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Twinning and symmetry
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Twins of the first and second kind are found to be indistinguishable in crystals of high symmetry.
A basis for the symmetry dependence is found which wi11 delineate some situations ~here this is ex-

pected. Namely, when the space group of the twinned crystals is the same and contains the trans-

formation operator which relates the two crystals, and when the twinning operator contains no

translation, such compound twins are expected. Furthermore, the two invariant planes and direc-
tions are members of the same famihes of planes and directions, respectively. Otherwise, either
compound twins are found where the invariant planes are not members of the same family or the
compound twin transforms into the two separate kinds.

INTRODUCI. ION

Cahn' has made a detailed study of the deformation of
a-uranium including the twinning modes. Since uranium
is a crystal of low symmetry, he found that twins of both
the first and second kinds were present in the material.
Brie5y stated, in type 1, the twin plane with reciprocal
lattice vector K, , and the direction riz, which lies as the
line of intersection of the invariant plane, with reciprocal
lattice vector K2, and the plane of shear are both ration-
al. In type 2 the invariant plane with reciprocal lattice
vector Kz and the shear direction rii are rational.
Herein, the lattice vector Q, is perpendicular to the twin
plane (K, ) while the Qz is perpendicular to the invariant
plane (Kz).

Cahn states that compound twins with rational indices
for K, , Kz, ri, , and spaz are found in cubic, hexagonal, and
trigonal metals. His basis for the statement was the ex-
perimental observations made by others as well as the
work he undertook with uranium. It is the purpose of
this Brief Report to rationalize Cahn's statement and
show that such an observation is based on the symmetry
of the crystal involved and the twinning operation, a.

Examples of the relation between symmetry and the
twin domains of crystals where the domains are related to
the coset of the space group of the parent crystal have
been worked out recently by Jancovec and Chuiko. 3 The
group symmetry can also describe the domain boundary
as developed by Gratias, Portier, Fayard, and Guymont.
A useful summary of the status of the structural relation-
ships is also given in Wyckoff. '

The Seitz notation vril1 be used for space-group opera-
tions as needed.

the z axis. It is possible to rotate the crystal an angle tI),

about the z axis and bring the vector Q into the x-z plane,
i.e., the plane perpendicular to the y axis. A second crys-
tal rotation of angle 8 about the y axis would bring the
twin plane perpendicular with the z axis and parallel with
the x-y plane. The operation of twinning then occurs on
the x-y plane by the imposition of the twin operator y.
Generally, the twin operator y will be either a rotation of
180' about the z axis or a mirror image about the x-y
plane. The inverse rotations 8» 'P, ' will bring the two
into position in relation with the parent crystal. (See Fig.
1.)

Thus the operator which will create the twinned crys-
tal relative to the parent is (a

I
t ):

The homologous points r, and r2 between the two crys-
tals (1) and (2) are related by

r2 —(o
I
t)r, .

The two crystals are related to one another by the two
space groups describing their structures. G, is the group
of the parent crystal and Gz is the group of the twin
domain. In any twin the umt-cell shape and size are
preserved; however, the group of the twin may not be
identical with the group of the parent due to the relaxa-
tion of atomic positions following the shear along q, .

Every point r', deduced from r, by any (g I
4) where

the latter is a member of the group of the parent crystal is
equivalent to (a

I
t ) and de6nes the same twin boundary;

Consider a twin of type 1. %'e establish a right-handed
coordinate system with the z axis paraBel to the [001]of
the parent crystalhne cell. It is assumed that the crystal
direction perpendicular to the twin plane, Q„or K, in re-
ciprocal space, makes an angle 8 with the [001]and thus

r~=(&
I
t)(g

I
+)ri =«g

I &++t)r1

or (a
I
t }G, for the whole group.

It is easy to show by direct matrix manipulation that
the rotational portion of the interface operator (a

I
t)

may be rearranged into an equivalent operator as follows:
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FIG. 1. Twinning geometry.
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we find

6 =(Plt, )(y lt )6,(y It ) '(Plt, )

At this point we concentrate on those crystal systems
where the twin operator y is a member of the point group
of the parent crystal. If we set

(a
I
t)=(pl t, )(y I t, )

=(x
I
pt2)(p-'I) ti»

it is clear that when

6, =(p
I

p—}ti )(} I
—)pt2)62(x I

pt2)(p '
I ~ti)

hence, for those structures, the twin may be generated by
the equivalent operation

r2 ——(pl ti)r

The only situations apparent to this author where Eqs.
(5)-(8) will define an appropriate structure is when
t =t i t2————0 and 6, =62.

Now the applicable structures in the above develop-
ment are those where the twin plane operator (y I

0) as
applied to the [001] direction of the crystal is a member
of the space group of the crystal. For such structures,
the equivalent twin generator (p I

0) is simply a rotation
of the structure by an angle of 28 around the normal to
the plane defined by the vectors [001] and Qi', i.e., the
cross product of the [001]and the twin plane normal, Q i.

When the crystal is operated upon by (a
I
0), the results

is the generation of a twin where Qi becomes Q'„and Qz
becomes Q2,

' where Q, =RQi, and Q2 is rotated into Qz
by the twin operator (a

I
0). Here and hereafter, the plus

sign refers to y =2, and the minus sign to y =m, .
However, when the twin operator (y I

0) is a member
of the parent space group 6, which is the same as that of
the twin, the operator gives a twin which is identical with
the Srst. Qi becomes Q", and Qz becomes Q2'. Here,
however, Q", is rotated from Q, by the angle 28 while the
same thing happens to Q2. Now if the twin is the same
crystal as described in the above, then Qi ——RQz' and

Qz ——+Q", . Of course, this implies that EC, is effectively
rotated into Kz, and vice versa. Similarly, the direction
of shear r), is rotated into F12. Because of these equivalent
rotations which interchange the roles of the two planes
and directions, it is obvious that if E& is rational, EC2

must be also, with similar relation between the shear
directions il, and rt2. Furthermore, since eI'ectively Ei is
replaced by Ez in the twin, they must be members of the
same family of planes. The same statement is true of two
directions, g& and g2.

Thus we are left with the conclusion that the twin is
both a member of the first and second kind simultaneous-
ly corresponding to a type-1 twins so long as the twin
generator, (y I 0), is a symmetry element of the crystal,
the group of the parent and twinned crystals are the
same, and there is no necessary translation in the twin
operator. Furthermore, for such systems, the twin plane
and invariant plane are members of the same family of
planes. Also, the shear directions q& and q2 are also
members of the same family.

There are a large number of systems which apparently
follow these restrictions; namely, the twins in cubic and
hexagonal metals as well as many minerals in virtually
all crystal systems. It is obvious that one of the impor-
tant restrictions mentioned is that the space group of the
parent and twinned crystal is the same; Eqs. (5)-(8) may
have other solutions but they are not at all apparent to
this author. The atomic relaxations after the twinning
shear may not change the space group in the solution
found here and this explains why one will 6nd that the
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above rules apply to some turi planes but not to others
associated with the same crystal.

AdditionaBy, the subset of tvrins @which follow the
above restrtctlons can now be separately idenflfted, and it
has been suggested that they be referred to by a termi-
nology difFerent from compound twin. The designation
of identical turin seems meaningful to this author in view&

of the invariant planes belonging to the same family.
Interestingly, a-U (with a space group Crncnt) has the

necessary symmetry of its parent crystal to have a set of
twins be identical; ho~ever, its invariant planes are not
from the same family. The reason is that the atomic re-
laxations following twinning make the space group of the
tmn difFerent from the original crystal. '
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