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The stage dependence of the electronic bands near the Fermi surface of graphite intercalation
compounds is discussed. Special attention is paid to the interlayer coupling and to the origins of the
small, graphitelike bands. Applications are made to the stage dependence of the anisotropy and
temperature dependence of the conductivity. Numerous formulas are included to allow ease of
comparison to experiment.

I. INTRODUCTION

There has been considerable interest in the past few
years in the experimental realization of "two-dimensional
metals. "' While a number of criteria for two dimen-
sionality exist, the following, high-magnetic-Seld cri-
terion is of particular significance: A metal can be con-
sidered to be two dimensional in a strong magnetic field if
successive Landau levels do not overlap in energy. This
has been shown2 to be a necessary condition for the ob-
servation of the quantum Hall effect' (QHE).

Much interest has been generated by the QHE, and
most studies of the two-dimensional electron gas (2D EG}
have been carried out in the Si inversion layers and GaAs
heterojunctions where this effect was first discovered.
Nevertheless, these materials have certain disadvantages:
the low carrier density and small sample volumes make it
difficult to measure bulk properties (heat capacities, mag-
netization). Naturally layered bulk materials offer an al-
ternative means of studying the 2D EG, and recent stud-
ies on one family, the Bechgaard salts, suggest that there
is interesting new physics associated with the dense 2D
EG. An outstanding problem in analyzing layered com-
pounds is just how two dimensional they are: For in-
stance, do they satisfy the above-mentioned 2D criterion'?

Graphite intercalation compounds (GIC's) offer an
important test case. By varying the intercalant species,
the conductivity anisotropy can be varied over five orders
of magnitude, from nearly isotropic to the most aniso-
tropic layered compounds known. At the same time, the
in-plane band structure can be well represented by the
same tight-binding model which works in pure graphite.
Hence it seems auspicious to try to incorporate coupling
of the graphite bands across the intercalant —to directly
estimate the dispersion of the GIC energy bands in the
third dimension (along the c axis), to determine just how
two dimensional these materials really are. Recently, this
band dispersion and the resulting conductivity anisotropy
were calculated for compounds of stage 1 (Ref. 7) and
stage 2 (Ref. 8) (the stage number is the number of graph-
ite layers separating successive intercalant layers). The
overall comparison with experiment was quite encourag-
ing, and more recent results have tended to support the
general picture. This paper extends these calculations to
higher stages, which are important in understanding the

genesis of the semimetallic graphitelike bands associated
with the graphite layers which are not immediately adja-
cent to an intercalant layer (interior layers, as opposed to
boundary layers). The results are in qualitative agree-
ment with experiments on the stage dependence of the c
axis anisotropy. Simpli5ed expressions for the results are
included, in the hopes that these will be useful in more
quantitative comparisons of experiment and theory.

The paper is organized as follows. Section II recapitu-
lates the earlier calculation, and cites more recent evi-
dence in support of the result. Section III generalizes the
tight-binding equations to higher stage, and reduces them
to a form suitable for numerical calculations. Results of
these calculations are presented in Sec. IV. To clarify the
interpretation of these results, approximate calculations
are also presented, which are simpler to deal with and yet
preserve the characteristic features of the general results.
4'hile general results are presented for the boundary lay-
ers, the interior layers are only solved for stages 3-6. In
Sec. V, these simplified bands are applied to a model cal-
culation of the conductivity, and explicit predictions of
the stage dependence (and temperature dependence) of
the conductivity are made and compared with experi-
ment. Section VI provides a summary.

II. OUTLINE OF METHOD
AND RESULTS FOR STAGE 1

The three-dimensional sr bands of pure graphite, in the
neighborhood of the Fermi energy, were originally calcu-
lated in a tight-binding model by Slonczewski, Weiss, and
McClure (SWM}. The energy determinant can be recast
in a layer-by-layer form (each pair of wave functions as-
sociated with a particular carbon layer). If overlap of
wave functions across the intercalant layer is entirely
neglected, the resulting determinant couples carbon lay-
ers only between a particular pair of interealant layers.
This single sandwich S-WM (SSWM) approximation gives
a good account of the in-plane band structure of acceptor
GIC's, allowing predictions of optical properties' and
Fermi surface areas. " However, since intersandwich
overlap is ignored, the Fermi surfaces are two-
dimensional (no energy dispersion along the c axis} and
the e-axis resistivity is in6nite.

The SS%'M was originally introduced by Blinowski
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et a/. ' in a restricted form, ignoring all the 8%M pa-
rameters except yo, y, , and later generalized to include all
the SWM parameters (but no screening) by Holzwarth. '

A model including band overlap was introduced by
Leung and Dresselhaus and Shayegan et al. ' to describe
the alkali metal GIC's. This overlap produces a Anite t-
axis dispersion and conductivity, but the overlap parame-
ters were assumed to be unchanged from the graphite
values. The variation of overlap energy with layer sepa-
ration was studied in Ref. 7. For overlap parameter 8,
the c-axis conductivity is proportional to 8 and by com-
paring the conductivity anisotropy of a number of inter-
calation compounds, it was found that

8 ~ exp( I, ~I,—o)

where I, is the carbon-carbon separation distance across
the intercalant layer and I,o -0.71 A—. This single Eq. (1)
is consistent with virtually all the data for stage-1 com-
pounds. Since this model was published, a number of re-
sults have appeared which are in agreement with the
model.

