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In a granular Nm, modeled by a Josephson-coupled lattice, virtual tunneling of quasiparticles
results in a critical value Rg for the normal-state sheet resistance. R6 is a universal upper bound
for zero-temperature superconductivity and is computed in descending powers of s, the number of
grain neighbors. Mean-Seld theory for a square lattice gives the leading term RS 5.7 kO. For
the fractional correction from the next term in the expansion, the Bethe approximation gives—3/5zz, or —4% for z 4.

Ever since the discovery of quantum mechanics, its ap-
plicability to macroscopic systems has been a subject of
great interest. The recently reported universal criterion'
for the onset of superconductivity in granular Slms, we as-
sert, serves to confirm the validity of quantum mechanics
in describing the collective behavior of the grains, each of
which contains on the order of 10 -10s electrons. In this
Rapid Communication we put forward a simple
quantum-mechanical treatment of the collective eH'ect of
the Josephson coupling between neighboring grains in a
granular Slm. Our computation predicts a threshold resis-
tance per square of approximately 5.7 ko, above which
the Slm will not be superconducting. In view of the vari-
ous approximations on which this prediction is based, we
think that it is in satisfactory accord with the reported'
empirical critical resistance of Ro 6.5 kQ.

Our study is limited to the ground state of the granular
film at a temperature T 0. The "macroscopic"' collective
variables are pt, where p; is the phase of the Bardeen-
Cooper-Schrieffer (BCS) ground-state wave function
within the ith grain. The "velocities" are given by the
usual quantum-mechanical expression

where -e, 2trh h, and Vt are the electron charge,
Planck's constant, and the electrostatic potential of the ith
grain, respectively. Substituting Eq. (1) into the total
electrostatic energy of the array of grains yields the "ki-
netic energy"

2 Qct Vt + 2 ghc;J(v; —V/)

where C; is the capacitance of the ith grain to ground and
d,c~/ is the additional mutual capacitance between neigh-
boring grains. The double sum is taken over all neighbor-
ing pairs. The total energy of losephson coupling between
neighboring pairs is

U —QEJt'cos(p; —pj) .

Denoting the charge on the ith grain by Q;, we 6nd that

-c;v, +g~c;, (v; —v, )

'C;j;+gactj (j;—j,) '.
e
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(4)

the second line corresponding to the definition of capaci-
tance as a linear response function. The sum is over the
neighbors of the ith grain. The third and fourth lines fol-
low from the substitution of Eqs. (1) and (2), respectively.
Comparison of the Srst line of Eq. (4) and the fourth line
reveals that it is nothing other than the Euler-Lagrange
equation based on the Lagrangian L 8'- U.

Passing from L to the corresponding Hamiltonian leads
to a complicated nonlinear quantum-mechanical many-
body problem. Some aspects of this problem, particularly
its long-wavelength behavior, have been discussed by
Chakravarty, Kivelson, Zimanyi, and Halperin. 2 The oc-
currence of Goldstone modes in the limiting case that we
will study can be expected to destroy long-range phase
coherence without necessarily preventing the supercon-
ductivity of the Slm. Comparison with one-dimensional
superconductivity is useful in this context. Although Huc-
tuations do destroy the long-range correlation of the phase
in such a system, it has been noted that resistance is
generated only by topology-changing Huctuations of the
tunneling type, which become exponentially weak as
T 0. In this note, we concentrate on the short-range
features of the problem, which are less affected by the
Huctuations. We seek a criterion for superconductivity of
the granular Slm in terms of descending powers of z, the
number of neighbors of a gain. In the limit z~ oo, the
Huctuations average out and the mean-Held treatment be-
comes exact. In studying the problem as a function of z,
we adopt an approach somewhat different from our previ-
ous mean-Held treatment and from the earlier mean-Held
treatments of Siminek, s Doniach, 7 Efetov, s and Fazekas,

the total Josephson current Sowing into the ith grain from
its neighbors is

~ -2e 8U
h ap,
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Muhlschlegel, and Schroter. ~ The latter half of this paper
is devoted to estimating finite z corrections by means of
the Bethe approximation and some generalization of it.
These z& ~ corrections will be seen to be relatively
small, indicating that mean-field theory may be a satisfac-
tory approximation for determining the onset criterion.

