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%e give a method of obtaining the electronic structure of the ground state of intermediate-

va1ence systems by means of a nonlocal potential deduced by the variations of the total energy with

the number of f electrons. In addition, we deduce this potential from the Green s function for in-

teracting f systems and we calculate the band structure and the density of states of golden-phase

SmS for several values of the energy U and lattice parameters.

I. INTRODUCTION

The band-structure scheme can be useful for explaining
the properties of the ground state of some intermediate-
valence (IV) and heavy-fermion (HF} systems. ' In these
systems, the f states are hybridized with other bandstates
and this implies that the band efFects can be larger than
the disorder effects produced by the localization. '2 The
main difficulty for obtaining the electronic structure of
the IV and HF compounds is to find a potential for deter-
mining the dynamics of the heavy electrons.

SmS has two difFerent phases (black and golden)
corresponding to semiconducting and metallic behaviors
and the phase transition is produced by hydrostatic pres-
sure. The SmS metallic phase is an IV compound which
has been the subject of several investigations. ' How-
ever, the theoretical density of states corresponding to
the ground state is not well known. This IV material
presents an experimental pseudogap 5 similar to that of
SmB6} which splits off two 4f peaks in the density of
states (DOS) and is located close to the Fermi energy. '~
The coherent f-d hybridization can be a cause for the ap-
pearance of these 4f peaks and then the consideration of
these IV or HF materials as incoherent aggregation off
electron atoms is dubious. ' ' ' Therefore, the f elec-
trons should be treated by means of one-body wave func-
tions with all symmetries of the crystal spatial group.

In this paper, we give two procedures for determining
the electronic structure of the IV or HF compounds and
we calculate the band structure and the DOS for metallic
SmS considering different values for the Coulomb corre-
lation energy and lattice parameter (a). Our main objec-
tives are the analysis of the f-d hybridization and the
study of the conditions for an appearing pseudogap be-
tween two 4f peaks at the Fermi level. Both points, the
f -d hybridization and the pseudogap, have been experi-
mentally detected by low-energy spectroscopy and resis-
tivity measurements. '

II. METHOD

The potential for obtaining the one-body spectrum of
the IV or HF materials is obtained from the variations of
the total energy when the f count in each lattice site

varies, considering that all f-electron atoms are in the
same charge state (see Refs. 2 and 4) (i.e., we consider a
homogeneous mixed valence for this compound}. The to-
tal energy for the IV or HF systems, calculated from the
multiband Hubbard Hamiltonian in a first-order theory,
reads""

= f eXO(e)dE+ —,'Nn(n —1)

k, a
If &&f' lk&)n (2b)

the terms &nff ) with f&f' become zero if the sym-
metries of the f orbitals are compatible with the point
group of the crystal. n is equal to g&( nI ). No(e) is the
DOS curve arising from a spectrum (et ) deduced from
the equation:

+ ~MT(1 Pf )+ +MTpf l l
«& =eg.

I
«&

where VMT is a potential which does not contain any ff-
repulsive interaction in the local density potential and

VMT stands for the full muon-tin potential deduced by
means of the local density formalism. PI(I}are the I =3
(unity) angular moment projection operators.

The philosophy of our calculation is to find a new spec-
trum ez such that the total energy of expression (1) can
be given by

ET ge„n„=f sX——(s)de, (4)

+ —,'Ng (nI& —&nf) g ~ (nff &
~

f f (~f')

where U stands for the Coulomb correlation energy
which is considered as a Stting parameter; n represents
the average number of f electrons per site; (nI ) is the
average occupation number for each f orbital and is
de6ned as

(2a)
k, a

and
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where N(e) is the new DOS determined from the ez
spectrum.

