), one obtains Eq. (3) which, as
noted earlier, is the solid line in Figs. 1-4 and is clearly
an accurate representation of the UBER. Again we have
come full circle, and find that the universal relationship
between cohesive energies and lattice constants is due to
bond or vacancy electron densities being accurately de-
scribed via a simple exponential family function [Eq. (6)],
and to a universal relationship between cohesive energies
and those electron densities. There is more. In compar-
ison with Fig. 3, one must conclude that a single E*(n*)
describes both cohesion and impurity embedding. This
helps explain how a single relationship between energy
and interparticle separation can describe both cohesion
and chemisorption. There are a few points that require
further discussion. First, as mentioned earlier cohesion
and embedding energies are fundamentally different.
Added to this is the fact that while the effective-medium
approximation has known inaccuracies, its E*(n*)
agrees well with that obtained via the more accurate
cohesion calculations. The finding of a single E*(n*) for
both suggests that the differences are, to a surprising ac-
curacy, of the same form in their dependence on the
host-electron density. That is, one finds that the quanti-
tative differences are primarily contained in AE and
(d’E /dnz),,m. Finally, the cohesion results were ob-

tained for host densities produced by a variety of s-, p-,
and d-electron materials, while the effective medium is a
free-electron gas. One must conclude that the effects of
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the effective-medium approximations and the variety of
materials involved in cohesion are again found primarily
in AE and (d’E /dn?), .

V1. DIATOMIC MOLECULES

The validity of the UBER in the context of diatomic
molecules presents a new set of challenges. In some sense
a diatomic molecule is the “most anisotropic” of the sys-
tems to which the UBER applies. The directionality of
the bonding is very important. Although we did not dis-
cuss insulators and semiconductors in Sec. V while con-
sidering cohesion in a bulk solid, there is evidence’ that
the UBER applies to these solids too, although there are
limitations as discussed below Eq. (3). These can be high-
ly anisotropic solids with highly directional bonds. Rath-
er strong anisotropies arising from the directional charac-
ter of interatomic bonding can also be seen in transition
metals which were discussed in Sec. V. Thus it would
seem that the directionality of the bonding does not affect
the universality of the binding-energy—distance relation.
One reason for this is the total energy is an integral over
all space of a functional of the electron density'* which
tends to average over the anisotropy of the electron den-
sity arising from the directional bonding. However, we
have not as yet considered processes such as shear which
could emphasize directional effects. While we will not
consider the analogue of shear in the case of diatomics,
the directional nature of the diatomic bond will be a
significant test.

In one sense, the analysis of the energetics of diatomic
molecules is simpler than for solids, because for the latter
many atom forces come into play. In fact, the search for
universal features associated with the molecular bond has
been going on for quite some time. For example, Ein-
stein?®® showed in his first two papers his early interest in
universal principles by conjecturing on a universal nature
of intermolecular interactions. This is in contrast to
solids, where the first suggestion of universality appeared
only recently.! The search for universality in diatomic
molecule energetics has been a rich field, and for more re-
cent references see Simmons, Parr, and Finlan.?* Still, a
scaling such as that of Egs. (1) and (2) has not been sug-
gested for diatomics. Recently, Graves and Parr®® tested
Egs. (1) and (2) by comparing computed (d’E /da3)am

and (d*E /da‘*),,”l with values calculated from spectro-

scopic data for 150 molecules from across the Periodic
Table. This is the most difficult test yet for Egs. (1) and
(2) because up until then the highest derivative to be test-
ed was the third (see Rose et al.”), and most testing had
involved only the zeroth derivative of E (a). As pointed
out in Sec. II and elsewhere in the paper (see also Ref. 7),
the UBER is expected to be valid only for metallic and
covalent bonds, and not for ionic or van der Waals bonds.
This is supported by Ref. 25. See particularly their Table
I

How shall we proceed in our attempt to understand
universality in diatomic molecular energetics? Clearly we
cannot use the effective-medium approximation as we did
to understand chemisorption in Sec. IV, because the host
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in the case of diatomics would be the other atom, hardly
describable as a free-electron gas, even locally. On the
other hand, we do wish to make a connection with chem-
isorption and cohesion and so perhaps we should proceed
in a manner parallel to that followed for cohesion in Sec.
V. That is, we will use state-of-the-art total energies and
attempt to correlate them with host-electron densities.

