
PHYSICAL REVIEW 8 VOLUME 37, NUMBER 11 15 APRIL 1988-I

Scattering of electromagnetic waves by rough dielectric surfaces
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%e present a treatment of the scattering of electromagnetic waves at rough dielectric surfaces us-

ing both the Rayleigh hypothesis and the extinction theorem. An explicit expression relating s- and
p-polarized components of the field in the dielectric with the incident Seld is given. A Dyson equa-
tion is then derived for the 5eld and an exact iterative series solution is given for both transmitted
and re8ected Selds. In order to evaluate quantitatively the accuracy of this method, scattering by a
sinusoidal grating is examined in detail; the results are in agreement with rigorous approaches pre-
viously reported.

I. INTRODUtwrON

Thjs paper deals with the interaction of an electromag-
netic wave with a rough dielectric surface. More
speci@cally we consider the problem of scattering by a
determined surface for any case of polarization. This
problem has been treated using integral equations and
perturbative techniques in Refs. 1-4. The extinction
theorem, also coupled with perturbative approaches has
been used later. An alternative technique consists of
assuming that the Rayleigh expansion is valid and then
using the extinction theorem as a boundary condition.
This approach has been compared with the simple Ray-
leigh theory of Toigo et al. for the case of a p-polarized
wave. Later an iterative series solution for the problem
of the scattering of a p-polarized wave by a grating was
given by Maradudin' within the same framework. Final-
ly, an integral equation for the reflected Seld and for any
state of polarization was reported by Brown et al. "

In the present paper, we assume the validity of the
Raleigh hypothesis. The discussion of this point is out of
the scope of this paper; for a review of both the theoreti-
cal and the practical utility of the Rayleigh ansatz the
reader is referred to Refs. 12-14. Within this approxi-
mation we obtain in Sec. II a basic equation relating the
spectral components of the incident and transmitted field
for any polarization. Thus, this formahsm allows a dis-
cussion of the depolarization of the Selds. This equation
is a generalization of part of the work reported in Ref. 9.
In Sec. III we show how to obtain a Dyson equation for
the transmitted Seld. This formulation proves to be well
suited to the discussion of the homogeneous problem. In
Sec. IV, an explicit iterative series solution is obtained for
both the transmitted and the reflected fields for any po-
larization. In the last section we apply the formalism of
Sec. II to the problem of scattering by a grating in order
to compare its limits with rigorous solutions.

terized by the equation

z =S(p), p=(x,y) . (2.1)

V E, +ekoE, =0, (2.2)

where ko =to/c and c is the light velocity in the vacuum.
Assuming that the Rayleigh expansion is valid, one

may write E, in the following form:

E,(r) = J dtt e, (tt)exp[i (tr p y, z)]., - (2.3)

y, +tc =eke and Im(y, ) &0 . (2.4}

Similar representations may be introduced for the in-
cident and scattered Selds:

E, (r)= J dtt e, (tr)exp[i (tt p y;z)], — (2.S)

y, +a. =k(') and y;=kocos8;;

E„(r}=J dtre„(tt}exp[i (tc p+y, z)].,
(2.6)

(2.7)

The medium occupies the lower half-space [z &S(p)]
(Fig. 1). We assume that the medium is homogeneous,
isotropic, and has a local, linear susceptibility
X(co)=[a(to)—1]/4' where e(to) is the complex dielec-
tric constant. The circular frequency of the incident radi-
ation is co. The Seld in the medium will be noted E,
(transmitted) whereas the field outside the medium will be
the sum of the incident field E, and the scattered Seld E„.
For all the fields we assume the temporal dependence
exp( —t cot )

The transmitted electric Seld must satisfy the
Helmholtz equation:

11. INTEGRQDII mRENTIAI. EQUATIGNS
FOR THE SCAx-rj;RED EL'&ROMAGNETIC FIELDS

IN A LOCAL LINEAR MEDIUM

We consider an electromagnetic wave of arbitrary po-
larlzaflon ilDpinging on a rough dlelectl lc surface charac-

y„+tc =ko and Im(y, )&0.
Note that (2.3) may be viewed as a modal expansion of E,
since each spectral component satisfies (2.2).