(1) 8 has been directly measured from Fermi surface
studies in SbC15 (Ref. 14) and Br2 (Ref. g} GIC. In both
cases, 8 agreed with the model prediction within a factor
of 2. In the latter case, detailed susceptibility line-shape
analysis con6rmed that the 20 EG was indeed in the 20

limit.
(2) A rule of thumb in GIC studies had been that donor

intercalation reduces the conductivity anisotropy of pure
graphite, while acceptor intercalation enhances it. Ac-
cording to the new model, this is just a coincidence of
the fact that the donors studied were alkali metals with
small I, values, while the acceptors had large I, 's. New
studies of donor compounds with large I, values' 6nd a
large anisotropy, comparable to that of acceptor com-
pounds.

(3}If the only purpose of the intercalant is to modulate
the overlap by varying I„ then it should be possible to
produce the same changes through totally different
means —in particular, by varying the carbon-carbon sep-
aration via hydrostatic or uniaxial pressure. Indeed,
studies on pure (unintercalated) graphite find that the
overlap energy parameters (y„yz, ys). obey . (1) with
essentially the same value of I,o (I,o~0.5-1.0 }.'

III. SAND-STRUCTURE CALCULATIONS

The starting point of the calculation is the single
sandwich SWM model. Since there are two atoms per
unit cell per layer, the energy determinant for stage n mill
be of order 2n X 2n. The determinant for stage 4 (with in-
terlayer coupling included) is

0

I )

0

0

~o -y~ -I 4 y5

—E; I„0 0
(2)

y5

0

~4 Eb ~o

Io —E

From this the determinant for any other stage may be
readily constructed by adding (or subtracting) rows and
columns. In this equation, I 0

——yooe' and I 4
——y4oe',

where sr=a 3k ao/2; k is the in-I'ane wave number,
ao =2.46 A, and a is the angle between k and a graphite
(100) direction. The y's are SWM energy overlaps, and
are taken to have values"' yo ——3 eV, y&

——0.39 eV,
y2 ———0.02 eV, y4=0. 18 eV, and y5

———0.006 eV. The
S%'M parameters 6 and y3 have negligible efFect on Fer-
mi surface areas, " and have been neglected. Just as in
pure graphite, the second layer parameters yz and y5 are
necessary to turn zero-gap semiconducting bands into
small semimetallic pockets. The smaller parameter, y&, is
not important, and will be set to zero in the approximate
analyses. The parameter I,=8e'~, with P=k,I„is the
intersandwich overlap parameter. As discussed in Refs. 7
and 8, a number of dilerent overlaps can occur, but the
particular matrix elements chosen do not greatly

I

in6uence the result. The form I, [its position in the
determinant Eq. (2)] is the most commonly occurring, as
well as the simplest to handle, and so will be used in most
of this paper. However, in discussing interior layers, it
will be convenient to introduce a second overlap parame-
ter, I 2

——Bze' . Outside of Sec. IVD, this additional
complication mill be ignored, and I 2 set equal to zero.

The notation Eb, E; for the diagonal matrix elements
must be carefully explained. The zero of energy is
defined to be at the center of the interior graphite m

bands, near the k point in the graphite Brillouin zone (the
point at which, in strictly tmo-dimensional bands, the
valence and conduction bands just touch). Then E; =E,
Eb ——E+p, where p is a band offset due to c-axis
screening' ' —because the intercalant layer is ionized,
carriers in the graphite layers are preferentially attracted
to the layer nearest the intercalants. For higher-stage
compounds, there can be inequivalent interior layers, for
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which the additional offset parameter E; is introduced
below, although in general it will be assumed that E; =E;
(Raman spectra show that there is only a single interior
layer peak whereas the boundary layer peak is well
separated due to ex'tra charge transfer}. The meal11ng of
Eb, E; is most easily understood in the limit y» y5

——O. In
this case the boundary and interior layers are decoupled,
and independent carrier densities can be defined, with

n&~;~ ~ E&~;~+, where n& is the carrier density in the bound-
ary layer, E& is the value of E& at the Fermi energy,

E =E~. The proportionahty of

nest;~

to E&&;~ will also ap-
proximately hold in real intercalation compounds, since
y2 and y5 are so small. Thus, for instance, if E;z ——0, the
interior layers are zero-gap semiconductors.

The case E;F-0 is o—f special importance, since it corre-
sponds to pure graphite. The band overlap is due solely
to the y2, y5 parameters, and the net carrier concentra-
tion (density of holes minus density of electrons) is ideally
zero. A simple model'9 of high-stage GIC's assumes that,
at least for stages greater than 4, the interior layers are
essentially graphitic, n, =0. Most of the applications of
the present manuscript are restricted to a generalization
of the above model, assuming E,z ——E;F—0. How—ever,
energy dispersion formulas are provided for arbitrary
values of E;,E;„and so could be used for a different
choice of Fermi level. de Haas-van Alphen results on
acceptor GIC's suggest that the approximation E;~=0 is
poorest for stages 3 and 4, where -15% of the carriers
are in the interior layers, 2 but should be quite good by
stage 7. Taking E;F——0 represents a natural generahza-
tion of Ref. 19. In that reference, the interior layers were
assumed to have the full, three-dimensional graphite en-
ergy bands. However, in a GIC, the c-axis dispersion is
considerably weaker, and an important result of this pa-
per is to show how the c-axis dispersion of the interior
layers develops as the stage number is increased —that is,
how a GIC evolves into graphite.