As mentioned, the host-electron densities are in fact
isolated atom electron densities. Our approach then is to
investigate the scaling properties of isolated atom elec-
tron densities computed as described in Sec. V B. Scaling
is carried out via Eq. (4), where the scaling parameters
are determined by fitting the atom-electron density distri-
butions to Eq. (6). The scaled electron-density distribu-
tions for isolated atoms are shown in Fig. 13. The solid
curve is a plot of e %, Clearly, the simple exponential
form of Eq. (6) is an accurate description of the tail re-
gion of the atomic electron-density distribution, i.e., that
part which is tailing off into the vacuum and which over-
laps the other atom in making the diatomic bond.
Remember that Eq. (6) also describes the tail region of
the electron gas at metal surfaces and the vacancy and
bond-site densities in bulk crystals. By comparing Fig. 13
with Figs. 9-11, one can see that the scaling is slightly
better for the isolated atom than it is for the bond or va-
cancy sites in the solids. This is presumably because of
next-neighbor and further-neighbor effects in the bond
and vacancy sites, as discussed earlier.

Now we wish to correlate total energies E (a) with
these atomic densities by scaling according to Egs. (17)
and (18) with E*=E /AE. Note that because all atomic
densities are of the form of Eq. (6), it does not matter
whether we consider atom A to be the host for atom B in
molecule 4B or vice versa. We have carried out this
correlation for a few diatomic molecules®*~2% and a few
diatomic molecular ions.?’ The results are shown in Fig.
14. One can see that there is a universal relationship be-
tween the diatomic total-energy and host-electron densi-
ty. The solid line in Fig. 14 is a plot of Eq. (19). One can
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FIG. 13. Scaled free-atom density 7 plotted against scaled
distance @ from the nucleus for some atoms. The scaling length
has been determined by optimizing a fit to an exponential func-
tion [Eq. (6)]. The solid curve is the function e ~°.
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see that it is an excellent representation of the E*(n*) for
diatomic molecules. Combining Egs. (19) and (16), we
obtain Eq. (3), which is plotted in Figs. 1-4. We can now
understand the UBER for diatomics as being due atomic
electron-density distributions being of a simple, exponen-
tial form and to a universal relationship between total en-
ergies and atomic electron densities. A comparison with
Figs. 3 and 10 reminds us that this same E*(n*) de-
scribes chemisorption and cohesion, respectively. This,
together with the applicability of Eq. (6) to host-
electron-density distributions in chemisorption, cohesion,
and diatomic molecule energetics, helps us to understand
how there could be a single relationship between total en-
ergies and interparticle separations for all of these phe-
nomena.

VII. DISCUSSION

We have presented some insights into why the relation
between binding energy and interatomic separation
should be universal in the separate contexts of bulk
cohesion in solids, chemisorption of atoms on metal sur-
faces, and bonding in diatomic molecules. We saw that
this universal relationship could be understood in terms
of two findings. First, host-electron-density distributions,
or electron densities seen by each atom in the molecule or
solid, are accurately described by the simple, exponential
family function given in Eq. (6) for chemisorption,
cohesion, and diatomic molecules. Secondly, there is a
universal relationship between this host-electron density
and the total energy which is accurately represented by
Eq. (19) for cohesion, chemisorption, and diatomic
molecular energetics. Combining Egs. (19) and (16) yields
Eq. (3). This takes us full circle because, as shown in
Figs. 1-4, Eq. (3) is an accurate representation of the
universal relationship between total energies and intera-
tomic separations.