In order to obtain the coefficients e, (tt) we will use the
extinction theorem which appears as a boundary condi-
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tion (for a discussion of this point see Refs. 15 and 16).

E;(r)=—,VXVX f E,(r')
4mk 0 s Bit

BE,(r')—6 (r,r'), dS',

where the scattering potential I (a,«') is

I(«,«'}= f dp'exp[i («' «—) p']

exp[i (y „—y', )S(p')]
X

Vr Vt
(2.17)

where y is a function of K and y' a function of K', and

(2.9) k,*,=(«, ky„, ) . (2.18)

where r lies in the medium, r is a typical point on S,
B/Bn' denotes differentiation along the outward normal
to S, and

exp(iko
~

r —r'
~

)
G(r, r')=

/
r —r' (2.10}

E„(r)=
2

VXVX f E,(r')
4irk o2 s Bpi

designates the free-space Green's function.
In principle the transmitted field may be found by in-

verting (2.9}. The scattered field is then deduced from

Note that the Rayleigh hypothesis is invoked for the
transmitted Seld only. If we are interested in the
refiected field outside the selvedge region, (2.7) consti-
tutes an exact representation. Since Eq. (2.16) yields each
spectral component of the transmitted field, the rejected
Seld may be computed outside the selvedge region
without any additional hypothesis.

Before solving the integral equation (2.16), we will in-
troduce a local basis (i.e., depending on «) in order to
treat separately the s and p components of the field. As-
suming V E, =0 we may take advantage of the transverse
nature of the field to write the spectral components in the
following form:

BE,(r')
G(r—,r'), dS' .

ll
e,{«)=e„(«)a,(k, )+e, («)a~(k, ), (2.19)

(2.1 1)
where a, (k, } and a (k, ) are two unit vectors perpendic-
ular to k, deSned as follows:

To determine the spectral amplitudes e, («) we substi-
tute (2.3) in (2.9}. To this purpose, it is also convenient to
introduce in (2.9) the spectral representation of the free-
space Green's function 6:

a, (k, )=zX«,
k,

a~(k, )=a, (k, )X

(2.20)

G(r, r')= ' f exp[i« (p p.')+—&y„~ ~ —~'
I ] .

2m' y.
(2.12)

Moreover, the following relations allow us to perform the
integral in (2.9) over the x-y plane:

The vectors (a (k, ),a, (k, ),k, ) form a right-handed
coordinate system. The coem][cients e„and e,z are the s
and p components of the field. Using this basis the dou-
ble vectorial product which appears as a linear operator
referred as R («, «') hereafter may be written in a matrix
form:

dS'=dx'dy'[1+(V1S) ]' (2.14)

, =(n'. V) with n'= 2,&
( —ViS, 1),

[1+(VS)']'"
(2.13)

A Ag
K K

R(«, «') = k,'—
«(zX«')

Kp

I

«'. (z X«)
nkp

««'+(««')y„y',
nko2

(2.21)

Integrating by parts using the identity

V(I exp[i («' «) p'+i —(y„—. y', )S(p'}]—1J

=i [»' «+(y„—y', )ViS)—

Xexp[i(«' «) p'+i(y—, y. ', )S(p')]—, (2.15)

Finally we obtain a new form of the integral equation
(2.16) for the s and p components of the transmitted field:

e(«) q 1 1 . . . e(k')
d«' I {«,«')R («, «')

e~ K 4~ 2my
L

(2.22)

one obtains after some algebra an integral equation for
the transmitted Scld

e;(«)= k„Xk„X d«'e, («')I(«, N'),e—1 l
4m 2my,

(2.16)