Experimentally, it is found" 0 that the net charge
transferred to the graphite layers depends strongly on the
intercalant, but only weakly on stage. Because of the
proportionality of n&~;~ to EI,~, &, the stage dependence of
the total density n0=2n&+(n —2)n, (for n &2) may be
expressed directly in terms of energies, defining EFo ——EI,F
(no ln& ). The present model assumes a stage-independent
density, fixed by imposing

2E~~+(n 2)E;F, n &2—
EFO E n

where n is the stage number and E~o vanes with the in-
tercalant. (This equation is only approximately true
when y2+0. }

Equation (2) (or its generalization for stage n) may be
simplified. By multiplying all of the even wave functions
by 8 OI 8 and by )udicious sign changes, aB of the
matrix elements involving I o, I & can be made real and
positive. In this case, the determinant of Eq. (2) is purely
real, except for the I, term (this means the bands have
cylindrical symmetry in the conducting plane which
would not be true if y3&0). If I, were real, the deter-

minant would be completely symmetrical upon inter-
changing the Srst and (n —1)st elements, second, and
nth, etc. This reSects the layer symmetry of the
sandwich. By taking symmetric and antisymmetric com-
binations of the carriers in the two boundary layers, and
simultaneously, of carriers in the corresponding interior
layers, the determinant. equation can be separated into
the product of two determinants, one involving sym-
metric states, one antisymmetric. Then a 2n X2n deter-
minant equation is simplified to two lower-order equa-
tions. If n is even, the lower-order determinants are both
n )& n; for odd n, one (the symmetric) is (n +1)X(n +1);
the antisymmetric is (n —1)X (n —1) with the innermost
layer uncoupled.

Since I', is complex, the actual procedure is slightly
more complicated. If I

&
is written I &, +i I „,where I &,

and I » are real, then if' I » ——0, the separation D =D,D,
would hold, where D is the determinant of Eq. (2}and D,
and D, are the symmetric and antisymmetric subdeter-
minants introduced above, now including P„. For
I'„+0, it can be shown that D =D,D, —I'f,5,8„where
8, (8, ) is the matrix derived from D, (D, } by deleting
the row and column which involve I &, . When I, is
small, the additional term may be neglected. The deter-
minants are now in a suitable form for numerical calcula-
tions. The resulting energy dispersion (k~ versus k, for
fixed EI,F,E;F} will be discussed in the following section,
where simplified approximations to the dispersion are de-
rived.

IV. RESULTS AND APPROXIMATIGNS

A. Ia-plane structure: Cylinders versus pockets

From the SSWM model, it is known that there are ap-
proximately n Fermi surface sections in a stage-n com-
pound. When screening is strong, two of these sections
are much larger than the remaining n —2 (for stage
n ~ 2). These two may be identiSed with boundary layer
carriers, although, due to layer overlap (parameters
y, ,y~), a smaB percentage of the charge associated with
these bands is actually on the interior layers. These large
cylinders are insensitive to the small parameters y2, y5,
and hence it is relatively easy to calculate their disper-
sion, even in the presence of intersandwich coupling, I &.

The n —2 smaller cross sections are much more
diScult to analyze, both for physical and mathematical
reasons. Nevertheless, it is important to understand
these areas, since they ultimately dominate the properties
of very-high-stage compounds, transforming into the
pockets of pure graphite. Hence subsection d involves a
careful consideration of these smaller areas, with detailed
equations for stages 3-6 included in Appendix A.

Some complications are purely mathematical —these
bands are sensitive to the small parameters y2 and E;, as
mell as to I"&, and by changing intercalants, I

&
can be

varied from ~~y2 to ~~@2. A more serious problem,
however, is that screening is imperfectly understood.
Fermi surface studies suggest that screening is incom-
plete in stage 3 and 4 acceptor compounds, with about
15% of the carriers residing on interior layers. However,
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these studies are more sensitive to the boundary layers.
Magnetorefiection studies2' form a useful complement.
These measurements of inter-Landau-level transitions are
very sensitive to graphitic pockets, where both electrons
and holes are present. Re8eciion osciBations are only ob-
served in samples with n &4, and for samples with n & 6
show bands very similar to pure graphite.

The detailed nature of screening will ultimately have
to be worked out on the basis of experiment, and the
equations in Appendix A are provided in a convenient
form for use in data analysis. To gain a qualitative pic-
ture of the interior layers, however, the present
manuscript makes a specific, simplifying assumption. It
is assumed that the screening is nearly perfect: that all
charge transferred into the graphite contributes to the
large Fermi surface sections. In terms of Eq. (3), this
means E&z ——E~/2 for n & 2. E; is not, however, exactly

zero, but is fixed by the conditions that the interior layers
produce no net charge. In pure graphite, this leads to
E; ~y2, with equal numbers of electrons and holes.

