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Energy-band structures have been calculated for +Sik+„polyalkylsilene model compounds,
where R indicates an H atom or a CH3 [methyl (Me)j group. A possible Peierls instabihty has also
been investigated theoretically for these polymers. Polyalkylsilene with H-atom or Me side groups
have overlapped conduction bands formed of skeleton m bands and u bands. This band overlapping
suppresses the metal-insulator (M4 transition due to the simple double-bond alternation found in

+CH+„. This band overlapping also causes three types of scattering processes: Two of them are
intra-e-band and intra-m-band scatterings and the other is inter-o-m-band scattering. Inter-o-
n.-band scattering produces a charge-density wave (CD%') having a commensurate wave number of
q =n/a by dimerizing two skeleton unit cells. Intra-o-band scattering produces a CD% having
an incommensurate wave number of q =2k+. However, this incommensurate CD%' is equivalent
to an incommensurate CD% with q =2kF produced by intra-m-band scattering, because the one
dimensionality of overlapping band guarantees the relation of kz+kF ——m/a. The resulting

polyalkylsilene tends to have the characteristics of an insulator due to intraband scattering rather
than interband scattering. This is because of its orthogonality of overlapping o and m bands.

I. INTRODUCTION

Polysilene' is a hypothetical polyene whose structure is
analogous to polyacetylene. While the latter has C dou-
ble bonds along the skeleton, the former has Si double
bonds along the skeleton. The formation of m bonding
between Si atoms has been recently investigated. Pandey
proposed the m+onded Si chain so as to interpret the the
Si-surface characteristics. Chemically, small but stable
oligomers having Si=Si double bonds have been syn-
thesized. A theoretical calculation also shows that
polysilene catena has a possibility of forming overlapping
conduction bands. Thus polysilene is a hypothetical
polyene yet, this is, however, an important model polyene
not only for the systematic investigation of group-IV
polyene but also for the model investigation of Peierls in-
stability in the novel polyene with overlapping multiband
structure.

This paper concerns a theoretical investigation of some
possible ideas for such Peierls instabilities in the overlap-
ping multiband, via the case of polyalkylsilene. For this
purpose we 6rst focus on the electronic structure of
polyalkylsilene, +SiR+.„,where 8 indicates an H atom
or Me (methyl) group (Fig. l). It is assumed to have a
transplanar zigzag chain from drawing an analogy with
polyacetylene. Section II includes the results of theoreti-
cal calculations of the electronic structure for (SiR)„.
This section also discusses the influence of bond alterna-
tion upon the electronic structure. The resulting band
overlapping found in polyalkylsilene has a possibility to
suppress a metal-insulator (M-I) transition due to such a
simple double-bond alternation. Therefore, possible
Peierls instabilities in the overlapped multiband structure

should be investigated. %e then discuss the electron-
phonon interaction occurring in this characteristic band
structure and also estimate the corresponding coupling
constants in terms of the deformation-potential approxi-
mation in Sec. III. Section IV deals with a theoretical in-

(a) SiH

a

(g) SilNI

FIG. I. Illustration of (a) (SiH)„and (b) (SiMe)„.
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vestigation of the M-I Peierls transitions as well as the
phonon softening due to the Kohn anomaly in these
polyalkylsilenes. We also discuss the qualitative influence
of the side-group methylation upon both the band struc-
ture and the M-I Peierls transition mechanism by com-
paring the results of (SiH)„and (SiMe)„.

functions of Si 3s, Si 3p„, Si 3p, Si 3p„C 2s, C 2p„, C
2p, C 2p, „and H ls atomic orbitals (AO's) can be em-

ployed as the basis in this calculation. The wave function
for an electron in a polymer can be expressed in terms of
Bloch sums of the eigenfunctions (()( of the bound state of
free atoms:

4"„(r)=ge "gC)', P( (r R—„) (2.1)

A. Energy-band stmcture of polyalkyhilene

A semiempirical band calculation method known to
describe the band-edge structure was used. The method
is based on the hn ear-combination-of-atomic-orbitals
method (LCAO) approach of Slater and Koster (SK), be-
cause of the covalency in polysilene. The valence-orbital
approximation is known to provide a good approxjma-
tion for Si and C elements. Therefore, the valence eigen-

Here, R„means a positional vector for the nth lattice.
The sum over eigenfunctions should be over both atomic
species a involved in the unit cell and over the quantum
state (I} of the corresponding AO. C( indicates an ex-

pansion coefllcient for the jth eigenstate. According to
the conventional variation technique, the following famil-
iar secular equation can be obtained:

