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We present a theoretical calculation of the properties of the fcc, high-pressure structural phase of
Si. The electronic and phonon properties have been studied and we predict the system to be a free-
electron-like metal with a very stiff lattice. In addition, we estimate the superconducting transition
temperature to be approximately 2 K based on calculations of the electron-phonon coupling con-
stant A. Comparisons are made with the results of previous calculations for Al

I. INTRODUCTION

In recent years, the high-pressure behavior of silicon
has been studied extensively both experimentally! =3 and
theoretically.*~® Silicon undergoes a series of structural
phase transitions with pressure: cubic diamond (CD) to
B-Sn, to simple hexagonal, to hexagonal close packed, to
face-centered cubic. These transitions are observed at
pressures of approximately 10.6 (CD—f-Sn),"? 14.8 (8-
Sn—sh),? 38.5 (sh—hcp),"? and 78.0 (hcp—fcc) GPa.’
The existence of hcp and fcc silicon was anticipated
theoretically’ and the theoretical calculations have been
successful in reproducing the observed sequence of pres-
sure induced phase transitions. In addition, the electron-
ic, vibrational and superconducting properties of the
lowest three compressed phases have been investigated.
All the compressed phases have been found to be metal-
lic, and in fact, theory successfully predicted®’ that the
hexagonal phases would be superconducting with transi-
tion temperatures in the range of 3—9 K. The B-Sn phase
had been observed to be superconducting earlier.?

The calculations in this work are based on an ab initio
pseudopotential total energy scheme.’ The results of pre-
vious studies’ using this method to investigate the
pressure-induced structural phase transitions in Si are
shown in Fig. 1. The calculated total energies of Si in
different crystal structures as a function of volume is fit to
Murnaghan’s equation of state!® and plotted. Since the
CD phase has the lowest minimum total energy, it is the
most stable phase of silicon at ambient pressures. As
pressure is applied, the volume decreases, and the transi-
tion to the 5-Sn phase occurs along the common tangent
line between the CD and B-Sn curves. The transition
pressure is the negative of the slope of the tangent line.
This method yields transition pressures and volumes to
within 10% of the measured results for the CD —S-Sn,
B-Sn—sh, and sh—hcp transitions. For the transition
from hcp to fcc, there is a somewhat larger discrepancy
between experiment and theory for the transition pres-
sure. While experimental results find that the transition
occurs at 78 GPa, theory predicts a transition pressure of
116 GPa. Transition volumes agree, however, to within a
few percent.

37

In this paper, we present the results of theoretical cal-
culations of the properties of Si in the fcc phase. In the
following sections, we first give a description of the calcu-
lational methods used in this study (Sec. II). In Sec. III,
the results of the calculations for the electronic and pho-
non properties are presented. In addition, we discuss the
electron-phonon interaction and superconductivity in fcc
Si. The system is predicted to be a free-electron-like met-
al which becomes superconducting around 2 K. Finally,
some concluding remarks are made in Sec. IV.

II. CALCULATIONAL METHODS

Since the calculational methods used are described
elsewhere, we include only a brief discussion here. The
method used is based on an ab initio pseudopotential to-
tal energy approach,” where the Si pseudopotential is
generated using the atomic number as input. The
structural and electronic properties can then be comput-
ed directly within the local density functional approxima-
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FIG. 1. Calculated total energy as a function of volume for Si
in various crystal structures. The volumes are normalized to
Vep, the calculated equilibrium volume in the cubic-diamond
phase. The dashed line indicates the path of the pressure-
induced transition from the diamond to the B-Sn phase.
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tion. The pseudopotential used was previously tested and
found to be successful in predicting the ground-state
properties of Si.* The vibrational spectrum and the
electron-phonon coupling are evaluated with the frozen
phonon method used in conjunction with supercells.!!
For all of these calculations, the only input needed is
atomic information, i.e., atomic mass and atomic num-
ber.