Again, this model rn.ust be tested by comparison to exper-
iment. It is likely that it will need modification in the
transitional region, stages 3 and 4, but it should approach
the correct result in the high-stage limit, and
magnetore8ection ' and other' studies suggest that it
wiB be a useful approximation down to at least stage 5.
For completeness, Appendix 8 very briefiy discusses the
solutions when screening is incomplete, and E,+0.

analyze the c-axis dispersion in the limit k -=0. This is
illustrated in Fig. 1. There are four bands, two electron-
like and two holehke. One pair is centered on +2y,cosg,
the other (degenerate when I"0——0) about 2yzcos2$.
Charge neutrality requires EF-O. In this case the y2
bands produce the electron and hole pockets of pure
graphite, while the y& bands may approximately be
neglected.

C. n & 3: Approximation scheme and heuadary layers

In what follows, the parameter y& is neglected, 8 treat-
ed only to Srst order, and y2 treated only to "lowest or-
der" (defined more precisely below). In this case, the
determinant, Eq. (2), separates into symmetric and an-
tisymmetric parts. If I ~ is written as I ~=y~l 0, where
$4=y4/yom0. 06, the resulting determinant equations
can be written as po1ynomials in I o, of the following sim-
ple form:

where m is the order of the determinant and f is a poly-
nomial in I 0 of order I 0, which vanishes as ye~0
(assuming E; is of order yz). Hence, to sufficient accura-
cy, the boundary layer dispersion can be found by
neglecting y2, as

B. Syecial cases, n = 1,2, co

For stages 1 and 2 there are no interior layers, and the
results for the boundary layers have been derived previ-
ously, 7's and are included here for completeness. The
dispersion relations are

A)I O+A2 ——0.
Moreover, for the interior layers I o is srnal1,
I'0 && A2/A „so for the interior layers

I
I"0

I
=El, (Eb —28 cos())) (n =1),

[Eb —(I 0
—I ~) ][Ei,—(I 0+ I 4) ]—4(8 cosP —y, )

(4a)

XI OI'pe —Es I
I i

—yi I
=0 (n =2), (4b)

with approximate solution

I
I 0 I

=
I Es I

+& coM (a =1) *

II;I = IE, I*(y,-a o.y)/2 ( =2),
(5a)

(5b) (meV)

neglecting I"4 in stage 2. In stage 1, the —( + ) sign is for
donors (acceptors), while in stage 2, there are two bands
for either sign of carrier, associated with the k sign.
Note that the dispersion is approximately twice as large
in stage 1, but EI, is also twice as large [Eq. (3)].

In the opposite, n~oo limit (pure graphite), the
boundary layers can be neglected, and Bloch's theorem
used to coBapse the 2n &2n determinant matrix into a
4&4, whose symmetric and antisymmetric parts are

8oo. 50
l

60 90'

[E;+2y icos/ —2y5cos(2$)][E; —2yicos(2$)]

—(r,~ 2l,cosy)'=0,

the well-known result for pure graphite. To understand
the band structure of pure graphite, it is convenient to

FIG. 1. c-axis dispersion for pure graphite (solid lines) at
band bottom (A:~ =0). In low-stage GIC's, this band breaks up
into dispersionless cylinders (if 8,82 are neglected). Numbers
shove position of bands (values of E; ) for various stages. As dis-
cussed in Appendix A, N =1 corresponds to stages 3-5, 2 to
5-7, 3 to 7-9, and 4 to 9—11.
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Pm —2+f 0

Neglecting y& and y&, the boundary layers have the
same dispersion relation independent of stage:

i
I oi =

i E& i
TBcos(P/2), n &3, (10)

just as in stage 2. More exact results, incorporating y,
and y4, are included in Appendix A and illustrated in
Fig. 2. Equation (10) is true as long as y4p8, but if
y~~0, the dispersion would fall off as f4 . This is be-
cause 8 couples the two boundary layers across an inter-
calant layer, whereas y4 is necessary to allow interlayer
hopping within the sandwich.

200

1.26

I60
—I.24

0
(meV)--- 0.76

r
(eV)
0.74

0.72
, (o), , (b),

0' 50 60' 90' 0 50' 60' y 90'

FIG. 2. %'arping of the cylindrical Fermi surfaces: constant
energy surface, 1 0 vs P, for acceptor GIC's with Eq ———I eV,
E; =0. Recall that

i I o i
=(v 3yooo/2}k~, /=I, k„so that, up

to a multiplicative constant, these are curves of k~ {k, ), showing
the ~arping of the Fermi surface am&ay from a perfect 2D
cybnder, k~ is a constant. (a) Interior layers; (b) boundary lay-
ers. Dispersion has been exaggerated by choosing 8 =0.5 eV.
Dotted line, stage 3; short dashed line, stage 4; long dashed line,
stage 5; solid line, stage 6.

D. e p3: Interior layers

The solutions for interior layers are discussed in detail
in Appendix A, with results shown in Figs. 1 and 3. The
qualitative nature of these solutions may most easily be
understood by ignoring coupling between sandwiches or
with the bounding layers. Again, the analysis is
simphfied by Srst considering the k =0 limit, just as for
pure graphite. In this case Bloch's theorem may again be
apphed, and the solutions are identical to those of Eq. (6).
However, now, to satisfy boundary conditions, P is not a
continuous variable but is limited to a few discrete values.
As in pure graphite, these bands are associated with y, or
y2,

' since y& &pyzsuE;, only the latter make a signi5cant
contribution to the Fermi surface, and only they will be
considered in detail. For stage rt, there are n —2 allowed

