PHYSICAL REVIEW B

VOLUME 37, NUMBER 11

Electronic properties of a realistic model of amorphous silicon

S. K. Bose, K. Winer, and O. K. Andersen
Max-Planck-Institut fiir Festkorperforschung, Heisenbergstrasse 1,
D-7000 Stuttgart 80, Federal Republic of Germany
(Received 14 August 1987)

We present the results of a first-principles calculation of the electronic density of states for a
large, realistic model of amorphous silicon (a-Si). The structural basis of the calculation is a 216-
atom, fully-fourfold-coordinated model of a-Si with periodic boundary conditions, whose pair-
correlation function, average geometric distortions, and vibrational properties are in good agree-
ment with experiment. The calculation is carried out by using the recursion method in conjunction
with the tight-binding linear muffin-tin orbitals scheme in its simplest form. To assess the accuracy
of our results, we apply the method to a crystalline silicon cluster and obtain a density of states simi-
lar to that obtained with the conventional Brillouin-zone summation method. The valence-band
density of states calculated for the a-Si model shows good overall agreement with that measured for
a-Si by x-ray photoelectron spectroscopy. The Si 3p valence-band peak is found to shift by 0.5 eV to
lower binding energy compared with its position in the crystal, and the Si 3s and “s-p” hybrid bands
of the crystal merge into one broad band in the amorphous model. We examine the local density of
states of several atoms in the center of the cluster and the charge content of the corresponding
atomic spheres to determine the effects of geometric distortion on the density of states and the de-
gree of local distortion-induced static charge transfer. The rms static charge deviation is 0.14e,
which is in good agreement with the experimental value of 0.11e. We find that neither particular
features in the local densities of states nor the charge deviations from the mean of atoms in the
center of the a-Si unit cell are correlated with the surrounding local geometric or topological distor-
tions. Sharp peaks in the spectral functions of the a-Si model indicate remnants of the E-k disper-
sion relations for both s- and p-like states near k=~0. The peaks broaden for larger values of k, in
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agreement with the dispersion behavior in disordered semiconductors suggested by Ziman.

I. INTRODUCTION

Amorphous silicon (a-Si), the prototypical disordered
semiconductor, has been the subject of an extensive
amount of experimental as well as theoretical investiga-
tion. Not surprisingly then, the electronic structure of
a-Si has been studied with a variety of theoretical
methods.!~!® In addition to qualitatively reproducing
the experimentally measured electronic density of
states,!! ! theoretical studies have attempted to provide
some understanding of the changes in the electronic
states caused by disorder. Ziman! has argued that a
small amount of disorder might considerably effect the
top of the valence band, but leave the bottom part un-
changed. Weaire? and Weaire and Thorpe® have shown,
based on a simple model Hamiltonian, that an energy gap
could persist in the amorphous state as a result of short-
range order. Kelly and Bullett,* using an extended form
of the Weaire-Thorpe Hamiltonian, calculated the elec-
tronic density of states for various topologically distinct
models of a-Si and thus were able to study the effect of
the ring structure on the electronic density of states.
Joannopoulos and Cohen® studied the electronic struc-
ture of silicon polymorphs and determined that fivefold
rings were responsible for the filling up of the deep mini-
ma between the valence-band peaks in a-Si. A qualitative
study of the effects of various types of disorder (bond-
length and angle variations, dihedral angle variations,
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and the presence of oddfold rings) was carried out by
Cohen, Yonezawa, and Singh’~° using model tight-
binding Hamiltonians. Singh’ found the effects of topo-
logical and dihedral angle disorder to be the most pro-
nounced. Joannopoulos,'® in an earlier study using the
cluster—Bethe-lattice method and nearest-neighbor in-
teractions, found bond-angle disorder to be more impor-
tant than bond-length disorder in determining the elec-
tronic structure of the clusters.