(2.2)

The symbol &(ttj
~

8
~ (t}, & is an interatomic matrix ele-

ment (or LCAO parameter), which is estimated here by
Harrison*s method. In his formation, the interatomic
matrix elements can be expressed as

od
(2.3)

where )r represents o or rr bonding and d is the inter-
atomic matrix distance. The subscripts u, u, and w are
direct cosines for positional vector R„. The symbols I
and I' on the right-hand side indicate the azimuthal
quantum number for individual atomic orbitals labeled
by s(1=0) or p(/=1), and m is the magnetic quantum
number labeled by (T(m =0) or m(m = 1). The parameter
Ill m ls 'the Harrlsog coefflclent.

The symbol s; in Eq. (2.2) represents the on-site ener-

gy. In chainlike polymers, these values are dim'erent from
those for an isolated atomic Hamiltonian fe.g., the result
of Herman and Skillman (HS)] due to the formation of
the chain structure. Therefore, the adjusted HS e,
values for Si, C, and H are used for the calculation.
These values produce reasonable ionization-potential (IP)
values.

Figure 2 shows the calculated energy-band structures
near the Fermi level of (SiH)„. Double bonds are as-
sumed to be fully delocalized along the skeleton to form

Dzjb, symmetry. Characteristic of the conduction band
(CB} is an overlapping between the m and cr bands. The
resulting Fermi level intersects these two overlapping
CB's. A metallic state is then produced. This feature is
caused by inherently small band gaps of Si-skeleton poly-
mers, less than half of those of C-skeleton polymers. The
overlapping CB states are composed of skeleton Si AO's
and are delocalized along the Si skeleton; the bottom
state of the m band is a bonding m state between Si 3p,

AO's whose lobes stand vertically on the skeleton plane,
and the bottom state of the o band is an antibonding o
state between Si 3s AO's. The Si 3p» AO's are also ad-
mixtured in the o -band state.

Figure 3 shows the calculated energy-band structures
of (SiH}„when a strong bond alternation occurs. " Simple
bond alternation does not result in variation in the unit
cell but lowers the symmetry of the chain from Dl(, to
C2s. This reduction in symmetry removes the energy de-

H

H H

FIG. 2. Calculated energy-band structure of CSiH)„with
delocalized skeleton double bonds. Length of double bond is

average of experimental values of Si—Si (2.346 A) and Si =Si
(2.16 A) double bonds.
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FIG. 4. Illustration of an overlapping tao-band model.

N
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lowing considerations, we describe these two bands in
terms of a parabolic band with the effective-mass approx-
imation (m and m ) in Fig. 4.

The E'-k dispersion and the density of states (DOS) g'
for the n band (i =m ) are expressed as

FIG. 3. Calculated energy-band structure of (SiH)„having
bond-alternation skeleton.

Elk) = k 2

2pp2 ~

2Ptl ~
g(zj=

2

(2.4)

generacies at point X. However, the inherently long
length of interatomic distances between Si atoms reduces
the difference between single bond (Si—Si) and double
bond (Si=Si) lengths. This inconspicuous difference re-
sults in band splittings at point X small enough that the
resulting Fermi surface still intersects both the n and 0
bands. This result, that the commensurate-lattice dis-

placement due to the bond alternation produces no M-I
transition, is quite difFerent from the ( CH&„system.

A quite similar band structure near the Fermi level is
also obtained when the side groups are substituted from
H to Me (methylation), because the corresponding elec-
tronic states are mainly determined by Si-skeleton AO's.
Therefore, polyalkylsilenes would tend to maintain a me-
tallic character even after simple bond alternation.

S. Overlapy|ag Imultiband model for yolyaLyhilene

The resulting conduction bands of polyalkylsilene have
an overlapping multiband structure between the m and 0.

bands near the Fermi surface. For simplicity of the fol-

Those for the o band (i =o ) are

E(k) —— k +6,2' ~
(2.5)

w here b, is an energy difference between two bands. The
total DOS g' is then

g(E), 0&E &6
g(g) gm +gg

L

The overlapping of the half-611ed m band over the emp-
ty cr band causes electrons to Sow from the n band to-
ward the o band. This Sow of electrons lowers the Fermi
energy EF. The lowered EF is approximately deter-
mined by the above band parameters (efective-mass ra-
tios of m ' and m, and energy difference 6) and the elec-
tron number density n (=2k~ /n ):

I

[(~'+rn*)kp —(~*—~') n(32m /A0' )b]—2k~ Im'm'[kg —(m' —ping')(2~0/g2)g]j'~~

2ppl O (m* rn' )2—
(m ' +m ' ), (2.7)
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and the corresponding Fermi wave numbers for the»r and
0" bands are

k;=+, (E,-w)'" .