O. I 0.2 0I. eV
O. I 0.2

FIG. 3. Energy dispersion of graphitic bands in low-stage
GIC's, with /=0, 8 =2 meV. Recall {caption of Fig. 2) that

0 ~ kp ) so this is a standard dispersion relation, E ( k~ ). Dot-
ted line, stage 3; short dashed line, stage 4; long dashed line,
stage 5; solid line, stage 6. (a) Acceptor compound (Eb ———1

eV); (b) donor compound (Eb ——1 eV).

values of P, illustrated in Fig. 1. As n becomes large,
these individual bands merge into the graphitic y2-band.
For low n, however, each of these solutions provides a
discrete, nearly cyhndrical section of Fermi surface —the
true dispersion comes from the parameters I, and I'2
and, in the case of acceptor compounds, may be much
smaller than in pure graphite. Note, however, that
magnetoreflection spectroscopy is predominantly sensi-
tive to the in-plane Fermi surface parameters, and these
will not differ greatly from pure graphite.

The development of the graphiticlike interior bands
can now be easily traced (Fig. 3). For stage 3, there is
only one y2-like band and one y&-like band with a gap in
between. Charge neutrality can be assured with E; inside
the gap (e g , E; =0.),. so there are no interior layer bands
expected for stage 3, unless screening is incomplete. For
stage 4, there are two y2-like bands, one electronlike (for
k +0}and one holelike. At k =0, these bands are de-
generate, so the charge-neutral state is a zero-gap semi-
conductor. The overlap I, will not split the degeneracy,
but a I'2-type overlap [see Eq. (2}] will provide a disper-
sion of the bands and hence produce electron and hole
pockets similar to those in pure graphite (although with a
diferent absolute value —and possibly sign —of disper-
sion). For higher n, new bands are added of alternate
sign, so that for even n there are equal numbers of elee-
tronlike and holelike bands. For odd n, the extra band is
holehke (electronlike) in an acceptor (donor) compound.
For n =5, there is band overlap for a donor compound,
but not for acceptor compounds. For n & 6, there should
be overlap for all stages, but there can be level-
anticrossing efFects, illustrated in Fig. 3 for stage 6.

In summary, it has been shown hove the graphitic
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bands develop in a GIC as the stage increases. There are
no such bands in stages 1 and 2, and a single band in
stage 3, which will probably be hard to observe, since the
gap between it and the next band is fairly substantial.
For stage n &4, there is a series of bands which become
more and more graphitic. There will be considerable
difhculty in testing the detailed predictions of Fig. 3,
however. For instance, magnetoreAection studies excite
carriers from Sled bands below the Fermi level to empty
bands above it, and hence should look almost graphitic
for n & 4. Careful study of the energy dependence could
reveal that there is zero gap in stage 4. Transport stud-
ies, discussed below, will be dominated by the large
boundary layer bands. Effects of the graphitic bands
show up most prominently in the temperature depen-
dence of the c-axis conductivity. However, this is mainly
a population efFect, as in semiconductors. In pure graph-
ite, the degeneracy temperature is only 150 K and above
this temperature the thermal excitation of carriers be-
comes significant. A very similar elect will occur in
GIC's with a gap & 150 K ( —y2), as is true for all n & 4.
Additional complications arise if imperfect screening
shifts EF from the charge-neutral position, or if the sam-
ples are imperfectly staged.

It should be stressed that, while the approximate calcu-
lations discussed here dealt only with the special case of
neutral interior layers, the formulas in Appendix A are
considerably more general; they can be used to treat both
imperfect screening and inequivalent interior layers.

V. CONDUCTIUITY AMSGTROPY

A. Temyeratiire dependence

The above calculations can be used either directly, in
Fermi surface studies, or indirectly, in studies of the stage
dependence of properties of GIC's. As an example of the
latter, this section discusses the temperature and stage
dependence of the conductivity anisotropy. The calcula-
tions for stage 1 (Ref. 7) can be generahzed simply by us-
ing the appropriate dispersions and summing up over all
bands. This model assumes that the scattering time r is
isotropic and the anisotropy is purely a band-structure
efFect. However, the stage dependence of the c-axis con-
ductivity shows an unusual T dependence, varying from
metalhc (positive temperature coefFtcient of resistivity} in
the low stages to activated (negative coefFicient) in higher
stages. To explain the effect requires inclusion of two ad-
ditional el'ects: anisotropy in ~, and thermal excitation
of interior layer carriers.

Since the conductivity involves a k-space average,
only a very stl ong an1sotropy ln '7 vill lead to a
signi6cant anisotropy in 0. For instance, if

'=~o 'sin 8 m'here ~0 is a constant and 8 is the tilt an-
gle of the electronic k vector out of the conducting plane,
the conductivity anisotropy changes by only a few per-
cent from the value it would have for isotropic
Parenthetically, this justifies the assumption of Ref. 1

that the principal reason for anisotropy is due to band-
structure effects. To introduce a very large anisotropy
into s„assume a process which produces no scattering in

lj+c I anisotroptc=~a I isotropic 1+ 8c

where the isotropic values of rr are calculated with r=v~
Even for a large anisotropy in r, this mechanism leads to
a small absolute change in the o anisotropy, but can
make a large change in the T dependence of that aniso-
tropy. Since in GIC's the strongly anisotro ic term is
probably due to scattering by stacking faults, ri can be
taken as T independent.