The configuration of the ith grain is conveniently
specified by the phase factor exp(iy~), whose ground-state
expectation value can be written as

(e'~') pie"' . (5)

At this point, we neglect the disorder in the granular film.
This permits us to drop the subscript on the order parame-
ter y, . Furthermore, since the phase fiuctuations are pri-
marily due to the long-wavelength Goldstone modes, we
assume that a~~a; is practically constant in the vicinity
of the ith grain and can therefore be gauged to zero.
Thus, we have &sinyi& 0 and &cosy ) p, so that the in-
tergrain Josephson interaction acting on the ith grain as a
consequence of the average over the jth neighbor is

&cos(y; y, )—) cosy;&cosy~&+sinyi&siny~) p cosy; .

The assumption of a perfect lattice enables us to drop the
subscripts and superscripts on the parameters of L. More-
over, in studying the response of the ith grain to the
mean-field set up by the jth neighbor, we can regard the
latter as static and neglect its "velocity" y~. Therefore,
the effective single-grain Lagrangian is

which we obtain

dEz
(cosy')

-2g 7—g'+ g—' — g'+ " «2g68687
288

the inequality following from the convexity theorem. 'z

Self~nsistency requires that we identify the left-hand
member of Eq. (12) with p, the order parameter. Substi-
tuting Eq. (10) into the right-hand member of Eq. (12)
and canceling p from both sides yields

(13)

For very small grains, C can be neglected compared to
hC, so that we arrive at the universal superconducting
phase transition criterion

g$ ~ 1 (14)
2s2

'

The criterion of Eq. (14) can be expressed in terms of
the parameters of the tunneling junction by virtue of the
virtual tunneling of quasiparticles, '3'4 which gives rise to
hC. The frequencyMependent function hC(m) can be
conveniently calculated from the quasiparticle excitation
spectrum by means of the Kramers-Kronig relations. '5

Its zero-frequency limit hC(0) can be expressed in terms
of the admittance,

roiics~C(0) ~w,
1

Li (C+zhC)yI2+zpEgcosy; .
82

The dimensionless conjugate momentum is

1 &Li hp;-— . -,(C+zwC)y; . (8)

where cr~ is the normal-state conductance of the junction.
For dimensional reasons, we have introduced the BCS gap
frequency aiaca 2h/5, where 4 is the SCS energy gap.
Neglecting both the phase and frequency dependence of
hC, it follows'3'~ that

The corresponding Hamiltonian is

4e P
C+zhC 2

-gmsy -=+ Hl (9)
4e2

with the reduced dimensionless Hamiltonian H~, con-
tained within the parentheses, depending only on the sin-
gle parameter

hC —oN .
64 b,

Substituting Eq. (16) and the standard expression

~J rese2

into Eq. (11)yields

(i6)

(io)

her~

128 4e2
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(is)

where

b CEJ
go

We have found it possible to compute the ground-state en-

ergy E0(g) from a simple variational calculation. '0 The
resulting values are in good agreement with the tabulated
solution" of Mathieu's equation for all values of g. For
present purposes, however, we require Eg(g) only for
0(g«1 at the onset of ordering. In this range, a
Taylor's expansion in powers of g is available, " from

where the normal-state resistance, measured in units of
Ro=h/4e2 6.5 kQ, is

h/4 ' &s
(i9)

Substituting Eq. (14) into Eq. (18) gives the universal
critical resistance, above which the superconductivity
disappears:

JY (20)

For a regular square lattice, z 4, and Eq. (20) becomes
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r, - —,
' J3-0.87, corresponding to a resistance per square

0

Rcl R~ 5 7kA . (21)

hC z 6+—
4g4ez 2 2

For a re ular hexagonal lattice, z 6, and Eq. (20) yields

r, 3 3/4 1.3, corresponding to a resistance per square
of Ro R$/W3 4.9 kA. Because of the approximations
involved in the calculation (neglect of frequency depen-
dence and of disorder), either of the numerical results can
be considered to be in satisfactory agreement with the
empirical universal threshold resistance of Roe*+ 6.5 kA.