The values of the eS'ective masses for the o and»r
bands were calculated for the resulting E'-k dispersion of
the band calculations (Sec. II A) in terms of the polyno-
mial least-squares method. The resulting band parame-
ters are tabulated in Table I.

IJ V
e-ph g~ e-ph ~g» Pq

Wq i,j
(3.4)

Con»dering the electron-phonon interaction, the result-
ing equation of motion is then

where p'J is the electron density operator and g'J is the
electron-phonon coupling term.

Since a typical phonon frequency is very small com-
pared to a typical electron frequency, the coupling of
electrons to phonons may be treated as a polarization
process, in which phonons are regarded as an external
field only weakly coupled to the electron gas. Then, this
electron-phonon interaction plays the role of an outfield
force I', „for Q,

III. ELKwRON-PHGNON INTERACTION
IN POLVALKYLSILENE

Q ic 2Q gg IJplJ (3.5)

Q» = ~»g» (3.1)

When electrons with state
~

k ) of the ith band interact
with the phonons via the wave number q, and are then
scattered to the state

~

k') =
~
k+q ) of the jth band, the

corresponding electron-phonon interaction O'Jph is ex-
pressed as

& mph= ~ XUqJC»J'+kC (b, +b', ) =gg»JP'»Jg»

A. Equation of motion for overlapying mnltiband

The electrons and phonons are coupled vta 0, ph, as a
result the phonon field acts to induce a certain density
fluctuation in the electron system. This induced density
fluctuation in turn affects the phonon field, since it serves
to alter phonon frequencies. The calculation of the in-
duced density fluctuations and the phonon dispersion re-
lation should therefore be carried out in a selfwonsistent
fashion. "

The normal-mode phonon oscillator amplitude Q»
without electron-phonon interaction is determined by the
following equation of motion:

I.et us now take the expectation value of both sides of
this operator equation with respect to the electron coor-
dinates:

(3.6)

The corresponding value for electron density & pq'J ) is zero
in the absence of a phonon field. In the presence of a
field, the electron response may be specified with the aid
of the response function XIJ» r~ to the extent that the elec-
trons respond linearly. The expectation value of p»J is
then

&P ) = —%,nf' (3.7)

@ lJ g I (plJ)f»iJIJe
—lldt

From Eqs. (3.3) and (3.8), q&'J is given as

(3.8)

Here, y" is the Fourier transform in space and time of
scalar potential pIJ„~, which acts on the system density of
i and j-ban-d electrons through the interatomic Hamil-
tonian, 8 ',"p„,

q,'J=g,'J&g, & . (3.9)

The symbols C' and CJ indicate an annihilation and
creation operator for electrons in the ith and jth bands,
respectively. The symbols ii and b also indicate a corre-
sponding operator for phonons. The total electron-
phonon interaction 0,» for the overlapping multiband
system 1s obtamed as

The resulting density fiuctuation induced by a longitudi-
nal field of average amplitude & Q» ) is simply

&p'J&=-g,'JXI, „&g, & . (3.10)

The equation of motion is then rewritten as

&g, &=- ~,'-y ~g,
' ('X,J, &Q, &-=II', &Q, & .

&.-ph= X& "-ph= X XA"P»g» (3.3)
(3.11)

The phonon frequency Q~ is reduced by the electron-
phonon interaction by

(3.12)
TABLE I. Band parameters of (SiH)„and (SiMe)„ for the

overIapping band modeI.

B. Intraban@ an4 interbank resyense functtoas

0.785
0.603

0.926
0.986

1.642
I.239

The response function for the rnultiband structure,
g(q T), 1s deSned by
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fk —f3+»
%»y T) pf X Ej Ei

k k+q k

1 k +q

E)c+ —EL

(3.13) and

(m )lt2 (m )it2
f J

First, we calculate this response function of the overlap-
ping band model for the special case with 6=0 (Sec. II 8)
and T =0 K in order to investigate characteristics for in-
traband and interband scattering.