The superconducting transition temperature is calcu-
lated from the McMillan equation.'> The parameter A
appearing in that equation is the Brillouin zone average
of the wave-vector-dependent electron-phonon coupling
parameter, A4, which in turn is the sum of the branch-
dependent parameter, Ay,, over all phonon branches v.
The function A, is related to the Fermi surface average
of the electron-phonon matrix element as follows:

) ( |g(nk,n'k’,qv)|*)
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Agy=2N(0 (1)
where N(0) is the electron density of states at the Fermi
level, g, is the phonon frequency corresponding to the
wave vector q and branch v, and (( |g | %)) denotes a
Fermi surface average of g. The standard definition of
the square of the electron-phonon matrix element is
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where M is the atomic mass, Qp; is the volume of the
Brillouin zone, ?qv is the phonon polarization vector, ¥2,
is the Bloch wave function of the state k in band n for the
undistorted crystal, and 8V /8R is the self-consistent
change in the crystal potential caused by the phonon dis-
tortion. We note that the function Ay, can be related to

the phonon linewidth, Y v since
Yor=2mwg, |g |2HN*0) . 3)

In our calculations the crystal potentials, total ener-
gies, and electronic wave functions are computed self-
consistently both for the perfect crystal and for the crys-
tal distorted by a frozen phonon. The atoms in the dis-
torted lattice are positioned according to

R,;=R{+ugsin(q'R})) , €Y

where R/ is the equilibrium atomic position and u,, is the
phonon displacement vector. Typically, the amplitude of
the displacement vector is chosen to be a few percent of
the lattice constant.

Phonon frequencies are extracted from the difference
in total energy of the distorted and undistorted lattices.
The change of potential caused by phonon distortion
which appears in the expression for | g | 2 is replaced by

v _Yo—Vo

SR 7 (5)

qv

where ¥, and Vg, are the self-consistent potentials calcu-
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lated for the undistorted and distorted crystals, and #, is
the root-mean-square phonon amplitude. We use super-
cells where the phonon wave vector is commensurate
with the original undistorted lattice, i.e., nq=G, where
G is a reciprocal-lattice vector of the undistorted lattice.
This maps the state k' +q back to k, and thus eliminates
the & function in Eq. (2). Gaussian broadening of the §
functions involved in the Fermi surface averaging of g is
employed to ensure good numerical convergence.

In the present calculations we have computed contri-
butions to A from three directions: [100], [110], and
[111]). In particular, the wave vectors used are
q=(27/a)(1,0,0)a, (27 /a)(1,1,0)a, and (7w/a)(1,1,1)a,
with a=1,2,1,1. The corresponding supercells contain
2, 3, 4, and 6 atoms, respectively. The Brillouin zone
average of A is obtained by performing a spherical aver-
age along each of the three calculated directions and then
taking the average of the results, with the symmetry of
each direction taken into account.

III. RESULTS AND DISCUSSION

All of our calculations are done on Si in the fcc struc-
ture at the transition volume and pressure predicted by
Chang and C9hen.5 This corresponds to a lattice con-
stant of 3.32 A and a volume of 62% of the equilibrium
fcc volume, ie., 62% of the volume at which the
minimum occurs on the total energy curve for the fcc
structure. Although the calculated transition pressure is
considerably higher than that found in experiment, the
calculated transition volume agrees well. At this point,
we are not able to explain this discrepancy.

The calculations of the electronic properties of fcc Si
indicate that the system is highly free-electron-like. The
band structure and density of states are illustrated in Fig.
2. The Fermi level lies at 19.45 eV. The density of states
was calculated using the tetrahedron method, and Fig. 2
shows that it follows the free-electron model very closely.
The value of the density of states at the Fermi energy is
calculated to be 4.0 states Ry~ !atom™!, while the free-
electron model yields 3.9 states Ry ~!atom .

The valence charge density in the (100) plane is plotted
in Fig. 3. It is useful to compare this to the charge densi-
ty in other fcc metals. In particular, the fcc Si charge
density looks qualitatively similar to that of AL'* Since
Al exhibits free-electron-like behavior, the similarity of
charge densities provides more evidence for the free-
electron character of fcc Si.