Let us first apply this model to pure graphite. Band-
structure effects (anisotropic efFective masses) by them-
selves produce an anisotropy if cr, /trc ~ 100, which is ap-
proximately the anisotropy observed in natural Hake
graphites. In highly oriented pyrolitic graphite (HOPG),
o, /o, -1000, suggesting 8,~flat 10. The model then
predicts a metallic T dependen~ce of cr„and tr, approxi-
mately T independent. In fact it is found that rr, in-
creases as T increases. This can readily be understood.
The Fermi surfaces are so small that the degeneracy tem-
perature is only —150 K, so the density is a function of
T. The increase of n will cause a corresponding increase
in tT„but only small efFects compared to the intrinsic T
dependence in o, Since the interior layers of GIC's have
comparable or smaller Fermi surfaces, the same efFect
should be observed there. On the other hand, the degen-
eracy temperature of the boundary layers is much higher,
so for these layers n is constant and the only T depen-
dence comes from v~~. This provides a natural explana-
tion for the observed stage dependence of the T-
dependent anisotropy.

8. Stage dependence

From the results of Sec. IV, it is straightforward to
predict the stage dependence of the conductivity aniso-
tropy. Reference 7 showed that, given an isotropie r and
a dispersion relation of the form

I o=E'+8 cosP,

the conductivity can be written

a, =e v IE' IM/I, ,

a, /rr, =(81, ) /2s)0,

(13)

(14)

where go=(V3/2)youo. These formulas only hold for
open Fermi surfaces,

I
& /E *

I
& 1.

certainly valid for the boundary layers in GIC's, and in
general is a reasonable approximation for the interior lay-
ers 1n the 10%v-T 11Imt,.

The conductivities of each band can be found from
Eqs. (13) and (14), and the net conductivity is the sum

plane but strong scattering for 8& 8r r A simple model of
this is r(s,

' r——i ' if 8& 8„v '=~)( ' if 8 &8„where r, is
the highly anisotropic scattering time, and ~~I is due to all
other sources. Note that TII may be 1sotroplc, but 1f

vI~ 'g~~j ', it can be ignored if 8~8, . Then it can be
shown that to good approximation

~c I anisotropic=~c I isotropic r
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over the bands. Note that conductivities are generally
measured per unit volume, as in Eq. (13}. It is more natu-
ral, however, to discuss the conductivity per sondroich,
o =o I,. Comparing Eqs. (3), (10},and (17},it can be seen
that the in-plane conductivity 0, has s stage-independent
contribution, o, ~EFQ, due to charge transfer. In addi-
tion there is an extra contribution due to compensating
electron snd hole pockets in high-stage compounds. This
monotonic increase in 0, with stage could lead to a peak
in o, at s particular stage. Experimentally, a peak of o,
is observed near stage 5. This peak msy be enhanced by
s tendency for the charge transfer per intercalant to be
larger in higher-state compounds. More detailed discus-
sion of the stage dependence of o., msy be found in the
literature, '

In the ideal screening limit, the c-axis conductivity
may be written ss s sum of boundary snd interior layer
contributions:

, (8i', +8 ) .
2gQ

Summarizing the results of Sec. IV,

8, n=1
b
—8/2 n &1 (16)

The purposes of this paper have been twofold. First, to
show in a suSciently simple model how the graphite
bands evolve in s GIC; secondly, to provide detailed
enough formulas to allow experimental tests of these cal-
culations. A number of caveats must be made to anyone
who hopes to apply these formulas. First, despite over a
decade of intense activity in studying GIC's, many of the

while 8; =0 for n &4 (at T =0); for n & 5 its value de-
pends on the exact value of EF, and can be calculated us-
ing the formulas of Appendix A, but will make only a
small correction to rr, Much .more important is the tem-
perature dependence of o„due to thermal excitation of
carriers in the graphitic bands.

Hence cr, should have nearly the same magnitude and
temperature dependence for all stages (the principal
change being the variation of charge transfer with n)
For stages 1-3, o, should have the same T dependence
as o', (or should have a T-independent additional term
due to stacking faults), while for n &4, there should be a
graphiticlike contribution with a positive temperature
coefficient of resistivity, due to thermal excitation of car-
riers, whose magnitude grows with increasing number of
layers. Because of the small dispersion of the graphitic
bands, the low-temperature conductivity for a high-stage
compound can be lower than in pure graphite, causing a
stronger temperature dependence of 0, than in pure
graphite. These results are in general agreement with ex-
periment. ' ' It is hoped that the calculations of this pa-
per will stimulate additional tests of the model. Finally, a
knowledge of the band contributions to the conductivity
in GIC's will allow s much clearer assessment of the role
of hopping conduction.

fundamental parameters —including even the charge
transfer —are not well known. It is not clear, for in-

stance, whether the y parameters depend on stage or in-
tercalant. Since the lattice parameters of the graphite
layers change so little upon intercalation, it is reasonable
to assume that such change is small, and my studies of
acceptor GIC's have shown that all the data can be inter-
preted using graphitic y values. Ho~ever, it should be
pointed out that there is still uncertainty about the best
values of these parameters for pure graphite, so small de-
viations from an accepted value msy be revealing more
about pure graphite than about a particular GIC.