The total energy of expressions (1) and (4) can be ob-
tained from an effective Hamiltonian:

H =g eg~cg~cg~+ g &k cx
~ Vff ~

kcx)cg~cg~

where the expression for VI& is

(6a)

(6b)

then the spectrum ez is obtained [by diagonalizing the
Hamiltonian (5)] from the following equation:

[ ~'+—VMT(I pf }+—VMT pf]Pka(r)+ f "'«'U g« —&nf &)f(r)f '(r')pa~(r')=sg~qa~(r) '

f

this equation is equivalent to with

X '(r, r')

where X(r, r'} takes the form

X(r, r') =Q I U(n —
& nf ) )

f

Vff Q U(1 &nf))
~ f )&f (9a)

where V~& acts as

Vff gled ( r ) =f d 3«' [X(r, r' ) —X"'(r, r' }]y| ( r' ) (9b)

The problem in IV or HF systems arises when an f or-
bital is partially occupied in all f-electron atoms of the
crystal„since the f bands arising from the totally occu-
pied orbitals can be treated by means of the local density
formalism (see, for instance, Ref. 16}and the bands aris-
ing from the totally unoccupied f orbitals are split by the
U energy. In our model, the locations of the different f
orbitals, with respect to the totally occupied f orbitals in
the ground state, are obtained by the term

(1D)

We formulate VI& depending implicitly on the energy
since we calculate the radial wave functions of the orbit-
als

~ f ) at the energies of the eigenvalues. This fact im-

plies that Vff produces effects in each yz (r) state ac-
cording to its spatial localization since the localizations
of the f orbitals strongly depends on the energy. The ra-
dial part of these functions f (r, sz ) is obtained by means
of the renormalized atom approach' and are truncated
at the muFtn-tin radii of the f-electron atoms. In addi-
tion, as we have written above,

f X"'(r,r'}yz (r')d «'=b, V,„,(r)gz (r),

where 6V,„,(r } is a correction to the local exchange and
correlation potential V,„,(r). b V,„,(r) and V,„,(r) are
included within VMT(r), therefore, Eqs. (7a) and (7b} can
also be written as

[—7 + VMT(r)]pz~(r)+ f d «'Ug(1 —&nf ))f(r, eg&)f'(r', s„~)y„~(r')=ez~yz~(r) .
I

The potential Vf locates each f orbital at an energy

Ef —so+ U( 1 & nf )y eo bcmg thc gravity ccntcr of thc
4f band determined with the VMT potential. For U =0,
(11) represents a standard local density equation, there-
fore, the strong correlation effects are included by means
of the nonlocal correction of this equation. The potential

V&& commutes with all symmetry operations of the point
group if and only if the terms & nf ) are equal for ail bases
of each subspacc of the decomposition D7 (2I + 1)
=I zI &5el z5 (this decomposition corresponds to the

group Oz). The values of & nf ) for each subspace can be
diFerent and therefore the potential (9a) can produce
diFerent 4f peaks (three peaks). In addition, the f dhy--
bridization can induce a gap or pseudogap which splits
oF two 4f structures.

The self-consistent procedure for determining VMT and

V&& has been given in Ref. 6 and can be summarized as
follows. For the zero iteration, the f level is considered
as an atomic resonance with n electrons (4f" is the in-
tegral configuration of the ground state). For successive



37 METHOD FOR ANALYZING THE GROUND STATE OF. . .

(a) (c)
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FIG. 1. Di8'erent band structures in the directions (100) and (111) for the golden SmS with a crystal volume 0.85VO and several
values for the Uenergy: (a) U=0.20 Ry, (b) U=0.28 Ry, (c) U=0.32 Ry, and (d) V=0.36 Ry. The states marked with —are pure
4f states, i.e., they have gf ~

(ka
~ f )

~

~ & 0.9.

iterations, the E(k) dispersion implies difFerent self-
consistent occupation ({nf)) for the several f sym-
metries. Then, the nonlocal terms of Eq. (11) cause the
splitting of the f symmetries and the convergency of the
process, if any, coincides with the stability of the 4f
configuration. The technical details of the band calcula-
tion method are given in Refs. 6 and 7.

A. The energy spectrum with U+0

The main advantage of this band method is that one
can determjne simultaneously both the occupied and the
unoccupied 4f bands. The occupied 4f bands arise from
f orbitals such that 0& {nf) &1 (in our work, the I', s
and I 2 subspaces, see Figs. 1 and 2). The actual cases al-
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FIG. 2. Density of states per spin direction corresponding to the band structures of Figs. 1(a), 1(b), and 1(c), respectively.
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ways are ( n& & g 1 due to the f -d hybridization and the
delocalization produced by the pressure effects. Then,

