
PHYSICAL REVIEW 8 VOLUME 37, NUMBER 11 15 APRIL 1988-I

ttests~oco thtctosttoss to tootttprobe oocrostroctores: Leosth ttependeoce oott tssolocotttt

Harold U. Baranger
ATck T Bell Laboratories 46-314, Hobnde/, New Jersey 07733

A. Douglas Stone
Section of Applied Physics, Yule Unt'versity, Bm 2l57, New Haven, Connecticttt 06520

David P. DiVincenzo
IBM Thomas J. Watson Research Center, Box 218, Yorktown Heights, ¹~York 2059'8

(Received 7 January 19SS)

%e study numerically the resistance Suctuations, M, in a disordered metaBic microstructure
vrith several probes within a single quantum~herent region. The strong in6uence of the probes
causes M' to depend on the geometry of the coherent region. In a particular fou, r-probe struc-

ture, M is only vrealdy dependent on the voltage probe separation, in agreement ~ith experiment,
~bile the strong dependence of M' on separation in other structures shouM be experimentally ob-
servable. Nonlocal 8uctuations decay slowly as the distance between the current path and voltage
probes increases.

Quantum-mechanical coherence in disordered metals
and the associated interference phenomena are at the
heart of many topics which have generated intense in-
terest in the last decade, including localization, resonant
tunneling, and universal conductance Suctuations. In all
of these phenomena, the spatial extent of the quantum
coherencc plays a crucial role; in disordered metallic sys-
tems (nonmagnetic), this phase-coherence length, Lp, is

simply the distance a particle din'uses elastically before
scattering inelastically, L& (Dr ) . Quantum coherent
phenomena in metals have usually been treated in systems
which are considerably larger than a single coherent re-
gion. Recently, however, the voltage Suctuations of a sin-

gle quantum~herent region were probed in devices with

several voltage leads attached within Lp. '2 The strikingly
different behavior seen in these experiments raised new

questions about our understanding of quantum coherence
in disordered metals. Further, the interpretation of these
experiments required including the effects of the probes on
the "sample, " thus bringing transport measurements
closer towards confronting the traditional problems of
quantum measurement theory.

Fluctuations in the conductance as a function of mag-
netic field or Fermi energy have been observed in a variety
of systems. ' These Suctuations result from the interfer-
ence of diffusing particles such that scattering from par-
ticular impurity configurations rather than ensemble-
averaged behavior is scen. For a disordered region with
two ordered probes attached, the conductance Suctuation
measured at length Lp is of order ez/lht and is independent
of the degree of disorder and the value of Lp,

~ implying
that the resistance Suctuation tItR behaves as bR R2. In
contrast, the most recent experiments have shown that for
voltage probes spaced closer than Lp, M (not BG) is near-
ly independent of the spacing between the probes and
hence of the average resistance R. '2 Because the two-
probe theories, such as those used to understand conduc-
tance Suctuations at length scale Lp, necessarily fix

L ~ L&, any explanation of the length independence of the
resistance Suctuations must include the four-probe nature
of the experiment.

In this pager, we present the results of microscepic, nu-
merical calculations of the resistance in multiprobe struc-
tures where the probes have finite width and are strongly
coupled to the sample. As noted above, the multiprobe
nature of our calculation is essential for any meaningful
comparison with experiment for L & L&. Previous theoret-
ical treatments of this problem have been based on phe-
nomenological arguments and the Onsager relations, ' or
qualitative arguments using a generalized Landauer for-
mula. 7 Very recently, a model similar to the one we study
numerically has been solved in perturbation theory for
certain quasiwne&imensional geometries. s 'c

The structures that we consider, shown as insets in the
figures, have a finite disordered region connected to
several ordered leads and are described by a nearest-
neighbor tight-binding Hamiltonian4" with diagonal dis-
order in the disordered regions. The current in lead k, Ik,
is the sum of the pajrwise currents between that lead and
each of the others. The pairwise current is simply the
probabihty for transmitting intensity between two leads k
and l at the Fermi energy, Tkt, times the chemical poten-
tial difference, Vt —Vk. '

Ik —(e /h)QTkt(Vt —Vk) . (l)

A derivation of Eq. (l) from the Kubo formula'3'" shows
that the transmission coefilcients are simply related to the
retarded Green's function between the two ordered
leads. ~'4 We find the Green's functions needed by using
the recursive Green's-function technique "which must
be generalized to calculate the Green's functions between
all interfaces in our multiprobe structure. '~ Such calcula-
tions have not been done previously and, surprisingly, re-
quire the same order of steps as the two-probe calcula-
tions.
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FIG. 1. The rms fluctuation of A~2 as a function of x/L for
the structure shown (shaded regions are disordered). bR~2 de-
pends strong1y on the placement of probe 2 (d L/2 100, solid
line).