Once the y's are known, there are still a considerable
number of parameters. These include the total carrier
density no [or, equivalently, EFO of Eq. (3)]; the coupling
constants across the intercalant layer, represented by 8;
and the screening parameters E&,E;. My suggestion is to
use the simplest set of assumptions to analyze the dsts
and only when these prove inadequate to go to more
complicated assumptions. There are known to be
significant sample-to-sample variations in no for acceptor
GIC, so it is dincult to say whether the small stage-to-
stage variations observed are real, and it is dangerous to
use a literature value of nQ for more than order-of-
magnitude estimation. The best way is to determine nQ

via de Haas-van Alphen measurements —although these
can be complicated by imperfect staging, superlattice
effects, torque or magnetic instability, or even simply the
nonsinusoidal line shape expected for the oscillations
near the two-dimensional limit. In lieu of these, in a
study of stage dependence of conductivity, it is reason-
able to assume that nQ will be approximately constant for
a series of similarly prepared samples (although detailed
analysis may show that this is not the case). The inter-
layer couphng constants for stage 1 are reasonably well
represented by Eq. (1), and a good first approximation is
to assume that this is stage independent. The distribution
of carriers between boundary and interior layers (the ra-
tio E; /Ei, ) is the major unknown in the study of higher-
stage compounds. For stages greater than 4 a simple as-
sumption of graphitic interior layers' suggests that
E; ~0, and the Sgures of this paper are based on that as-
sumption, although more general formulas are provided.
The data should be analyzed by first assuming E, =0, but
should there be poor agreement between experiment and
theory, this assumption should be the first one to vary. It
is likely that E;&0, especially for stages 3 and 4, and it is
hoped that future experiments will settle this question.

%'ith the above points in mind, the present theory
should be applicable to both donor and acceptor com-
pounds. The only serious restriction occurs in some
stage-1 donor compounds (K, I.i) where there may be ad-
ditional energy bands contributed by the donor atoms.
This complication is particularly serious if the bands hy-
bridize, so that none of the Fermi surface sections resem-
ble those of the present calculation. However, the pres-
ence of these extra Fermi surfaces is by no means certain,
and it is hoped that the present calculations (or those of
Ref. 7) will be useful for these materials as well —by al-
lowing concrete calculations for the case where the extra
surfaces are absent. For instance, the small conductivity
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anisoiropy of these compounds can be understood
without introducing new Fermi surfaces —since I, is

small for these compounds, e-axis overlap, and hence o„
are intrinsically large.

For the most quantitative applications, a further re-
striction should be noted. This applies only to the largest
Fermi surface sections, and hcncc again primarily to
low-stage donor compounds. The Slonczewski-%eiss-
McClure model is only valid within about I eV of the K
point. Beyond this point the band parameters no longer
accurately represent the curvature of the energy bands,
so estimates of carrier concentration are likely to be in er-

ror. An improved estimate can be made using the ex-
tended model due to Johnson and Dresselhaus. '

APPENMX A: APPROXIMATE FQRMUI. AS

The following results can be used for more detailed
solutions of Eqs. (8) and (9) for intermediate-stage GIC.

j.. Boundary layers

Writing B=B cosg, E~ =Eb&B, the solutions of Eq.
(8) are

p2
0

Eb(E +4y4yi)/(1 —2/4)1, n =3, symmetric
p2

EbE+, n =3, antisymmetric,

I o=Eb[«+ ){I+&4)'—}"'4ri(2+84)1/(I+84 —r"4)'

Es[(E )(1—2/4) —2$4yi]/(1 —3y 4), n =5, symmetric

Eb[E+ 2yi j—4]/(1 —p4), n =5, antisymmetric,

I o=Eb I(E.}(1*8.-~ ')'-) 4~1[2(1+v4)'+ y-.'] ] /[(l~y. }(l-y4)-y-.']',

2. Interior layers: General results

0 0 y2

0

Before solving Eq. (9) for particular stages, a brief dis-
cussion is given of the general case, sketching the proof of
some general results quoted in Sec. IV D. %'hile the dis-
cussion is valid for arbitrary stage, for illustrative pur-
poses some results will be quoted for stage 6. After sym-
metrizing the wave functions the determinant becomes a
product of two smaller {symmetric and antisymmetric)
determinants. When k~=0 (i.e., 1 o, 14=0},the stage-6
determinants become

equivalent to I'& in Eq. (2), the Eb would be replaced by

Es T BlcostI), restoring a dispersion. Ignoring this disper-
sion and noting Eb &&y2, thc boundary layers can be ap-
proximately decoupled, leaving

+r2
det — =0,

ky2 —F.;

with solution (when E; =E, ) E, =+@2.
For arbitrary stage, it is more convenient not to sym-

metrize the wave functions, but to immediately separate

y, and y2 terms. Ignoring boundary layers and setting all

E,.'s equal, the determinant matrix has the form
h

0 0 ~ ~

dct 0 0

0 0 —y) 0 —E, Wy]

det 0

r2 0
y2

. —0.

where the upper (lower} sign goes with the symmetric
(antisymmetric) determinant, and E,+E, allows for.
different charging of the inequivalent interior layers. The
odd rows {involving y, ) and the even rows (involving y2)
are now completely decoupled, so each determinant can
be split into two 3)&3's. The bands of interest, those as-
sociated with y2, are

0 y2
—E,- ky2 ——0 .

+y E.