Although much is known concerning the nature of the
electronic states in disordered tetrahedrally bonded semi-
conductors, calculations of the electronic properties of
amorphous silicon based on large, realistic structural
models and accurate first-principles Hamiltonians are
still needed. The qualitative effects of disorder that have
been examined on the basis of model Hamiltonians can
then be quantified and studied in more detail. In this pa-
per we calculate the electronic properties of a recently
constructed fully fourfold-coordinated 216-atom periodic
model of @-Si.'* This is the largest amorphous silicon
model available at present whose structural and vibra-
tional properties have been fully characterized!® and
found to be in good agreement with the latest experimen-
tal information. As such, the model should be a reason-
able representation of the bulk, homogeneous structure of
a-Si, which warrants the study of its electronic proper-
ties. Hickey and Morgan'® have recently calculated the
electronic density of states and spectral functions for a
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similar 216-atom periodic structure using a model pseu-
dopotential and the equation of motion method in k
space. Our study, like that of Kelly and Bullett,’ is based
on a real-space approach (recursion method),!” where it is
easy to calculate the electronic density of states projected
onto various atoms in the cluster. This enables us to
study the effects of the local environment on the electron-
ic states. Also, we have used a scheme for calculating the
one-electron Hamiltonian which is different from that
used by Hickey and Morgan.'®

The one-electron Hamiltonian used in our calculation
has been derived using the tight-binding linear muffin-tin
orbitals (TB LMTO) scheme in its simplest form.!®!°
This uses the atomic-sphere approximation (ASA),'° and
the one-electron Hamiltonian is correct to first order in
deviations from some reference energy E,. This Hamil-
tonian has the two-center tight-binding form and is ex-
pressed in terms of potential parameters and a hopping
matrix that depends only on the structure. The potential
parameters are local quantities, obtained from the solu-
tion of the one-electron wave equation at the energy E,
inside the atomic or Wigner-Seitz sphere surrounding the
atom. We expect that in the transition from the crystal-
line to the amorphous phase, the spherical part of the po-
tential inside a given sphere should change only slightly;
the corresponding potential parameters should remain
virtually unchanged. Changes in the electronic structure
should then arise primarily from changes in the hopping
matrix, and the potential parameters can be treated as
transferable quantities. However, the scheme does not
necessarily rely on their tranferability. The potential pa-
rameters can be calculated for any system with a reason-
able starting guess for the potential inside the spheres and
recalculated in an iterative manner until self-consistency
in the charge distribution is achieved.'® Thus the TB
LMTO formalism provides a scheme for a first-principles
self-consistent electronic-structure calculation, and can
also be used as a semiempirical tight-binding scheme un-
der suitable conditions. The TB LMTO scheme is rela-
tively new and, as far as electronic-structure calculations
for amorphous systems are concerned, it has so far been
applied only to the study of amorphous Fe and some
binary amorphous alloys.?*?! The present calculation is
the first application of the method to an open amorphous
structure.

The remainder of this paper is divided into sections as
follows. In the next section we outline the TB LMTO
method. In Sec. III we present results for crystalline sil-
icon in the diamond structure (c-Si). We calculate the
band structure and the electronic density of states. We
compare the density of states calculated by using the con-
ventional Brillouin-zone summation method and the re-
cursion method. This gives us an estimate of the loss of
accuracy in the recursion method stemming from the ter-
mination of the continued-fraction expansion of the
Green’s function as well as the finite cluster size. In Sec.
IV we present the results for the a-Si model including
both the valence- and conduction-band densities of states.
A comparison of our results with other theoretical calcu-
lations and with experiment is made. We also attempt to
relate features of the electronic density of states to local
environments in the cluster. In Sec. V we discuss the lim-
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itations of the present calculation and indicate how im-
provements might be made.

II. THE TB LMTO METHOD

In this section we describe how the TB LMTO’s are re-
lated to the standard solid-state LMTO’s (Ref. 22) and
outline the main results of the TB LMTO scheme used
here. For proofs and further details, we refer to Refs. 19,
23, and 24. The application of TB LMTO’s to amor-
phous systems is discussed in Ref. 21.

