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The Chester-TheBung relation between transport coeScients of a degenerate Fermi gas is used

to extend recent results on the long-range character of the conductivity tensor to thermoelectric
and heat conductivity tensors. Consequences are discussed for combined voltage and temperature
measurements in multBead devices. Among our predictions is that the temperature and

temperature-induced voltage drops determined via a four-probe measurement should Lctuate
dramatically, both in sign and magnitude, as a function of the chemical potential and external
magnetic Seld. If more than four probes are used, any two measured temperature and

temperature-induced voltage drops wi11 be uncorrelated, both in sign and magnitude, at Sxed
values of chemical potential and magnetic Seld. %'e propose two representative experiments,
which involve the application of a temperature rather than a voltage difference between the two
end probes. (i) A grounded sample which is thermally isolated except st the probes. Here, large
temperature fluctuations will be observed. (li) A sample in good thermal contact with the sub-

strate, but electrically isolated except at the probes. Here, induced voltage will show large 6uc-
tuations.

In the past several years a remarkable discovery has
been made' that, at low temperatures, electronic transport
in disordered conductors is essentially non-self-averaging.
This is manifested by the sample specific fluctuations of
the transport coeflicients as a function of magnetic field or
chemical potential and is due to quantum interference
effects. Experimental observation of such fluctuations be-
came possible with the manufacturing of ultrasmall de-
vices such as metallic wires and rings and Si-metalvxide-
semiconductor fieldwffect transistors (MOSFET's).

So far, most of the effort in both theory and experiment
has been made in investigation of conductance and voltage
fluctuations where the system is assumed to be held at
constant temperature. In Ref. 2 it was shown that when a
temperature gradient is present across the sample, the re-
sulting thermoelectric eS'ect also exhibits quantum fluc-
tuations, in fact, in a more striking manner than conduc-
tance fluctuations. The theory of Ref. 2, however, is
correct only for two-lead rectangular geometry and is not
applicable for multiprobe devices. In this paper we extend
the theory developed for such devices3 to include ther-
moelectric effects. The central equation to be derived is

I; QGtiVtj+N(yT;J, (l)
J

where lt is the current through the ith lead, and Vtj and
Ttj are the potential and temperature difl'erences between
the ith and jth leads. 6;J and Ntj can be called conduc-
tance and thermoelectric conductance tensors, and will be
defined more precisely later on. We will show that the
fluctuation in Ntj is such that typically bN/N» I, hence
the temperatures or induced voltages measured at the
various probes will bear no relationship whether in sign or
magnitude to the average temperature or induced voltage
drop across the sample. This is in contrast with voltage
fluctuations under conditions of uniform temperature,
where the potential drop measured at the probes basically

follows the sign of the overall drop. To begin with, let us
briefly review the deviations of (1) with Ttj =0. In Ref. 3,
it was shown that the conductivity tensor tr,s(r, r') is the
key quantity to consider. From Kubo's formula, it is the
velocity-velocity correlation function and can be interpret-
ed as a real-space version of the transmission coefficient.
As such, tr,tt(r, r') must be long range. Indeed, due to the
current conservation it satisfies the condition 3

VNtxep(f, r ) ~Vs&~p(r, r ) ~0 .

It is precisely this conservation that causes the velocity-
~elocity correlation function to decay much slower than
the mean-free path. Since the current density

j,(r) ts,tt(rr')Ett(r')dr', (3)

this implies the current through the ith lead is

I; j.(r)dS.'
10-, ts.tt(r, r')Ett(r')dr'ds. ' .

Now using Es(r) VtiV(r) and integrating by parts, we
obtain, 5 from (4) with the use of (2),

I ~QGJV (5)
J

where Vt is the voltage at the jth lead and 6;J is given by

Gtj - dSQStttct ti(r, r'), (6)

the integration being performed over the cross section of
the leads and dS points away from the sample. Clearly,
6;J plays the role of a transmission coeflicient between
the ith and jth lead.