Note thc c-axis d1spcrsioli (assoc1atcd witll Eg ) has co111-

plctcly gone. However, if thcrc had been 8 term

Again odd and even rows decouple (this corresponds to B
versus 8' carbon atoms, just as the y &

terms are associat-
ed with the A atoms), leaving two determinants of tridi-
agonal form:

y 0

det r2 —E; y2
. ——0 .

This equation has a solution of Bloch form, with wave
functions f -g, e' 4. This yields the same solution as
for pure graphite:

E, =2ylcos(2$},

but the first and last equation can only be satisfied if p is
a multiple of Pz, where
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$N =90'/(N + 1),
for an N QN matrix —recall that this can correspond to
stage 2%+1, 2%+2, or 2%+3. These solutions are il-
lustrated for low stages in Fig. 1.

3. Interior layers: Stages 3-6

In writing Eq. (9), explicitly, only the lowest-order
terms in yz and E; are retained in the coef6cient of each
power of I o. The resulting equations are discussed by
stage.

(a) Stage 3. The interior layer equation (symmetric
only) is

I 0(E 4y~y—, )=E;(E;E —2yi) .

For I 0——0, the roots are E; =0, 2y, /E . For arbitrary
I 0, the smaller solution is illustrated for an acceptor GIC
in Fig. 3(a), for a donor in Fig. 3(b). There is a gap be-
tween the two solutions with no charge carriers. The
neutrality condition can only be maintained for E; within
this gap, so there are no carrier pockets in stage 3.
[Note: Due to overlap of carriers from the boundary lay-
er, there will be a net charging of the interior layer, un-
less E, is suitably adjusted. The same is true for higher-

stage compounds. In keeping with the approximation
discussed in Sec. IV(a), this complication will be ignored. ]

(b) Stage 4. Define kb ——(Ep )(1+y4) —yips(2+$4) .
Then, for symmetric and antisymmetric determinants
(upper sign goes with symmetric},

r~„E,=(E,E, y,'—)[(E )(E-,+y, ) —y', ],
with IO=O solutions: E;=yz/Eb, E;=+y, +yi/E+.
Note that there are four solutions, one doubly degen-
erate. From the dispersions introduced when yo+0 it
can be seen (Fig. 3) that the condition for charge neutrali-
ty is E;=yz/Eb, and there are again no interior layer
bands. Unlike the stage-3 case however, there is no
longer an energy gap between electronlike and holelike
bands —the system is a zero-gap semiconductor, and any
deviation from the charge-neutrality condition will result
in an interior layer band. Incorporating a I z term in Eq.
(2} would lead to replacing Eh ~Eh TBzcosp, producing
a genuine band overlap. Even without such deviations, at
finite temperatures there will be thermally excited car-
riers in the two bands.

(c) Stage 5. The antisymmetric solution is

I o(E+ —2yi$4)=(E;+yz)(E;E+ —yi) .
The symmetric equation ls

~0[E (1—2y4) 2$4yl]+Poyi[yz(E; —yz)+4$4E (E; +E;—yz)]

=(E; y)(E; 2y /—E )[—2y, (2E +E; ) EE;E;]-
4y iE (E; ——yz)(E; 2yz/Eb )—.

The approximate form assumes E;,E; ggE, y&. Here and in stage 6, a distinction is made between the two ine-
quivalent interior layers, with E, representing the outer layers, E; the inner. In the analysis, the distinction will be ig-
nored, and it will be assumed that E; =E; These .solutions are plotted in Fig. 3, and reveal a small gap for acceptor
compounds, but overlapping bands for donors. The Fermi level (E; ) will be adjusted in this case to produce equal num-
bers of electrons and holes.

(d) Stage 6. The symmetric and antisymmetric equations are (upper sign symmetric)

I otE+(1%$4 y4) y—4y, [2(—1+$4) Wy 4]I+1oyi((yihE+ )ycl 9'4(E, +2yz)22(E;+E )]+E+(2yz E'}+Eyi)

[E,E, y', (1+E—, /E, )][—(E,~y, )(E.,E, —yz) —y',E, .]

yi«+ +—yi}[E;E; yz(1+E;—/Eb}] .

As can be seen in Fig. 3, there are well defined electron
and hole pockets, with a real c-axis dispersion, due to lev-
el repulsion efFects.

APPKNMX 8: AWAY FROM PERFECT SCRKKMNG

The previous discussion has dealt exclusively with the
perfect screening limit, where the interior layer bands are
charge neutral. This appendix briefly discusses the more
general case when E;+0. In this case yz can safely be ig-
nored, and if y4 is also neglected, the determinant equa-
tion can easily be found for arbitrary stages:

D„+28cosgx„=0 (n & 3),

where X3 ——E&C&, X„=—y &E;X„&, C&
——y &E; Eb

2

C =y &E;, and D„ is found by recursion:

D„=8'D„]—CD„ (&2)

with Dz ——Wb ( W, Wb 2Cb ), D~ = (—W; Wb —Cb ) —Wb C,
and 8';(~)——E, (~)

—I o. As discussed in Sec. III, this result
can be separated into symmetric and antisymmetric com-
ponents. For instance, for stage 3,

Wg +EI,B=0, antisymmetric,

W( Wb EbB ) 2y iE, Eb ———0, sym—metric ..

The Fermi surfaces of stages 3 and 4 are discussed in
greater detail in Ref. 19.
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