We now turn to the question of the accuracy of the
mean-field result, Eq. (14), by seeking to develop a
Laurent series for gII in descending powers of z. The first
step in improving upon the mean-field treatment is to sin-
gle out two neighboring grains i and j for special
attention —namely, the Bethe approximation. These two
grains are each acted upon by the mean fields of their
z —1 neighbors, so that the effective two-grain Lagrang-
18Il 18

Figure 1 exhibits typical Feynman graphs for the Bethe
approximation to the desired order in perturbation theory.
The interaction of the two grains (solid lines) is indicated
by the dashed lines, while the crosses represent the action
of the mean field of the z —1 neighbors. To third order,
i.e., to O(gtgz), there is no correction to the mean-field
formula, Eq. (14). This becomes evident from combining
graphs (a) and (b) of Fig. 1„ thereby generating the mean
field of the upper grain acting on the lower grain. The
mean field is then brought up to its full strength corre-
sponding to z neighbors. As a consequence, the first non-
vanishing correction term in Eq. (14) is of O(z 4). We
get an estimate of the numerical coefficient by going to
fourth order, i.e., to O(g)gf) and O(gig2z '). We find
that the fourth-order graphs of the general type of (c) and
(d) in Fig. 1, in which H' or H" occurs in succession, can-
cel, leaving only the alternating fourth-order graphs of
type (e) to contribute. Straightforward computation
yields for the shift in ground-state energy, to second order
Ng),

AFG 2g ~ }+g2+ + g2
2 gi 6

+ (z —1)ItEgH'+EJH",

where

H cosp;+cosI!IJ.

aiid

H cos(p;-p, ) .

(22)

(23a)

(23b)

Self-consistency is now imposed by equating - t!&Fo/8g I

to 2p and substituting from Eq. (26a). The determination
of g2 is simplified by using the mean-field value of go in
Eq. (26b) to approximate gz within the parentheses in Eq.
(27), and by working only to O(z ) inside the paren-
theses. Thus, we obtain

1=2(z —1)g2 1+2g2+ +—g$
g2 6

Upon inversion of the quadratic-form matrix, the negative
cross term in the velocities becomes a positive cross prod-
uct in the momenta. We find, for the efFective two-grain
Hamiltonian,

4e z
~C(z'-1)

where the reduced Hamiltonian is

=2(z —1)gi 1+—+-} 4 }
z 5zz

}—2g2 Z
5z

(28)

H2 2 (Pg +PJ' )+ Pi'PJ giH g2H
z

(25)

and

gI (z —1)@gal (26a)

The single-grain and two-grain coupling constants are
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g2 (z -z ')go . (26b)

As before, we set C equal to zero and continue to neglect
the frequency dependence and the disorder. The ground-
state energy EG(g I,gz) is now a function of both coupling
constants. But because we are interested here only in the
threshold, where p 0, we need Eg only to second order
in gI. Furthermore, from Eqs. (14) and (26b), we expect
gz to be of order z ', so a second-order computation also
in g2 will suffice. In other words, we need to apply third-
and fourth-order perturbation theory to the perturbing
term in Eq. (25), —gIH' —gzH".
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FIG. 1. Representative ground-state graphs, in the.Bethe ap-
proximation, to third [(a) and (b)] and fourth l(c), (d), and (e)j
order. The taro solid lines represent a pair of neighboring grains
and the dashed lines correspond to their Josephson coupling.
The crosses indicate the mean 6eld due to the other z —l neigh-
boring grains.
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Combined with Eq. (26b), this yields

g$ a2z +a3z +a4z (29)

of the desired form g„za„z ". As explained above, a2
and a3 retain their mean-field values of —,

' and 0, respec-
tively. The result of our fourth-order computation„name-
ly, a4 5, predicts, according to Eqs. (18) and (19), a
fractional decrease in Ro of 0.6z 2 or, for z 4, approxi-
mately 4%. Going beyond the Bethe approximation, we
find's that for an open chain of N grains interacting
among themselves according to H", and interacting with
the mean field of their neighbors according to H',

N —1a.(N) -—
5

(30)

For a closed chain of N grains„we find's the N-
independent value a4 5 . These various approximations
to the complete interacting many-body system indicate
that the error in Eq. (21) due to mean-field theory may
amount to 8% or even 10%, but probably not significantly

more than this. It would obviously be useful to compute
a4 for large clusters having a shape that is more two di-
mensional. '7

To summarize, the theory presented above predicts not
only that there should be a universal sheet resistance but
also yields a numerical value for Ro that is in satisfactory
accord with the observed value. Of the three approxima-
tions involved, that of the mean field seems the least seri-
ous and most under control. This is because of the error
estimate made possible by the expansion in inverse powers
of the number of grain neighbors. The error entailed in

neglecting the frequency dependence of AC is more uncer-
tain but ought to be amenable to some theoretical study in
the future. The most serious problem in refining the
theoretical prediction for Ro will be taking the disorder of
the granular film into account.
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