Equ, ation (2.22) is an integral equation for the transmit-
ted Sell. Note that the only restriction to its validity de-
pends on the Rayleigh hypothesis. In the following sec-
tion we will inodify (2.22) in order to separate contribu-
tions to the scattered Selds duc to either the bulk or the
sclvcdgc region. Then, %Ye will derive a Dyson cquatlon
for the transmitted Seld. In Sec. IV, we show that the ex-
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act solution of Eq. (2.22) may be expressed in the form of
an iterative matncial series solution generahzing the re-
sults of I.opez et a/. ' for the scalar case and of Maradu-
din for the p-polarized wave incident on a grating. '

e,',"(«)
e(0)(»)

Ep

e;,(«)

e;„(«) (3.3)

IIL A DYSON EQUATION
FOR THE TRANSMrrrED FIELD

e, (a) =e',"(K)+e',"(«) . (3.1)

I.et us now consider the transmitted Geld as the super-
position of the zero-order solution (corresponding to a
fiat interface) and a correction term due to the selvedge
region. %'e introduce the following notations:

where we have used the following identities:

(&—1)k() =(y, y—„)(y(+y„),
(K'+y„y, )(y„+y, )=(e.y, +y, )k,' .

(3.4a}

(3.4b)

To proceed it is convenient to substitute the decompo-
sition

Let us consider the case of a fiat interface [S(p)=0].
From (2.17) we deduce: I(«,K') = 5(» «'}+—J(»,«'),4m

Pr
(3.5)

I (»,»') =
fr Yt

5(«—«') . (3.2}

Introducing (3.2) in (2.22) we readily obtain the Fresnel
transmission coeScients for the amplitude of the fields:

where the first term on the right-hand-side member ap-
pears as the contribution of the bulk, whereas the second
is due to the selvedge region. Introducing (3.1}and (3.5)
in (2.22) one obtains a Dyson equation for e, («):

e„(») e,', '(») e„(K')
R '(», «) d»' R (a, »')J(a, »')

e~p + efp «& 4m etp
(3.6)

This formulation proves to be well suited for the treatment of the homogeneous problem. Let the incident field be
null: (3.6) then reduces to

e„(«)
e, (»)

Vt
R («, «) d«''R(», »')J(», »') et (K)

4m e)
(3.7)

This equation is a good starting point in investigations of
the dispersion relation of the polaritons. This subject is
not pursued here since it has been studied by means of a
similar approach in Refs. 18 and 19.

On the other hand, (3.6) is useful in deriving accurate
approximations for the transmitted field. Note that
J(»,»') appears as a scattering potential whose depth is
related with the amplitude h of the function S(p) and
with a range of the order of the autocorrelation length I
for J(0,»). From these physical remarks it appears that
a Born approximation should provide a good solution for
the transmitted field for surfaces having low ratio Ilh
Note that this condition is consistent with the Rayleigh
hypothesis. In the following section we turn to the prob-
lem of establishing an exact iterative series solution for
the fjIeld.

IV. AN ITERATIVE SERIES SOLUTION
FOR THE FIELDS

e(,")(«)
e, (»)= g

pg f
(4.1)

()}"(y,—y', )"
I(»,»')= g

n=0 n!
with

S (K —«), (4.2)

S"(»' «)= I dp'e—xp[i(»' «) p']S"(p') —. (4.3)

Introducing (4.1} and (4.2) in (2.22) and equating each
term of same order one obtains

In this section we solve Eq. (2.22) by expanding the
fields and the function I(»,»') as follows:

(4 4)(„) — R )(«,«) d«'R («,«') g (q)(()&(y y')& 'S&(—«' «) ('„q), —(nth order)
8~p K 4

Equation (4.4) gives the well-known perturbation expressions for q =1 for both polarizations. ' ' " From the ex-
amination of the nondiagonal terms of R one also obtains the classical result that the crossed terms (i.e., the depolariza-
tion) appears only to second order. Finally, expression (4.4) specialized to the p-polarized case is the same as (3-28-b) of
Ref. 10 apart from differences in notations.
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The scattered field is computed using {2.10}-(2.15) as in Sec. II:

e—1 1, . . . , e"P[ '('Y +'YI )S'{e'}1
e,(K)= k+Xk+X f d«'e, (K*}I dp'exp[i(K' —«) p']

pt ~r+ YE

(4.5)