The intraband response function X(» T) is rewritten for
the parabolic band with the effective mass m, as

1 2m' 1 fa fk+—»
»rn yP q Zk+q

(3.14)

X J(f"-ft+»)+» k +aq k +bq

The corresponding response function for an interband
scattering XII» T) is

(m, mJ)'
X"

~n g q

(m )i/2
b=

(m )' +(m )' 2
J

Only for the limiting case of T =0 K can the response
functions for both intraband and interband scattering be
analytically calculated. The resulting intraband response
function 7&& T o] is well known as

1 ~mi 1 q+2kF
n))'i q q

(3.16)

When electrons are scattered from one Fermi point
(kk)'. ) to another point ( 7 ki, ) within the same ith band,
XI'» T o) has a logarithmically divergent value.

The interband response function XIJ» T o) can also be
expressed analytically when T =0 K:

(m,.m,. )'t2 1 k~+aq k~ bq kp ——(a —1}q k$ —(1—b)q
X(», T =0) ln

»rn g q kF aq k~+b—q kg+(a —1)q kg+(I+b)q
(3.17}

Since kz and k)( are the Fermi wave numbers of the i and

j bands, respectively, the following relation is obtained:

EF —— (kp) = — (k)() (3.18)
2m, F

2m,

oo k k+q
(», T)- J

"F+&r f) —fk+»+' dk .—k~-q-fT Ek Ekk+q
(3.20)

Therefore, Eq. (3.17) is rewritten as

1 Z(m, m, )'"
1 q+(kF+kj)—ln

»rn g q q (k'+kj)—(3.19)

Two possible phonon modes with q,j+=kF+k+ and

q;, =kg —kz. are apparently struck upon interband
scattering in this overlapping multiband system. Howev-
er, the latter process involving the q phonon mode is
forbidden because the final electron state scattered by
these phonons is already occupied. This is the reason
that the interband scattering response function X'1 [Eq.
(3.19)] only has one singularity of the logarithmic diver-
gence at q;1+=kF+kf, =ala. Thus, a two-band overlap-
ping system has three types of scattering processes; two
of them are caused by intraband scattering (X and ir ),
and the other is due to interband scattering (X or X ).

As an analytical expression for XI)» T) can only be ob-
tained for T =0 K, we will hereafter numerically calcu-
late the intraband and interband scattering response
functions [Eq. (3.13)] using the overlapping two-band
model (Sec. IIB). In these numerical calculations, the
infinite integral over k can be reduced to the finite in-
tegral near the Fermi surface because of the character of
the Fermi-Dirac distribution function,

Thermal fiuctuation in the distribution is introduced in
terms of gT-(kaT)'t2. Moreover, we decomposed the
above finite integral into several parts [Eq. (3.21)], paying
attention to the divergent character of the integrated
function at q = —kz,

kr+&r -kF —
&T

—k~+ g'T

dk ==- dk+ dk

E+ T

Numerical calculations have been carried out using the
adaptive Newton-Cotes nine-point rule.

C. Electron-phonon coeylimg for the Overlapping
meltlbael system

Electron-phonon coupling constants g'J (i,j =sr, n )
should be determined in order to calculate the phonon
frequency Q» of Eq. (3.11) numerically. We estimated
these values by using the deformation-potential approxi-
IBStion.

In the deformation-potential representation, the
electron-phonon interaction 8, p„ is
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'-"=&& 2M'

x In'(J, .)e'q'dr'

j q I

1/2

'(eq'q)Qqpq .

p"= n(",.)e'q'dr'
q

'1/2 ~ (e . )
:"'Js((q) ) I (bq+b q)

(u)q)

(3.22)

electronic states,
I ak &, I

(rk &, I
m.

k &, and
I

mk. &.

Let directions k and k' be in the X and X' directions of
the coordinate systems (X, F„Z) and (X', F',Z'), respec-
tively. When (I) and 8 are the azimuthal and polar angles
of k' with respect to coordinate system (X, F,Z), spatial
and spin coordinates have the following relations:

X cos8 sll18 cos(t) S1118sin())) X
F' = —sin8 cos8 cosg cos8 sin(t) F
Z' 0 —sin(t cos8 Z

(3.30)
e '~ cos(8/2) e'~~ sin(8/2)
—e '&~ sin(8/2) e'&~ cos(8/2)

=C,"+kct =P'qjlg, )' (k'=k+&) (3.23)

lJ ~JJ 1

I
i{eq q)lap t'v

and p q
is the qth Fourier component of the electron den-

sity between the ith and jth bands having spherical orbit-
al symmetry. The difFerence between intraband and in-
terband scattering due to Cqj+k Ct can be represented in
terms of an overlap integral Sg, s„. This integral means
the overlap between initial state