Vff causes a tendency to the unoccupancy of the corre-
sponding f symmetry. However, a decrease of ( n& ) im-

plies the decrease of the f fre-pulsive interaction in VMr
and thus a shift down of co. Therefore, VM& and Vff pro-
duce competitive e8ects which can cause. instabilities in
the total f count n when (nt ) is different from 1 or 0.
For (n&) —1 (the I,s subspace in our ease, see Figs. 1

and 2), the f symmetry is stable and the corresponding f
bands are similar to the so-called lower Hubbard bands.
For (n&) =0, the corresponding 4f bands are totally
empty in the ground state (I 2s subspace in our calcula-
tion, see Figures). These unoccupied 4f bands represent
the different ways to occupy the 4f"+' con6guration in a
crystal where all electronic conduction states are de-
scribed, even the 4f ones, by means of Bloch functions
and whose ground-state con6guration is 4f". These
bands are the upper Hubbard bands and can also be
defined as the motion of an extra electron placed in the
rare-earth atoms so that the 4f"+ conSgurations are
moved through the lattice with a definite quasimomen-
tum for the wave functions. '

Another point is the conservation of the Luttinger
theorem in our calculations. This theorem implies that
the k-space volume occupied by the states below EF is in-
dependent of the value of the U energy. In our results the
f count is quasiconstant for different U values and this
implies the veri6cation of this theorem, since we consider
the homogenity of the charge state in all f-electron
atoms. The light modifications of the f count versus the

U energy are produced by the dependence of the hybridi-
zations on U.

III. AN&THER VERSION QF THIS MKTHGD

In order to understand the contents of the method de-
scribed in Sec. II we have deduced the main equations
[i.e., potential (6b) and Eqs. (7a) and (7b)] from an ap-
proximation of the Green function for interacting f sys-
tems. The multiband Hubbard Hamiltonian reads

0H =g ei&~ei&~cka+
2 g cifcif cif'cif &

k, a r', f,f'
(12)

where the energies si, were obtained by means of a self-
eonsistent potential which does not contain any f-f
repulsive interaction in order to avoid repetitions when
considering the f-f Coulomb correlation, i.e., ei, arises
from an identical equation to (3). The operators c;& and
c,f are dered as

c,g
N'~z ——g (f ~

ka )e 'ci,
ka

(13)

k, a

i.e., we assume that the f states are band states with more
or less E{k)dispersion and they can be more or less spd
hybridized. The Hamiltonian (12) is similar to the
periodic version of the Anderson Hamiltonian since the
f-d hybridization terms of this Hamiltonian are included
in the calculation of the ei, spectrum.

Substitution of (13) into (12) leads to

H =Ho+ V=+ si, cz ci, + g g g (ka
~ f )(k'P

~

f'&(f'
~
(k+q)y &

k, a f,f' k, k', q a,P, y, 5

X(f I

«' —q)5& i.ei't(e(i+q» e(i -q&s (14)

where a, P, y, and 5 are the band indices. The Green's function is defined as

G tt(k, t)= i(T[ei, (—t)c~]),

and its temporal evolution implies that

(15)

BG ti(k, t)
i5+(t)—ie(, G tt(—k, t) i +M r—(k)Grti(k, t) .

i3t
(16)

This equation is obtained by considering a decoupling relation as

g ( )(c„c~(t)ctr(t)c,.i(t))= g ( )[(c„c,i(t))(c~(t)ct~(t)) —( c~t){e . (tti))( ccit, (t))],
q, l, l' q, I, l'

and we have de6ned

~ „&&&=(&» UZ«»y& If&&i'I —&o» & If&&f'I & &v)ff'
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where

&nff &= i—N ' g &f ~qA&&qp~ f'&G„„(q,0 ),

(19)

[Go(k, co)] ~
——

~Ve 1 —/f g~
0 + 0 4

co —sg~ —l5 co —sg~+ l 5

where s~ois the energy spectrum of the noninteracting
system. The poles of the function det[G(k, e)] are the
spectrum sz of the interacting system. The new wave
functions are obtained by means of the following equa-
tion:

[—~'+ VMv(I —Pf }+VMvPf]ma (r}

+ J d r'M(r, r')yz (r')=e& yz (r), (21)

where M(r, r') is the real-space representation of M(k).
M(r, r') is given by

) U g(n (nf &)f(r)f '(r') (22)
f

where n =gf(nf & and f(r) are f orbitals whose radial
part is calculated to the energy of the corresponding ei-
genvalue of Eq. (21) (as in Sec. II) and the angular part
have symmetries compatible with the crystal. Equation
(21) can also be written as

[-~'+ VMr(r)]V~ {r)

+ f X r, r, Eg~ gg~ r =Eg~fg~ r (23)

where X(r, r', ez ) takes the form

X(r, r', s„)=/ {U(rl —( nf & ) —[V" (r) —V (r)]I
f

Xf(r, s„)f'(r', s„) .