Lct lls 11ltroducc thc opcratoI' P {K, K ) which csscntlally pcrfoIIIl's thc pro)cctloil of cr (K) 011 thc basis

(a, (lt+ ),ap(&+ ) ):

g

K' (*XK)
n 0

P(K, K') = —ko
K (ZXK')

—y y'(«*K')+KK'

Pt o

Introducing (4.2} and (4.6) in {4.5} one obtains, after expanding exp[ i (y—„+y', )S(p')] and identifying the terms of
same order,

d«P(K, K') g (i)" «S" «(K' —K)(y„+y', )" « ' ~«~, (nth order) .
erp K 4% 2«ry r

(4.7)

The zero order yields the Presnel coeScients for re6ection:
T

Vp' Vf

e„"'(K)
'

yr+yr
&3'r —Xc

&'V r+'Ff

e;, (K)

e,p(K)
(4.8)

and the Srst order of (4.7) appears to be the same as expression {2.14) of Ref. 6.

V. NUMERICAL STUQY OF SCATTERING
SY A SINUSOIDAL GRATING

e;(K„,» ) =e;5(K„—», )5(K„), (5.1a)

The aim of this section is to investigate the domain of
practical utility of the basic result {2.22) and to show that
this integral equation is useful far beyond the limits of
perturbative approaches. We treat the standard problem
of scattering of a plane wave by a dielectric grating. I.et
S(x)=hcos(2«rxld) be the equation of the surface and
P.; be the electric field of an g-polarized electromagnetic
plane wave illuminating the grating. As in Sec. II the
dielectric medium lies in the lower half-space and is
linear, homogeneous and isotropic. Since the surface is
periodic the fields may be expanded in the forms

I

with

kOKg
M«„—— exp[i {q—n)» x]

y, 4m o I

exp[i(y „y«}~{—x'}1
X

3 rq Vtn

(5.3)

(5.4)

and where we have used the following relations:

y'exp i~~y' =2m x~

+ 00 + 00

exp[If (K —K )d] =K g 5(»~ —»I —g»g } .

+ 00

er ( K~, Kp )= g e«5( K~ —»I —n Kg )5(Kp ),
+ 00

e,(»„,»p) = g e 5{»„—K; n»g )5(» —),

(5.1b)

(5.1c)

(5.5)

The transmitted field is obtained by solving this linear
system. The re6ected Seld is then deduced from the fol-
lowing relation derived from (4.5}and (5.1):

e„(K;+rn», )=—ko»r e —1 +"
e,„,

PV2t Pg = —00

(5.6)

Introducing these expressions in {2.22) we obtain a
linear system:

y„„e;5«„——g M«„e,„,

d
exp[i(n —m}»gx ]

exp[ i (y +y,„}—S(x')]
X dx

'V ~+X~n
(5.7)
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For convenience we will introduce the efficiencies in
the mth order for the re6ected and the transmitted fields:

z s(x,y)

C;

e,. Ci

c; = [1 (~—i /ko)i]'~
2' 1/2

K;+7tlKge' — 1—

(5.10a)

(5.10b)

Ki +15+8
"2 1/2

(5.10c)

Re g(a +p ) =1,

where only the propagating modes are involved in the
sum. This relation will be used to check the results. De-
tails of the numerical calculations are as follows: the in-
tegrals in (5.3) and (5.7) are performed with the Simpson
quadrature technique. The matrix inversion is performed
with the Gauss-Jordan scheme. The matrix is expected
to be well conditioned up to a limit value of the ratio
h/d. Recall that the theoretical limit of vahdity of the
Rayleigh expansion is Ii /d =0.072.

As a Srst step we present a comparison of the results
obtained with the present method, hereafter called
modified Rayleigh theory (MRT), with previous calcula-
tions by Maystre, Neviere, Vincent, and Petit, ' and
%irgin using, respectively, a rigorous integral formal-
ism, a rigorous differential formalism, and the approxi-
mate Rayleigh theory. Table I shows that, for a grating
whose ratio h/d is almost twice the limit value 0.072, the
approximate methods agree well with the reference solu-
tions.