I
k & and final state

I

k'
&

and depends on the orbital symmetry. Therefore, the
collpllllg collstailt g J lncllldlllg spill states is expressed 111

terms of the deforlnation potential:- js(q},
" 1/2

Since the one dimensionality of the considered system in-
troduces 8=m and ()I)=0, the resulting relations are
rewritten as

Z Z

(3.31)

Therefore, the initial ( I Irk & and
I (r), &) and final (

I mk &

and
I (rk &) states are given for polyalkylsilene as

=f @1k' k'v {3.24) Ilk p&- 1~x) &=
I qrx&IJ (x=~«»

The reduction term of the phonon frequency Qq due to
the electron-phonon coupling is rewritten as

(3.25)

The sum over spin states (p and v) is rewritten as

g I
g'"'"

I
'=-'{

I
g'"'

I
'+

I
g'"'

I

'+
I

g'"'
I

'

I ok u&- Io'r)(l&= Ior&j(I

l~„&-C. I3s, &+c. I3s, &,

1~k ( &- l~ x w&= 1~x&s

I ok )I&-
I

I r)(l&= I(rr&u

(3.32)

{
I
~-x&=

I ~x&) .

&~r l~r&=&~x 1~x&=1

The normality and orthogonality of the basis causes

+
I

g'"' I')= lf" I'G" (3.26) (3.33)

with

Gkqk (=k+q) =I'( Ilk&' I'+ Ilk)'" I'+ lI'"' I' The resulting intraband and interband overlapping func-
tion O'J are given as

+ I

y'l((l'
I
I)

Therefore, the resulting reduction term is

X I gqJ
I
'x(', , »&Qq &=& I

I' 'q I'Gk'k &I',, »&Q, & .

(3.27)

Gkk' Gkk' Gkk'

for intraband scattering, and
(3.28)

Gkk' Gkk' Gkk' (3.34)

For a qualitative discussion, we estimate values of
overlap functions O'J for the special case of

(kF) (3.29)
2&k ~

That is, the o band just connects to the m band. At T =0
K, phonons cause transitions between the following four

for interband scattering.
When the o band goes down toward the @band (reduc-.

tion in S,), the positions of the Fermi wave numbers (k~
and k)) vary from those at the symmetric points {I and
X}to the appropriate positions on the 5 axis in the Bril-
louin zone (Sec. IIB}. Nonorthogonal components be-
tween two bands are hybridized in

I
ok& and

Ink�&
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states. However, the intraband overlap function GI",k

conserves the value of unity and the interband overlap
function G/Jk. also conserves the value of zero as long as
the chain symmetrically hybridizes nonorthogonal com-
ponents. This means that the orthogonality of overlap-
ping bands tends to favor the intraband scattering rather
than the interband scattering.

these values by the interpolation of two results at symme-
try points I" and X, when the skeleton bond angles hy-
pothetically extend from a tetrahedral angle to 120 . The
dilatation ratio along the skeleton axis (5& ) is 0.06 by this
skeleton deformation. The resulting deformation poten-
tials for (SiH) and (SiMe)„are given in Table II.

i
LEE (kg) i

=-".r(kF ) = (3.35)

for intra-n-band scattering,

gy0(k. )
I F

(3.36)

for intra-cr-band scattering, and

(3.37)

D. Deformation potentials in polyadkyllilene

I.et us estimate the deformation potential of polyalkyl-
silene. In polyalkylsilene, it would be possible to treat
lattice displacements due to phonons as changes in bond
angles rather than changes in bond lengths because of its
covalency. Since conduction electrons in both cr and m

bands are delocalized along the skeleton axis; only such
lattice displacements toward the skeleton axis are allowed
to couple with those electrons in the overlapping CB
states of polyalkylsilene. The reason is that the phonons
interacting with electrons must be in their longitudinal
modes within the N process. These displacements can be
also simulated by varying the skeleton bond angles.

Changes in electron-energy eigenvalues are strongly
dependent on the degree of orbital overlapping. Inter-
atomic overlappings due to Si 3p„AO components in the
0 band are signiScantly afFected by this skeleton deforma-
tion. On the contrary, corresponding interatomic over-
lappings in the rr band are hardly influenced, because 3p,
AO's in the rr band have a spherical symmetry in this
variation in the skeleton bond angle. This results in
larger changes in the former energy eigenvalues. The re-
sulting intra-0-band deformation potentials, " s, are ex-
pected to be greater than =,~.