We solve Eq. (1) ' with the constraints that the
current is fed in lead 1 and taken out lead 3 with the
current in all other leads equal to zero. ' By ensemble
averaging the resistance Rlk (V1 —Vk)/I over disorder
configurations for fixed geometries, we find the rms fluc-
tuations bRI~. ' A magnetic field is not included since in
that case the current depends on Green's functions be-
tween points within the disordered region, ' a computa-
tionally more difficult problem.

Our basic results are first, that the transmission fluctua-
tions do not depend on either the absolute size scale or the
value of disorder, a generalization of the universahty
found in the difFusive regime. 's Second, we do find that
the fluctuations are sensitive to the overall geometry, that
is, the shape and lead configuration.

The geometry dependence comes from the presence of
"inelastic scattering" which is included in our calculation
through the reservoirs at the end of each perfect lead
which are implicit in both the Kubo formalism for a finite
region and Landauer-type formulas such as Eq. (1). Be-
cause the leads introduce the inelastic scatters, ' the
amount or character of inelastic scattering is determined
by the geometry. To see that a perfect lead reduces coher-
ence, consider the resistance of the main channel in a
three-probe situation (Fig. 1). If the perfect lead at-
tached to probe 2 were disconnected, then R13'~T13
where, in the Feynmann path language, T» is the
modulus squared of the sum of the amplitudes over all
paths from probe 1 to probe 3. With probe 2 present,
however, Eq. (1) yields R13' (e /&) fT&3+ T12Tz3/
(T21+T23)l. Here, T13 is the intensity derived from
paths which do not touch the perfect lead while the second
term corresponds to paths which do touch probe 2. Thus,
the amplitudes for paths which touch probe 2 are added
incoherently to those which do not touch probe 2 in con-
trast to the two-probe case. This "inelastic scattering" in-
troduced by a perfect lead is particularly clearly demon-
strated by adding evenly spaced perfect leads to a long
main channel. The side probes divide the system into
separate quantum-coherent regions so that the distance
between them is approximately the phase-coherence
length. The good agreement between the resistance fluc-
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FIG. 2. The rms Auetuation of R24 as a function of the sepa-
ration between the voltage probes, y/L0, for the structure in the
inset (shaded regions are disordered, L 800). Lo 2d+y is

approximately the phase-breaking length. %'hen Lo is fixed
(solid line, Lo 160) the IIuctuation is independent of the sepa-
ration of the voltage probes while when d is 6xed (dotted line,
d 10), the Iluctuatiou depends on y. In the length-independent
case, bRq4 is approximately the universal two-probe value (indi-
cated by UCF). The inset shows bR~3 on a log-log scale when

there are perfect probes attached to the channel between j. and
3 (iu these cases, y is the distance between probes 1 aud 3 and

L0 165 =L& is the distance between adjacent probes). For
y & Lo, 8'RI3=y'/ MUCF.

tuations of the main channel (R13) for y coherent regions
(inset of Fig. 2) and the expected (Ref. 17) bR&3~y'/
from adding uncorrelated random variable supports the
view that perfect leads act as inelastic scattering centers. '