To obtain the limit value of Ii/d the grating amplitude
h is increased. Figure 1 displays the behavior of the sum
of the eSciencies which should be equal to 1 according to
(5.11). It appears that the energy criterion is satis6ed
within 1% for a ratio h /d lower than 0.14 for the partic-

The ef6ciencies should verify the law of conservation of
energy:

FIG. 1. Scattering geometry.

1,60 I Ofe I'e nCI I

i
/

ular incidence used in the calculation (10'). For larger
incidence the behavior of the RT and the MRT is better
(see Table I and Ref. 12).

It is worthwhile to compare this method with an alter-
native approach, namely the Rayleigh theory. An exten-
sive study of the domain of validity of this theory can be
found in Ref. 12. Basically, this theory assumes the va-
lidity of the Rayleigh expansion for both the reflected and
the transmitted fields. Then„ the continuity relations are
used as boundary conditions for the field. Hence, the lim-
its of this theory are due to the Rayleigh expansion and
one may expect that both approaches wiB fail in the same
way when the ratio h/d is increased. However, Fig. 2
shows that the Rayleigh theory has a larger domain of
validity than the approach outlined in this section but an
oscillatory behavior in the vicinity of the limit of validity.

Next, we examine the behavior of the theory when the
amplitude of the corrugation of the surface increases
while the ratio h /d remains fixed. Hence, the perturba-
tive treatments fail whereas the Rayleigh hypothesis is
still valid. As an example we present in Fig. 3 the results
obtained with the MRT for increasing values Ii up to
twice the wavelength. The conclusion is obvious: the in-
tegral equation (2.22) has a wider domain of validity than
its perturbative solution.

It is shown that the formalism of Sec. II (MRT) leads
to very accurate results beyond the theoretical limit of
validity. On the other hand no "practical limit" for the

NVP RT

TABLE I. Comparison of M (Maystre result), NVP (Neviere,
Vincent, and Petit result), RT (Rayleigh theory), and MRT
(modi6ed Rayleigh theory). Total energy (8) and eSciencies
(p„) of rejected spectral orders for sinusoidal gratings separat-
ing air from a dielectric medium. a=2.56, 8; =26.744', A, =0.9
pm, d =1 pm, h =0.125 p,m. For RT and MRT the truncation
retains 11 terms.

~f
C

4J

—1.20-

1QQ 4 i k. 4

0.8D

OQO O.lO
I

0.30 0.40

0.0244
0.0222

0.0244
0.0222

0.0244
0.0222
1.000

0.0244
0.0222
1.000

FIG. 2. Total energy computed with the RT and the MRT vs
the corrugation amplitude h jd. The parameters of the calcula-
tion are A, = 1 pm, @=2.1, d =2 pm, 8; = 10 .
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LLl )0

0.8
p.p 08 1.2

hfdf

FIG. 3. Total energy computed vrith the MRT vs the grating

amplitude h. The parameters are the same as in Fig. 2.

%'e have presented in this paper a general formulation
of scattering of electromagnetic waves at a rough dielec-
tric surface. The use of the Rayleigh approximation
leads to a spectral formulation of the problem which
proves to be useful. %e have shown how it may be used
to derive a Dyson equation and, hence, a Born approxi-
mation which gives physical insight into the process.
Taking advantage of the simplicity of this formulation,
we have been able to obtain an explicit iterative series
solution to all orders for the scattering of electromagnetic
waves on a rough dielectric surface. Finally, we have de-
rived a very simple and accurate numerical scheme for
the study of scattering of electromagnetic waves by grat-
1ngs.

usefulness of the Rayleigh expansion may be exhibited.
Such a limit depends both on the analytical approach in-
volving the Rayleigh expansion (the choice of the bound-
ary condition in the present case) and on the parameters
of the problem (i.e., shape of the surface, incidence}.

The author thanks Dr. A. virgin for helpful discus-
s1on.
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