The deformation potentials "'~z are deSned as

A. Phonon softening

As mentioned in Sec. III 0, lattice-skeleton atom dis-
placements towards the skeleton axis generate important
phonon modes for electron-phonon coupling, although
phonon modes relating to side groups do not. Analogous
longitudinal-phonon modes are also generated in a hnear
lattice chain, which is formed by hypothetically extend-
ing skeleton bond angles of transplanar polymers to 180'.
Therefore, we describe the phonon dispersion w without
side groups in terms of the linear lattice model (Si
skeleton). We also include two skeleton atoms in the unit
cell of such a linear lattice model, because the transplanar
zigzag chain (821, or C2&) has two skeleton atoms in its
unit cell. Phonon frequency w~ for this Si skeleton is
then given by

I 12[1—sin2(qa /2)]'~~I2

=(msok )2j 1+[1—sin2(qa /z)]'~~
) .

The next problem is to estimate the ~alue of wo". A
transplanar zigzag chain can be found in the (110) plane
of the diamond-type Si crystal. Each Si-skeleton chain in
the crystallized Si has Si side groups, which are them-
selves to become skeletons of other Si chains. Thus, each
skeleton chain connects to a Si tetrahedral network via
bindings of Si side groups. However, for phonon modes
towards the [110]direction, each Si skeleton vibrates in
phase with respect to other Si skeletons. This means that
Si-network side groups do not affect the Si skeleton arid
that the phonon frequency of the transplanar zigzag Si
skeleton can be estimated from that of crystallized Si to-
wards the [110]direction. Using this information, mok of
Eq. (4.1) can be given as follows,

for inter-o -m-band scattering. Since electrons couphng
with phonons are near the Fermi surface of each band,
changes in energy eigenvalues hE'(q) should be estimated
at the corresponding Fermi points kF. We determined

' 1/2
sk +2~ sk [ l 10)

with

Q =QC] )

(4.2)

SiH
SiMe

Intra-cr-band
:"~ (e~)

Intra-m-band
:-,I (e'[)I')

0.67
0.83

Inter-o-m -band
",I (eV)

5.5
4.0

TABLE II. Calculated intraband and interband deformation
potentials for (SiH), and (SiMe) .

Here, a is the lattice constant of Si diamond-type crystal
and c» is the elastic constant.

Vixen H atoms connect to the Si skeleton, H side
groups seem to move in phase with respect to the
skeleton Si because of the lightness of the H mass and
tight binding to the skeleton. In this case, the effective
skeleton mass can be used to take account of the
inhuence of 8 side groups. The phonon frequency is then
reduced as
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Ms;

Ms;+MB
Sk

U)0

Since C side groups tightly bind to the Si skeleton
[Es' H =294.6 kJ/mol and Es' c=290 kJ/mol (Ref. 11)],a
similar treatment would be apphed for (SiMe),

' l/2~s
Ms;+Mc

SiMe
No (4.4}

(4.5)

because the one dimensionahty of the overlapping bands
results in the relation of kg=ad/a —kF. Therefore, cou-
pled phonons having q are equivalent to those having q
and vice versa. This means that in a one-dimensional sys-
tem with a band-overlap structure, two characteristic in-
traband Peierls instabilities are not independently but

The band overlapping causes a characteristic phonon
softening thai would not appear in the single-band struc-
ture. Figure 5 shows an example of phonon softening,
provided that m „' =0.8 and m ' =1 and that the ratio be-
tween the intraband and interband electron-phonon cou-
pling constants (g;„„,/g;„„, ) is 0.5. Three types of
scattering processes cause three Kohn anomalies at the
corresponding wave vectors of q =2k', q =2kF, and

q =kg+kz ——n. /a, respectively. In the above condi-
tion, a single giant Kohn anomaly with Q~ =0 is seeming-

ly produced by intra-o-band scattering. However, this
single giant Kohn anomaly at q causes not only a
charge-density wave (CDW) having an incommensurate
wave number of q (o CDW), but also that having an in-

commensurate wave number of q (n CDW). The reason
is that there is an intrinsic relation between the incom-
mensurate cr CDW and the incommensurate n CDW in
the one-dimensional overlapping bands.

Coupled phonons due to the intra-o-band scattering
(q =2kf ) relate to those due to the intra-ir-band scatter-
ing (q =2kF) as

simultaneously generated, even when one of the two types
of phonon modes (q or q ) starts to be singly softened.
After the simultaneous opening of' two Peierls gaps, the
resulting system changes to an insulator.

The one dimensionality of the overlapping bands also
results in that the interband-o-m scattering generates a
commensurate CDW (era CDW}. This commensurate
CDW (q =kf+kF) is produced by a dimerization of
two skeleton unit cells and opens two Peierls gaps in both
0 and m bands. The resulting system also becomes an in-
sulator.