In connection to the above, we note that any approxi-
mation to the ensemble averaged version of ~t s(r, r')
should also satisfy the conditions imposed by current con-
servation. For instance, in the lowest order in disorder one
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finds

'6

&cr~(r, r')& -cro[b,pb(r, r') -V.vpd(r, r')],
where oo is the Boltzman conductivity and d(r, r') is the
diffusion propagator. The latter satisfies the equation
-Vzd(r, r') b(r-r'), subject to the boundary condi-
tions d(r, r') 0 on a conducting boundary and V„d(r, r')

0 on an insulating boundary. In this form &cr~(r, r')&

explicitly satisfies the conditions given by Eq. (2).
Since cr~(r, r') is like the transmission coeScient, it can

be written as the square of the sum over all Feynman
paths of the amplitude to get from r to r'. Quantum in-
terference accounts for the ffuctuations in the conductivity
tensor 3 which can be described by the correlation function

&bcr,p(r, r')bcr, p(r), r))& ,

where

bcr,p(r, r') cr~(r, r') -&cr,p(r, r')& .
Similar to &cr,p(r, r')&, it has a long-range part Al.though
the evaluation of the long-range parts of the average con-
ductivity tensor and the conductivity tensor correlation
function can be by-passed in the calculation of the con-
ductance and conductance ffuctuations in simple rec-
tangular geometries, 3 they are crucial for the understand-
ing of electronic transport in multilead devices~ and de-
vices with nontrivial geometries.

In the absence of magnetic field the conductance tensor
G~~ is symmetric, G~j GJ;, and due to current conserva-
tion it must satisfy the condition

ZG~y -Z«g (8)
i J

Because of this constraint, Eq. (5) can be written as

I( gG"Vj.

which explicitly shows that only voltage differences (V~~)
are important, as must be the case. Thus, there are only
n(n —1)/2 independent 6;~ for the device with n leads and
one needs precisely n(n —1)/2 independent measurements
to determine the conductance (transmission) between any
two pairs of leads. By measuring current and voltage
fiuctuations, one can also easily extract the fiuctuations of
conductance:

bG; &(6;J -&G .&)'&'~' .

In a typical four-probe measurement, as depicted in

Fig. 1, the current is absent in the volt"age leads, '* I2
I3 0, and the incoming current is fixed I~ I. This

defines three variables which suffice to find the three in-
dependent voltage drops: V23, V)z, V)4. Assuming that
all lmear dimensions in Fig. 1 are of the same order of
magnitude, one finds that all conductances and voltage
drops are of the same order of magnitude as well. The
latter can be schematically presented as "hV~IG
where b,V= V~J. and 6 is some combination of Go and
G=G,~. Obviously, then bhV IbG/62 and bdV/hV

bG/G. At low temperatures bG is "universal" (Ref. 1),
bG =e h. Alternativelyone co, uld set constant voltage
hV between any two leads, e.g., V~4 hV, and then find

voltage drops between all the others and the incoming

FIG. 1. A typical four-lead geometry in which leads are con-

nected to large reservoirs, where electrons thermally equilibrate.

rI(r, r')- k (k T) (10')
3e

which is valid if cr(p) varies slowly on the scale of keT.
%'hile the scale of variation of &cr(p)& is p, that of cr(p)
unaveraged is

x'
Lx

where D is the diffusion constant and L is the sample size
along the directions of the current. The fact that
cr(p, r, r') is sensitive to the sample size is a reffection of its
long-ranged nature.

Clearly (2) and (9) together implies that

VN gyp(r, r ) 'Vprpmp(r, r ) ~0 . (11)

Hence following the steps leading from (2) to (5') we ar-
AVC St

with

I-gW T&1 &J

Ã~J. dS; dSJPg p(r, r')
—1 'd

(e—p)6;, (e)
eT ~ de

K2

3e p

(12)

(13)

(13')

current I. For instance, Vz3, V~z, and I can be chosen as a
set of independent variables to be determined from Eq.
(5'). The ffuctuations bhV/hV, bl/I, and bG/G are all of
the same order.

Now consider the presence of temperature gradients,
with V~J =0. In this case we have

j.(r) - rl.p(r, r')V.'T(r')dr', (9)

which merely defines the thermoelectric conductivity

g p(r, r '). Using linear response theory, and invoking the
equivalence of TV(1/T) to a gravitational potential gra-
dient (Ref. 8), q(r, r') is simply related to the energy
current-velocity correlation function. Furthermore, pro-
vided impurity scattering is elastic and the quasiparticles
are noninteracting, it has been shown rigorously9'0 that

g,p(r, r') — (e —p)cr,p(e, r, r')de, (10)eT" e

where cr,p(e) is the zero-temperature conductivity at
chemical potential e, p. is the physical chemical potential,
and f the Fermi distribution. It is customary to use the
Sommerfeld expansion and write (9) as
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It is now consistent with the philosophy of linear
response to allow for both voltage and temperature gra-
dients by combining (5') and (12) to give (1). Reference
2 considered the special case of two-lead rectangular sys-
tems, for which the matrix equation (13) reduces to a sca-
lar equation. Since the energy correlation function of the
conductance has been previously calculated by various au-
thors, the Suctuation in N can be simply calculated. The
results can be summarized by