Just as importantly as helping to understand why there
is a universal relationship between total energies and in-
teratomic spacings, we have reiterated the limitations of
that relationship. It is limited to metallic and covalent
bonds (fermions—with some evidence that this includes
strong forces in nuclear matter). This limitation is lifted
in the case of equations of state or pressure-volume rela-
tions for solids in compression or in thermal expansion.
We apply the universal relation only within phases and
not through phase transitions. Also the relative motions
of the atoms are constrained to follow certain paths (e.g.,
fixed lattice structure in cohesion and chemisorbed atoms
moving in same direction relative to surfaces). This is a
limitation we'’ are attempting to overcome with a
method of comparable simplicity to the universal energy
relation, but we must go beyond the realm of applicabili-
ty of the UBER to do it. Finally, it is perhaps useful to
remind the reader that the UBER only provides the
nonequilibrium behavior given AE and (d’E/da?), .
One still needs to provide those two numbers from first-
principles theory, experiment, or perhaps from simple
empirical correlations. *°

The EMA was used in our investigations of universali-
ty in chemisorption, and the approximation must, in all
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practical cases, be corrected. Corrections are necessitat-
ed by two factors. First, one must correct for the fact
that the electron density is not uniform. The second
source of corrections is due to the fact that the hosts con-
tain s, p, d, and f electronic symmetries. However the
agreement between the E*(n*) obtained via the EMA
(Fig. 7) with that from cohesion (Fig. 12) and from dia-
tomic energetics (Fig. 14) suggests that these corrections
have little effect on E*(n*) but rather apparently con-
tribute primarily to AE and (d2E /dn 2),,m. Thus they are

not of direct importance to our understanding of the ori-
gin of the universality. Note also that the fact that the
cohesive and diatomic binding energies are fundamental-
ly different from impurity embedding energies also has
little effect on E*(n*). This suggests that the differences
between these energies are also of the universal form to a
reasonable accuracy.

Actually, we have carried the explanation of the
UBER only a few steps along the way toward a complete
understanding. One could ask why the host-electron-
density distributions are of simple, exponential form.
This is at least a reasonable result because wave functions
decaying into vacuum are of this form. However, density
distributions are due to a combination of many wave
functions and so it is not obvious why this combination
should be of such simple form. Further, it is not just due
to atomic densities being of this form because more than
one ring of neighbors contributes significantly to electron
densities in cohesion and because the result holds even
for jellium surfaces. One could also ask why total ener-
gies should be universal functions of host-electron densi-
ties. This is perhaps not as easy to understand or accept
as exponential electron-density distributions. Those of us
that are familiar with density-functional theory'* are
perhaps more comfortable thinking of the possibility of a
universal relationship between total energies and electron
densities than between total energies and interatomic
spacings. The electron-density scaling relationship for
the energy-density scaling was not obvious and was, in
fact, suggested by the exponential form of the host-
electron-density distributions. The plausibility of such an
energy—electron-density relationship being of universal
form is enhanced by the knowledge that the total energy
is an integral of an energy density functional of the
electron-density distribution which tends to average over
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FIG. 14. Scaled diatomic binding energies plotted against
n*=(n/n, ). The solid line is a plot of the function given in

Eq. (19).

density gradients and directional bonds. Further, hybrid-
ization tends to smooth s, p, d, or f electronic symmetry
differences between the elements. Perhaps the most
transparent reason for the universal energy-electron-
density relationship is the simple form of the plot of ener-
gy versus electron density (Figs. 7, 12, or 14). These plots
(see, e.g., Fig. 2 of Ref. 18) appear to have d’E /dn? being
of one sign (>0) for the range of densities considered.
This is even a simpler form than the E (a) plot shown in
Fig. 1. Given such a simple form it is less surprising that
requiring the values of the energy and its second deriva-
tive for various elemental systems to coincide at equilibri-
um leads to the curves coinciding over a substantial range
of densities and energies.
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