It is interesting to examine how the electronic proper-
ties of Si change as it undergoes the series of pressure-
induced transitions. In the CD phase, Si has strong co-
valent bonds. As pressure is applied, the covalent bonds
coexist with metallic bonding in the 8-Sn and sh phases.
Finally, in the most highly compressed phase (fcc), all the
covalent character is suppressed, resulting in a free-
electron metal. It is striking to compare the structurally
similar CD and fcc phases, since one is the textbook ex-
ample of covalent bonding while the other exhibits free-
electronlike metallic bonding. This illustrates how pres-
sure can destroy strong s-p> covalent bonding and force
bond charge into interstitial sites resulting in metallic
character.
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FIG. 2. Calculated band structure and density of states for
fcc Si. The Fermi level is indicated by the horizontal dashed
line. The dotted curve marks the free-electron density of states
(~E'72).

FIG. 3. Calculated valence charge density of fcc Si in the
(100) plane. The units are in electrons per unit cell, hence 4.0 is
the average density. The contour step is 0.5 electrons per unit
cell. The crosses mark the locations where the charge density
reaches it maximum value of 4.76 electrons per unit cell.
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FIG. 4. Phonon frequencies as a function of q. The dashed
lines are drawn through the calculated points to guide the eye.
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The calculated phonon spectrum in the [100], [111],
and [110] directions is displayed in Fig. 4. Comparison
with the spectrum of Al (Ref. 14) reveals that the disper-
sion curves are very similar in shape, but that the Si fre-
quencies are higher than those of Al by a factor of 2. The
large frequencies found in Si can be explained by the fact
that we are considering a highly compressed state with a
volume of 62% of the equilibrium fcc volume. If Si were
stable in the fcc structure at the equilibrium volume, we
would expect the frequencies to be close to those of Al
because the two systems have comparable atomic masses
and similar electronic structure. Compression, however,
stiffens the Si lattice and thus leads to the higher-energy
phonon spectrum.

The large phonon frequencies result in a large velocity
of sound. The longitudinal velocity of sound is estimated
to be 10® cm/sec. The bulk modulus, which can be calcu-
lated both from the velocity of sound and from
Murnaghan’s equation of state, is found to be 5.0 10
GPa. For comparison, the material with the largest bulk
modulus at ambient pressures is carbon in the diamond
phase. Its bulk modulus is 5.5 X 10> GPa.

The calculated values of the wave vector dependent
electron-phonon coupling constants are tabulated in
Table I, and the phonon linewidths are plotted in Fig. 5
The behavior of A,, in each of the three directions is simi-
lar, justifying to some extent our spherical averaging pro-
cedure. The decreasing behavior of A, as a function of ¢
can be explained by examining Eq. (1) within the free
electron model. In that case, the electron-phonon matrix
element is a function of (q,v) only, and its Fermi surface
average can be factorized as follows:

(g |N=18(qv) | (Qp8(k—k —q))) . (6)

The first term gives the strength of the matrix element,
while the second measures the degree of Fermi surface
nesting. Within the free-electron model with a spherical
Fermi surface and Thomas-Fermi screening, |g |? is
proportional to qz/qu for small ¢, and the nesting
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FIG. 5. Phonon linewidth as a function of q. The solid lines
indicate the results from the free-electron model using a spheri-
cal Fermi surface and Thomas-Fermi screening. The dashed
lines are drawn through the calculated points to guide the eye.
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TABLE 1. Calculated values of Ay, and A,. The two trans-
verse modes are degenerate in the [100] and [111] directions.
The polarization vectors for the nondegenerate transverse
modes in the [110] direction at ’e‘rl=(0,0,1) and

ér,=(1,— 1,0)/V2.