%hen X=O, the resulting equation is the standard local
density band Hamiltonian.

The potential (22) is identical to (6b) and the nonlocal
terms of Eqs. (21) and (7b) are also identical. In addition,
Eqs. (11) and (23) yield similar results if the calculations
are performed self-consistently.

An equivalent equation to (20} has to be developed to
introduce the potential X(r, r', ez ) instead of M(r, r').
Then Eq. (20) will read

G(k, a))=[I—Go{k,a))X(k, co)] 'Go(k, co), {25)

now Go is the Green function corresponding to a spec-

if we choose a basis for the f orbital space compatible
with the crystal symmetry, all (nff & are zero for f+f'.

The Green function is a matrix whose dimension is the
number of bands with states containing 1 =3 component
in their charge density. This matrix can be obtained from
a Dyson-like equation

G(k, co) =[I—Go(k, cu)M(k)] 'Go(k, a)),

trum deduced from the standard local density (I.D} po-
tential (i.e., with X=0). The potential X is the key of this
method for obtaining the HF electronic structure. The
main enect of this X correction is the splitting of the
different f symmetries according to their average occupa-
tion number (nf & producing a multiple Hubbard split-

ting whose average interband separation is
—U((nf &

—(nf &). This is also obtained by means of
the procedure in Sec. II, since this sphtting rises by the
dependence of the nonlocal term on (nf &. On the other
hand, the appearance of the (nf &'s in the self-energy de-
duced in this section is due to the exchange term of the
decoupling equation (17) which only produces nonvanish-

ing effects in the case of the degenerated f symmetries.
The model described in these two sections is similar to

that given in Ref. 19, and the self-energy functionals of
{11)and (23} accomplish the two conditions required in
Ref. 20, i.e., HO+X is Hermitical and X conserves the f
count n.

IV. COMMENTS ON THE RESULTS

The second part of this work describes the results of
the electronic structure of the metallic phase of SmS per-
formed with the first version of this method (i.e., Sec. Il}.
This phase is obtained by mixing the 4f band with the
conduction band due the hydrostatic pressure. Another
consequence of the pressure is a larger delocalization of
the radial wave functions in the golden phase than in the
black phase. This implies a larger f-d hybridization and
an increase of the f-band widths, and therefore the U en-
ergy decreases for this golden phase of SmS.

We show in Fig. 1 the band calculation performed for a
crystal volume 0.85VO (Vo being the crystal volume at
room pressure) and for different values of the U energy.
The f-d hybridization is clear in the bands I zshzX2 and
I zb, zX3 since their states share the f and d orbitals. The
electronic structure of Fig. 1 presents the f-d hybridiza-
tion feature of the IV and HF compounds described in re-
cent papers.

The first electronic structure [U=0.20 Ry, Figs. 1(a)
and 2(a)] shows the existence of five maxima in the DOS
curve close to EF [Fig. 2(a)]. The f-d hybridization pro-
duces two maxima (b,z bands), being the other three are
generated by the I"

&5 bands. The Fermi level lies on a rel-
ative minimum [see Fig. 2(a)] and the pseudogap between
the third and fourth maximum is not a hybridization
pseudogap because these two maxima arise from the de-
generate I » subspace. Therefore, this pseudogap is due
to the crystal symmetry efFects.

For U &0.22 Ry, Ez is above the I » bands and cuts
o5' the band I zh, zX3. This implies that the Fermi energy
is close to the absolute minimum of the DOS curve and
lies between the peaks I 2 and I &5 (see Figs. 1 and 2}.
Therefore, the pseudogap located at Ez is raised by the
different Coulomb correlation effects for each f subspace
and is not a proper hybridization pseudogap (5). The
splitting between the I z and I » peaks increases when the
U value increases. For values close to U =0.26, our DOS
curve presents a similar structure to that given by Trava-
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glini and Watcher in Ref. 3. For U & 0.26 Ry an actual 5
can appear [see Fig. 2(c)] due to the f-d hybridization in
the hz bands. Figures l(c) and 2(c) show a clear 5 and a
clear splitting between the several 4f bands. For
U & 0.36 Ry [Fig. 1(d)], the locatloll of the Fernli eilergy
is also in agreement with the experimental results, howev-
er the I 2-I » splitting is too large.