bN(T)/&N(T)) - " aG(T)//&G), T«E,
C

-~aG(T)/&G), T»E, , (i4)

where bG(r) is the fluctuation of the conductance at tem-
perature T. This can be easily understood as follows. The
characteristic energy scale of the conductance Suctuations
is E, or T, whichever is larger. Therefore, the fluctuation
of the thermoelectric conductance will be proportional to
the average value of the conductance Suctuation over this
energy scale. The characteristic energy scale of the aver-
age conductance, on the other hand, is p, so that the aver-
age thermoelectric conductance is proportional to the
average conductance over p. Equations (14) then follow
immediately. Physical interpretation of the above argu-
ment was given in Ref. 2; it has to do with the compensa-
tion of the currents due to holes and electrons moving in
the same direction under the temperature gradient. It is
important, however, that such compensation occurs only
on the average, hence the enhancement of the relative
Suctuation of the thermoelectric conductance as com-
pared to the conductance.

Strictly speaking, since (14) is based on (13), the form-
er is correct only if inelastic scattering can be neglected at
the temperature T. However, it was argued in Ref. 2 that
the principal efl'ect of inelastic scattering should be to des-
troy quantum coherence and, hence, to suppress 8G(T);
and so Eq. (14) might be valid even for T & r;, ', the in-
elastic scattering rate. Thus, up to a relatively high tem-
perature BN/N » bG/G, while, up to a lower but far from
restrictive temperature bN/N » l.

Returning to the multiprobe situation, the relative Suc-
tuation in N~J is enhanced over that of G;~ according to
Eq. (14) with the subscripts ij inserted everywhere.
Hence, while G;1 will differ httle from &G;J), its value if the
system has a uniform resistivity, and must always be posi-
tive; N;J. can differ drastically from &N~J) and be randomly
positive or negative for different (ij ) or for the same (ij)
but at different magnetic field or chemical potential.

Experimentally, the Suctuations in N,J manifest them-
selves in the form of Suctuations of the temperature or in-
duced voltage profile along the sample, and of the induced
current. Limiting ourselves to the geometry as shown in
Fig. 1, the following two setups are representative.

(i) The system is grounded everywhere: V~~ =0. Leads
1 and 4 are in contact with heat baths of different temper-
ature, with the rest of the system thermally isolated. We
have the following set of equations for Tip, Tq3, and Ti3
for the given Ti4 and NJ's: Ii NiJTi 0 Nq Tq, and
0 N3JT3J, where the fact that there is no current
through the temperature probes has been used. The rela-

tive Suctuations of Tip, Tz3, and Ti3 come out of these
equations via the relative Suctuations of N~J's. Then ac-
cording to Eq. (14), not only can the magnitudes of Tip,
Tq3, and Ti3 be much larger than

~ Ti4(, but their signs
can be opposite to that of Ti4, too.

(ii) Ti4WO, but the temperature gradient is uniform
along the sample due to good thermal contact with the un-
derlying sub str act. Here it is the induced voltage
difference between the probes that Suctuate in signs and
magnitude.

In addition to studying the Suctuations of the tempera-
ture and/or voltage pro61e, one can of course also look at
the change of any Ti~, V~~, or the current I with a chang-
ing magnetic field or chemical potentiaL As noted in Ref.
2, the direction of the current will change even when Ti4
is fixed.

Finally, for completeness, one can also extend all these
considerations to the heat current. The heat current den-
sity in the presence of a temperature gradient and/or elec-
tric field is

jg T g,q(r, r ')Ep(r ')dr '

+ x,p(I,r')VpT(r')dr' . (i5)

Note that the first term on the right, being a velocity-heat
current correlation function, is consistent with Onsager
relation. The thermal conductivity x satisfies9'0

r(r, r')

Ta(p, r, r'), T«E, .

Hence, integrating (15) by parts we obtain

lg, i TXWJ.~ij+Z%g~ig, (i7)

where Eij is given by (16) with a replaced by G;~. Evi-
dently

M bG
E

In conclusion, above we were able to show that by
bringing thermoelectric conductance into play by allowing
for the presence of temperature gradients in the system
one can extend the range of four-probe measurements to
include temperature Suctuations under application of a
voltage across the sample, voltage Suctuations under ap-
plication of a temperature drop across the sample, and
finally temperature Suctuations under application of a
temperature drop across the sample. Moreover, since the
relative Suctuation of the thermoelectric conductance is
larger than the relative Suctuation of conductance, one
comes to the conclusion that the relative voltage and the
temperature Suctuations in the settings (i) and (ii) will be
more pronounced than the relative voltage fluctuations in
the settings studied so far.
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