In contrast to inelastic processes in real homogeneous
wires, our inelastic processes occur at fixed, definite places
in space. The correspondence between our calculation
and the resistance-fluctuation experiments which have
been done'2 can only be made for particular geometries in

which our abrupt inelastic processes mimic those in the
real system; we will discuss these geometries below. How-
ever, our calculation does correspond to an experiment
that could be done: by selectively. adding magnetic impur-
ities to some of the wires as has been done for studying lo-
calization, 's regions with very small inelastic lengths
could be defined which would behave as the perfect leads
in our samples. The rich variety of behavior that we find

suggests that such an experiment would be interesting.
We first consider a three-probe conductor and ask

whether the fluctuation of the voltage on the third probe
depends on where the third probe is attached. In the ter-
minology of Fig. 1, bR12 would be independent of x either
if every voltage probe attached to this quantum area
defines a local chemical potential which fluctuates in-

dependently, 2 or if previously suggested general argu-
ments about transmission coefficients are valid. 7 In fact,
we did not find length-independent resistance fluctuations
in any three-probe geometry, presumably because of the
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length-dependent "inelastic scattering" introduced by the
third lead. For the case in Fig. 1, the approximately
linear dependence of M12 on x implies a decrease in the
fluctuations of the naive conductance, 6 1/R. ~ (812 it-
self varies linearly with x.) The first major result, then, is
that the resistance fluctuations in multiprobe phase-
coherent structures are not, in general, independent of
geometry.

Turning now to a four-probe structure (Fig. 2), we wish
to consider a structure in which the inelastic scattering is
fixed in order to compare to experiment. With a long
main channel and short side probes near the center, only
the distance between the ordered region of the side probes
(2 and 4) is important for a diffusing particle near the
center of the structure: the space-filling property of two-
dimensional de'usion implies that the particles are likely
to "see" the side probes well before they approach the
ends of the main channel. Thus, if one fixes the length be-
tween the ordered regions of the side probes, there is a sin-
gle fixed length controlling the diffusion near the center of
the main channel and one would expect to find behavior
similar to that in the experimental system. The resistance
fluctuations that we calculate for this case (Lo~y+2d
fixed), shown as the solid line in Fig. 2, are indeed only
weakly dependent on the separation between the probes
which is consistent with experiment' but shows some-
what less length dependence than the perturbative calcula-
tions. s '0 In contrast, for a fixed length of disorder in
each side probe (dotted line), the changing distance be-
tween the ordered part of the voltage probes leads to
length dependence of the fluctuations, as in the three-
probe case. Similarly, use of a shorter main channel leads
to greater length dependence: a main channel half as long
produces M 24(y 0)/bRz4(y Lo) = 2 .

In addition to the length independence of the resistance
fluctuation, the magnitude of the fluctuation agrees with
experiment. '2 By using the resistance (R0) of a length Lo
of material as an estimate for the resistance at length
scale L+ we convert the universal two-probe result for the
conductance Suctuation's (denoted UCF) to a resistance
fluctuation, bRUcF bGUcFR), and obtain very good
agreement with our four-probe resistance fluctuation.
The magnitude of the fluctuation is not sensitive to the
length L because the main channel is localized, in contrast
to the L ' 2 increase in the fluctuation for a metallic main
channel as derived diagrammatically.

We also studied the nonlocal aspects of the quantum
fluctuations' ' ' in the structure shown in Fig. 3 where
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FIG. 3. The rras fluctuation of R~ as a function of the dis-
tance between the current and voltage paths, s, for the structure
shown (shaded regions are disordered). The decay of these non-

local Buctuatious with z is exceedingly weak (z '~z)[(d 180,
L 180) solid line, (180,420) dotted line].
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the current path (probe 1 to probe 3) and the path be-
tween the voltage probes (probe 2 to probe 4) do not inter-
sect. As the separation, z, between the current and volt-
age paths increases, the fluctuations decay very slowly
(z ), in contrast to the exponential decay expected on
length scales larger than L&.

In summary, we find that the addition of a lead causes a
substantial perturbation to the system, as indicated by ex-
periments. However, we find a far greater variety of
length dependences, M(L ), than the experiments because
of geometrical elects present in our calculation which
while not present in the experiments done' correspond to
experiments which could be done. We do obtain nearly
length-independent resistance fluctuations for 0 & L &L&
in a particular geometry while in most geometries M de-
pends on length. The experiments suggested a simple in-
terpretation of length independence in terms of indepen-
dent chemical potential Suctuations; the variety of behav-
ior that we see implies that such an explanation is not gen-
erally correct. Finally, we explicitly verify the nonlocal
nature of the resistance fluctuations and find they decay
very slowly with the distance away from the current path.
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