In the LMTO method space is divided into muffin-tin
spheres centered at various atomic and possibly intersti-
tial sites R, and the interstitial region. The potential in-
side the spheres is assumed to be spherically symmetric,
while outside the spheres it is assumed to be constant.
The potential is calculated using the local-density ap-
proximation to the exchange-correlation potential in the
density-functional theory of Hohenberg and Kohn.?? The
basis set in the conventional or unscreened LMTO
method consists of functions X%, (r—R) centered about
the sites R in the solid, where L (={/,m}) is the (collec-
tive) angular-momentum index and

X% (r—R)=KQ; (r—R)+®g; (r—R)

+ 3 SR r—ROMR gy - (1)
RL'

Here, K3, is the envelope function which is supposed to
vanish inside all the spheres, while in the interstitial re-
gion it is given by the solution of the one-electron
Schrodinger equation with the electron energy equal to
the muffin-tin zero of the potential. The choice of the
electron energy equal to the muffin-tin zero reduces the
Schrodinger equation to the Laplace equation in the in-
terstitial region. K9, is thus taken to be proportional to

[r—R |71y, (6,¢),

the solution of the Laplace equation that is irregular at R
but regular at infinity. It is the field of a 2’ pole situated
at the site R. The functions ®g; and ®g; are supposed
to vanish outside the sphere at R. ®p,; is the normalized
solution of the radial part of the wave equation for orbital
angular momentum !/ inside the sphere at R for reference
energy E p;, and %, is a linear combination of ®g, and
its energy derivative @y, at the energy E ;. These linear
combinations and the quantities k2., .z; in Eq. (1) are
chosen to ensure the continuity and differentiability of
X%, at the surfaces of all the spheres. They contain in-
formation concerning the atomic positions R and R/, as
well as the phi and phi-dot functions at the boundaries of
the spheres centered at these positions.

The coefficients 42.;.z; depend on the sphere positions
through the bare canonical structure constants S3.; .z, ,
which do not depend on the sphere types or radii. The
on-site elements of S,z ,S8, p.+ are zero, and the ex-
pression for S3; ;- for arbitrary R and R’ is discussed in
Refs. 19 and 25. The structure constants S9, z.;- contain
long-range components. As a function of the separation
d = |R—R'|, they behave as

Spirp ~(w/d) I+ ()
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The matrix elements of the one-electron Hamiltonian,
which can be shown to be directly related to the
coefficients h3;z-r» and thus to S3;z.., are also long
ranged. The long range of these matrix elements poses
no problems in the electronic-structure calculation for
crystalline systems where one can use the Ewald tech-
nique to evaluate the Bloch sum. For calculations involv-
ing systems where the periodicity is either missing or bro-
ken, one must use a real-space method such as the mo-
ment?® or the recursion!” methods, which rely on having
well-localized basis orbitals. The matrix elements of H,
more precisely of O~ 'H or 0~ '2H 0~'? (where O is
the overlap), must decay rapidly with interatomic separa-
tion. Within the LMTO formalism this rapid decay with
increasing interatomic distance is achieved by changing
the envelope function of the basis orbitals in Eq. (1). In
the TB LMTO method one uses envelope functions Kz,
which are similar to K2; in the neighborhood of R, but
are screened by multipoles situated at the neighboring
atoms. This gives rise to the screened structure matrix
S® in the theory, which is related to the bare structure
matrix via the relation

5°=8%1—aS8%"" or §*=5°+8%sS*". 3)

As discussed by Andersen and co-workers?!?>?7 different
choices for the screening matrix ¢ lead to basis sets with
different properties, constituting different LMTO repre-
sentations. In the TB LMTO representation used in this
work, a is supposed to be a site-independent, but I-

dependent, matrix with only three nonzero elements:

0.3485 for I =0,
0.05303 for I =1,

= 10.010714 for [ =2, )
0 fori>3.

It has been found that with nonzero screening on all sites
in the solid for / =0, 1, and 2, these a values give rise to
the most localized LMTO basis orbitals and short-ranged
structure matrix elements for all reasonably homogene-
ous structures. Beyond the second-neighbor shell the
screening is practically complete in the ¢-LMTO repre-
sentation. Other choices are possible and are still being
studied.?>?