8. Metal-insulator Peierls transition

Figure 6 shows a M-I phase diagram of (SiH)„at room
temperature. The values for intraband overlap functions
6" are assumed to be equal (6 =G }. Band overlap-
ping in the one-dimensional system causes two intraband
scattering processes (intra-o -band and intra-m-band
scattering) and one interband scattering process (inter-cr-
ir-band scattering). These multiple-scattering processes
produce three corresponding M-I transition lines. Thus,
Sve "subphases" are seemingly able to appear in a
polysilene phase diagram at room temperature (see Table
III}.

The following is a detailed discussion of five apparent
subphases. In subphase I the smallness of the overlap
functions for both intraband and interband scatterings
eS'ectively reduces the corresponding electron-phonon
coupling constants. Although Kohn anomalies due to
mtra-o- and m-band and inter-cr-m-band scattering are
found, no static lattice displacements appear. Conse-
quently, the system still remains metallic in this subphase
I. In subphase II the electron-phonon coupling between
o' electrons and q phonons is strengthened and an in-

I P ~ 1 + I r ~ r ~

&=0.3K

V
K line

5 fine

~ . & a a s s I a t s I

FIG. 5. Calculated phonon softening of (SiH)„, T=0.3 K, by
extended Brillouin-zone representation. a.u. are atomic units
With 'tl = 1, Nlo= 2, Rl1Ci 8 =2.

FIG. 6. Phase diagram for (SiH)„as function of intraband
(6") and interband (O'Jw overlap functions. Solid lines are re-
suiting M-I transition lines. Subphase characterization is given
in Table III.
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TABLE III. Character of resulting Sve subphases expected in polysilene at 300 K. Symbols "inc,"" om, *' "M,"and "I"indicate "incommensurate, " "commensurate, " "metal, "and "insulator, " respec-
tively.

corn. or inc.
Peierls

gap

Metalhc
electrons

con
inc
con
mc

inc
co81

P )P
P,P

P
P

commensurate CDW (o CDW, equivalent to If CDW)
appears. This o CDW opens Peierls gaps not only in the
cr band but also in the If band (Sec. IV A). As the width
of the Peierls gap depends on the degree of electron-
phonon coupling, a Peierls gap in the o band (P ) wider
than that in the If band (P }can be found in subphase II.
The resulting insulator gap is attributed to the narrow I'
gap (Fig. 7). In subphase 111 the inter-o -n.-band scatter-
ing produces a commensurate CDW (off CDW) with
q =k~+kF If/a b——ut does not produce an incommens-
urate CD%. This commensurate CD% simultaneously
opens Peierls gaps both in o and If bands, and the system
also becomes an insulator. '2 The resulting band structure
is shown in Fig. 8. Subphase IV and V are insulators,
which have also Peierls gaps in the 0 and m bands. The
incommensurate CDW (tr CDW equal to If CDW) and
the commensurate CDW (ere CDW) compete in these
subphases (IV and V). Since polyalkylsilene has a much
larger intra-o-band coupling constant (:-g) than its
intra-If-band coupling constant (:-,lf) (Sec. III D), the re-
sulting intraband M-I transition line is characterized by

/
rr r
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that due to intra-cf-band scattering (g line). The final
M-I transition line due to intraband scattering is then re-
duced to the cr line in polyalkylsilene. Thus, at room
temperature, polysilene might have the capability of four
subphases, divided by the intraband M-I hne (Ir line} and
the interband M-I line (Irtf line).

For the ideal polysilene having a highly symmetry (D21,
or C21, ), the normality and orthogonahty between the o
and If bands guarantee 6"=1 and 6"=0. Here, we as-
sume that 6'j is zero, a value precluding interband
scattering, and investigate the influence of intraband
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FIG. 7. Illustration of resulting Peierls-gap structure caused
by g CD%.

FIG. 8. Illustration of resulting band structure caused by di-
Incflzatlon of two lllllt cells [1.c., gcllcfatlllg comnlcnsllfatc
Pcicfls instability (o If CDW)].



THEORETICAL POSSIBILITIES FOR THE PEIERLS INSTABILITY. . .

y

I
a I a ~

[
& t ~

IH

9~2kF
CON

I
, &-Pelerls gap

a a I. . . a l

0.5

FIG. 9. Phase diagram of (SiH), at 300 K, as function of
intra-o-band (6 ) and intra-m-band (6" ) overlap functions.
Solid lines also correspond to M-I transition lines. *located at
top right-hand corner means the position for ideal polysilyne
having D2& symmetry with 6"=1and 6"=0.
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FIG. 10. Corresponding phase diagram of (SiMe)„, as func-
tion of intra-o-band {6 ) and intra-m. -band (6 ) overlap func-
tions.

scattering on the M-I transition by varying values for in-
traband overlap function 6" (6 and 6 } as parame-
ters.