For values of U & 0. 15 Ry, the bands coming from the
1 z5 orbitals are located above Ez. These I z5 orbitals are
empty in the ground state. Therefore these 4f bands can
be assimilated to the upper Hubbard bands whose loca-
tions are detected by bremsstrahlung isochromat spec-
troscopy (BIS) measurements. For instance, Oh and Al-
len9 determine this 4f peak to be around 4 eV above the
Fermi energy which is close to the splitting displayed by
the results of Figs. 1 and 2.

In our calculations, the number of states at the Fermi
level decreases when U increases in such a way that for
U &0.25 Ry, EF is located in the absolute minimum and
this is in agreement with the electrical resistivity mea-
surements. ' The value of the DOS in this minimum
(seven states per Ry and primitive cell) is 2 orders of mag-
nitude less than the value in the f maximum (596
states/[Ry/(primitive cell)]} (this relation between the
maximum and minimum of the DOS is also estimated by
Travaglini and Watcher ).

The results of the band structure and DOS curve for
U =0 (i.e., results from the standard local density formal-
ism) are given in Fig. 3. These results are in good agree-
ment with former calculations performed with similar
procedures. ' The lack of the sphtting of the different f
symmetries implies that the 4f bands arising from the I'2,
space fall in the energy interval where the possible hy-
bridization pseudogap appears. Therefore, none of the
experimental features of the density of states mentioned
above are present in these results. Actually, the hybridi-
zation exists but the pseudogap does not appear because
the I z, peaks lie on the same energy interval. The Fermi
level is not located in a minimum of the DOS curve since
this lies close to a giant f maximum ( —1600
states/[Ry/(primitive cell)], see Fig. 3). The position of
EF with respect to the conduction-band bottom (-0.1

eV) presents lesser agreement with the experimental data
(1 eV) than the results obtained with U+0 (see Fig. 2).
Moreover, the splitting betw'een occupied and unoccu-
pied 4f bands is not given when one considers U =0.

In our results, No(E+) »N(Ez), however, the number
off electrons in ail Sm atoms varies from slightly versus
U (n is between 5.7 and 5.4 for U values between 0 and
0.36 Ry). The differences of n are compensated with the
light increase of the c( count in the f-electron atoms.
This implies that the number of f +d states below E~ is
conserved when considering U different from 0 and this is

0.7 IX
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Q,4 4i

Q 42k

'M0350400450 500 DO S0.420» A
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&OO 110 $20 &30DQS

FIG. 3. Band structure and density of states per spin direc-
tion calculated with U =0 (i.e., calculated with the standard lo-
cal density formalisxn). {a)band structure for U =0; (b) density
of states corresponding to 4f bands; (c) detailed DOS curve cor-
responding at energies close to EF.

in agreement with the Luttinger theorem (see Ref. 19).
We have performed other band-structure calculations

for this compound (which we do not give in the figures)
with difFerent lattice parameters and the tendency of the
electronic structure is similar to that obtained in the
former calculations. However, the values of U should be
increased, when the lattice parameter increases, for ob-
taining similar 4f structures to those given in Figs. 1 and
2.

In conclusion, the f-d hybridization scheme is clear in
the symmetry line (100) for U values between 0.20 and
0.36 Ry. The f -d hybridization is caused by the coherent
mixing of the orbital XFZ with the different 1 orbitals
and thus a small 5 can appear. The splitting between the
j. z and j. &5 peaks increases for increasing U values and
the value of the I z maximum in the DOS (Fig. 2) de-
creases when U increases. Therefore, for values of the U
energy between 0.24 and 0.28 Ry, our results present the
best agreement with the experimental data. For U =0,
our results show the nonappearance of any pseudogap
close to E„. Therefore, the existence of this pseudogap is
justi5ed in our calculations by the inhuence of two
difFerent efFects which act together, the f dhybridization-
and the dil'erent Coulomb correlation efFects for each
subspace.
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