S°, like S°, involves a length parameter w. Although
in S° the choice of w is somewhat arbitrary and basically
fixes the unit of length, in S the choice of w must be con-
sistent with that of the screening parameters. It depends
on the concentration of the screening multipoles and
must be calculated from the volume ¥, per site through
the relation

Vo=(4m/3)w? . (5)

In the TB or a representation the LMTO basis orbitals
are linear combinations of the conventional orbitals [Eq.
(D], and the TB LMTO centered at R is given by an ex-
pression similar to Eq. (1):

X% (r—R)=Kg& (r—R)+®g, (r—R)

+ 3 D&, (r—RAEpL - (6)
R, L’
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As in Eq. (1), we consider K§; to be nonzero only in the
interstitial region and to be augmented by linear com-
binations of ¢ and ® * functions inside the spheres. The
latter are given by

DL (r)=Dg (r)+Dg(rog , (7)
& ( Dy, (E,r) ®
r)=— .
ki oE E=E p,

The coefficients 0 are determined to give & ¢ the same
radial logarithmic derivative at the sphere radius as the
tail of the envelope function K*. The multiplication by
h“ in Eq. (6), finally, makes the augmentation continuous
at the sphere boundary. The coefficients #* have the
form?324

hRirr =(cri—E g/ )Orpr8y 1
(A2 SE rp G (9)

where cg, and dg; are potential parameters which may be
found from the value and slope of ®g,(r) at the sphere
boundary (see Appendix).

A frequently used approximation in the LMTO
method is the atomic-sphere approximation (ASA), in
which one replaces the muffin-tin spheres with Wigner-
Seitz spheres and neglects the remaining interstitial re-
gion. This is possible for closely packed materials, as well
as for those open structures which can be close packed
with the addition of interstitial (“empty’’) spheres. The
diamond structure, for example, can be packed like a bcc
lattice with the addition of interstitial spheres. In the cal-
culation for crystalline silicon we thus have spheres situ-
ated at both atomic and interstitial sites, to be referred to
as the silicon spheres and empty spheres, respectively.
Both silicon and empty spheres may have TB LMTO’s
X%: and screening charges ayg; associated with them,
with / varying from O to 2. Putting empty spheres in an
amorphous silicon structure is a nontrivial problem and
will be discussed in Sec. IV, where the results for amor-
phous silicon are presented.

In the expression for the TB LMTO in the ASA the
first term on the right-hand side (rhs) of Eq. (6) drops out.
The Hamiltonian and the overlap matrices receive no

contribution from the interstitial region and are given
py!9:23.24

H=h+hoh+(UI+ho)E (I4+0h)+h

== v

E, b (10)

O=(X|X)=(I+ho)I+oh)+hph . (11)

In Egs. (10) and (11) we have dropped the superscripts a
implying the TB representation. k and ¢ are the matrices
appearing in Eqgs. (6) and (7), o is diagonal, I is the unit
matrix, and p is a diagonal matrix with elements

pr= [ @ (rirtar, (12)

where the integration is performed within the atomic
sphere at R. The pg,’s are small parameters and a
reasonable approximation to Q can be obtained by drop-
ping the last term on the rhs of Egs. (10) and (11). Be-
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cause of the finite overlap O, the eigenvalue equation to
be solved is either

det| 0 'H—EI | =0
or (13)
det ’ Q——I/ZEQ—-I/Z_EL | =0.

In using the recursion method!’ it is easier to consider
the latter form, because it involves the tridiagonalization
of a symmetric matrix. With the neglect of the small
quantities pg;, the Lowdin-orthonormalized Hamiltonian
in the ASA (Refs. 19 and 23) assumes the form

HY=0 '’HQ '?=E,+h(I+oh)™" (14a)

=E,+h—hoh+ - . (14b)

Thus in the ASA the Hamiltonian to be considered,
correct to first order in deviations from the reference en-
ergies E , is simply

HV=E, +h , (15)

with the matrix & given by Eq. (9). The corresponding
second-order Hamiltonian is H'? [Eq. (14b)].

The calculation of electronic structure using the TB
LMTO method thus involves two steps: (1) calculating
the potential parameters cg;, dg;, and og; (see Appendix),
and (2) calculating the screened structure matrix Sgyg; .
The screened structure matrix S* can be calculated from
the unscreened structure matrix S°, which can be ex-
pressed analytically,!>?* either by iterating the Dyson
equation (3) to self-consistency, or through the matrix in-
version given in Eq. (3).® The off-site elements of the
tight-binding structure matrix S can also be obtained
from an interpolation formula valid for the Slater-Koster
“hopping integrals” S, (d),'** where the intersite vec-
tor is along the z axis. The interpolation formula that
holds extremely well for all cubic structures is of the form