a }\'L }hrl )\.T2 A.q
[100] direction

% 0.16 0.19 0.54

i 0.13 0.13 0.39

% 0.11 0.10 0.31

1 (X) 0.09 0.10 0.29
[111] direction

% 0.19 0.26 0.71

-;— 0.14 0.16 0.46

% 0.11 0.12 0.35

1 (L) 0.10 0.10 0.30
[110] direction

% 0.14 0.12 0.11 0.37

% 0.10 0.09 0.07 0.26

2 0.08 0.08 0.07 0.23

1 (X) 0.10 0.09 0.10 0.29

function varies as 1/q. Therefore, from Eq. (1),

Ay~ (1/0)g*/0)(1/9)~q /w*. Since ®~q for small g,
we expect that in a free-electron-like metal, A~1/g for
small g. Figure 5 shows that the free-electron model
yields phonon linewidths close to the self-consistently cal-
culated values for the longitudinal branches in the [100]
and [111] directions. Since the simple free-electron mod-
el used does not include umklapp scattering processes, it
is not valid for the transverse modes.

In comparison with Al (Ref. 14), the values of A, for
fcc Si at the zone boundaries are similar, but within the
zones, A, is considerably smaller in Si. This is probably a
result of the pressure induced stiffness of the Si lattice un-
der consideration. After spherical averaging, however,
we find A=0.31, which is only slightly lower than the
value for Al. This is because the phase-space volume
weights A towards the zone boundary values.

Our calculations indicate that fcc Si is a superconduc-
tor. In order to calculate the superconducting properties
using the McMillan equation, we need, in addition to the
quantities already discussed, the Debye temperature and
the Coulomb interaction term pu*. The Debye tempera-
ture is estimated by using the known value for Al scaled
by the maximum longitudinal acoustic phonon frequency
in the [100] direction. This yields a value of T, =859 K.
To estimate u*, we use the Bennemann-Garland empiri-
cal equation'® which gives u* as a function of the density
of states. This relation scales u* with the renormalized
density of states, N /(1+N). Scaling from the density of
states of Al and using the u* which produces the ob-
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served T, in Al, we find that pu*=0.06 for our system.
The McMillan equation then yields a transition tempera-
ture of 2.0 K.

Since the transition temperature depends exponentially
on A and u*, T, is very sensitive to small changes in ei-
ther of these parameters. The dominant dependence,
however, is through A—pu*, so it is sufficient to examine
the sensitivity of T, to changes in A alone. To estimate
the uncertainty in the calculated transition temperature,
we vary the value of A by £15% and estimate the result-
ing changes in 7,. For A=0.26, we get T, =0.6 K, and
for A=0.36, we get T, =4.3 K.

The calculated transition temperature of 2.0 K is com-
parable to that of Al (1.2 K) at ambient pressures. The
stiffness of the Si fcc lattice gives a higher Debye temper-
ature, but at the same time, lowers A slightly. These two
effects appear to cancel, giving a T, comparable to Al
On the other hand, this T, is somewhat lower than those
found in the less compressed metallic phases of Si. For
example, the sh phase is found to be superconducting
with a T, of up to 8.2 K. The lower T, in the fcc phase
can be attributed to the smaller A in that phase, which, in
turn, can be accounted for by the higher-energy phonon
spectrum.

IV. CONCLUSIONS

We have done an ab initio pseudopotential calculation
within the local density functional approximation to ex-
plore the metallic fcc phase of highly compressed Si. The
calculation shows that the material exhibits free-
electron-like behavior similar to Al, and therefore Si pro-
vides a good example of how the application of pressure
can destroy covalent bonds. The calculated phonon spec-
trum has high energy modes indicating a very stiff lattice
with a large bulk modulus comparable to that of dia-
mond. The electron-phonon coupling in this system has
also been studied, and we predict that the material is a
superconductor with a transition temperature near 2 K.

We hope that this work leads to experimental studies
on fcc Si. The necessary pressure range of 100 GPa is
now attainable in diamond anvil cells. Further experi-
mental work will serve not only to check our predictions
related to superconductivity, but also to explore the nor-
mal state properties of this interesting system.
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