Figure 9 shows the M-I phase diagram of (SiH)„at
room temperature. (SiH}„has the following three sub-

phases. Metallic electrons in 0 and m bands make sub-

phase I a metal. In subphase II the incommensurate cr

CD%', equivalent to m CD%', is generated. Therefore,
two Peierls gapa open in the n band as weB as in the a
band. Subphase III is also an insulator phase with the

-k+
F F P

kF

FIG. 11. Illustration of Peierls gap structure caused by m

CD%, as a function of degree of band overlapping.

presence of the incommensurate n (cr ) CDW.
In real polymers, the reduction in symmetry due to

thermal skeleton winding decreases the value of the intra-
band overlap function 6" from unity and increases that
of the interband one, O'J„ from zero. Although these ran-
dom windings render the position of the real polymer am-
biguous in the phase diagram, the corresponding position
would seem to close to the resulting M-I transition zone,
approaching along a line with a unit slope (6 /6 =1)
from the ideal position (see* in Fig. 9). The reason is
that amount of reduction in 6"would seem to be equal in
the cr and n bands. Therefore thermal skeleton winding
might play a role of the suppression for Peierls M-I tran-
sition.

We now consider the in6uence of side-group methyla-
tion. The M-I phase diagram for (SiMe)„ is given in Fig.
10. (SiMe)„has four subphases. Three of these sub-
phases, I—III, are similar to those in (SiH)„. Since the
intra-n-band deformation potential of (SiMe)„ is greater
than that of (SiH}„,a novel subphase IV appears. In this
subphase an incommensurate n.(o ) CDW is generated
and Peierls gaps are opened in the o. band as well as in
the m band so as to transit the system to an insulator.
However, the details of the Peierls-gap structure are
diferent from those subphase II and depend upon the de-
gree of band overlap (see the Appendix). This subphase
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IV tends to extend with lowering temperature because of
the narrowed subphase II.

The side-group methylation produces the following
two features. One is a change in the deformation-
potential values. The side-group substitution from an H
atom to a Me group reduces all of the deformation poten-
tials (:- JIt, i,j =tr, m ) except for = s. These reduced de-
formation potentials weaken the corresponding electron-
phonon couphngs. This causes the comparative exten-
sion of the metallic phase. The other in6uence is an addi-
tional one, which appears in the overlap functions via
thermal rotation of side groups. The random rotation of
Me groups easily reduces the symmetric character of the
polymer and then nonorthogonal AO"s are nonsymmetri-
cally admixtured. Similar to the thermal skeleton vvind-

ing, this thermal side-group rotation decreases the value
of G" from unity and increases that of G'J from zero.
However, this nonsymmetrical admixture, of nonorthog-
onal AO's cannot occur for H-atom side groups because
ls AO's of H atoms have a spherical symmetry about
side-group rotation. Therefore, methylation might
enhance the metallic character of (SiMe)„over that of
(SiH)„.

(A 1)

intruding o. states are formed in the resulting wide Peierls
gap of the n band (P ) [Fig. 11(a)]. Therefore, the result-
ing insulator has a gap P in addition to the normal
Peierls gaps of P and P . The increases in the band
overlap (i.e., reduction in 6) decrease the width of the
gap P and the occupied o states tend to delocalize.

If the following relation is satisfied by increasing the
band overlap,

the wider gap of P is just covered by a tr-band state with
a narrow gap of P [Fig. 11(b)]. The resulting insulator
seems to have a narrow gap of P . However, the elec-
tronic character of the occupied states semimetallically
changes from the sr-like one to the tr-like one at E=h.

When these two bands overlap strongly, and they
exceed the following condition,

We would like to express our thanks to Dr. T. Ohno,
Dr. Y. Tokura, Dr. N. Matsumoto, Dr. A. Sugimura, and
Dr. K. Sugti for their fruitful discussions.

fi2
(kt;) —A,„)b, ,

2ppl ~
(A3)

Let A, „be the energy lowering of the sr band due to the
Peierls-gap opening. In the case of

an insulator having a narrow gap of P results. In the
valence states below b„o electrons and sr electrons de-
generate in this case [Fig. 11(c)].
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