Symld)=Sy, exp(—z""™ 7270y, z =Apmd/w  (16)

where the values of p, ¢, S, and A for various “hopping in-
tegrals” sso, spo, ... are given in Table II of Ref. 19.
Another interpolation formula, somewhat less accurate
than Eq. (16) for cubic structures, but better in general
for an arbitrary structure, is of the form

§,1'm(d)=S”'me"z, z=)\.”',,,d/w (17)

and the values of S and A are available in Table II of Ref.
23 and in Table I of Ref. 24. The on-site elements of the
tight-binding structure matrix are nonzero and depend on
the local environment. There is no simple interpolation
formula for these, but they can be calculated using the
off-site elements of S in the Dyson equation

SRR’ = 3 SRLR"L"CR"L"SR"L"RL’ - (18)
R",L"
(R"#R)

In a self-consistent LMTO calculation involving the
Hamiltonian and overlap matrices (10) and (11), only one
set of E g,’s, chosen to lie at the center of gravity of the
occupied part of the Rl-projected band, is often used.'®
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This choice results in accurate valence-band energies and
hence accurate charge distributions in the various
spheres. However, use of merely the first-order approxi-
mation (15) makes it necessary to perform several calcu-
lations involving more than one set of E g,’s, so that ac-
curate results are obtained over a wide range of energies.
In crystalline structures the potential parameters depend
on the types of the spheres but not on their positions. In
amorphous structures the potential parameters should, in
principle, depend on the positions of the spheres as well.
However, in the present calculation we have considered
them to depend on the sphere type only. Although we
have not performed a self-consistent calculation, the po-
tential parameters for both the ¢-Si and a-Si clusters were
calculated using the potentials in the silicon and empty
spheres obtained from a self-consistent unscreened
LMTO calculation for ¢-Si.? Two sets of E,,’s were used
in the calculation, one to produce accurate results in the
center of the valence band, and the other for the near-gap
part of the conduction band. As in the self-consistent
case, our choice of the former provides the best estimate
for the valence-band energies and hence the best estimate
for the valence charge distribution.

III. RESULTS FOR SILICON
IN THE DIAMOND STRUCTURE

In the calculation for ¢-Si, empty spheres are placed at
the tetrahedral holes, i.e., the positions (4,1,1)a, with
respect to the silicon lattice sites, where a;=5.4271 A is
the lattice parameter for the diamond structure. This
generates a bcc structure, for which the interpolation for-
mula [Eq. (16)] for the off-site elements of the screened
structure matrix yields values almost identical to those
obtained via matrix inversion. Hence we use Eq. (18) in
conjunction with Eq. (16) to calculate the screened struc-
ture matrix with / =0, 1, and 2 orbitals for both the sil-
icon atoms and the empty spheres. The potentials in the
silicon and empty spheres were taken from a self-
consistent ‘“‘scalar-relativistic” standard (unscreened)
LMTO calculation by Chris@tensen,29 who used equal
sphere sizes (sg; =s; =1.336 A) and the local-density ap-
proximation for exchange and correlation. From this po-
tential we calculate the potential parameters ¢%, d%, and
0% for I =0, 1, and 2 in the silicon and empty spheres.
The energies E,, for the silicon and the empty spheres,
obtained from the calculation of Ref. 29, are at the
centers of gravity of the occupied part of the respective /
bands (see Table I). The first-order two-center tight-
binding Hamiltonian H'" [Eqgs. (9) and (15)] calculated
with these parameters will be referred to as H{'. In Figs.
1(a) and 1(b) we show, for Hi", both the band structure
and the density of states obtained via Brillouin-zone sum-
mation using the linear tetrahedron scheme of Jepsen and
Andersen.’® The spectrum has no gap and it is
compressed in the conduction-band region. For E, in the
valence band, the Si s and p overlap parameters 0% are
negative (see Table I). H\" lacks the second-order
correction —(E —E_)*0® [see Eq. (14b)] which pushes
the eigenvalues far from E, towards higher energy. Thus
using H{" with E,’s in the valence band leads to an in-



6266

correctly large density of states in the conduction band.
To obtain better results one can consider the Hamiltoni-
an H? [Eq. (14a)] for the same E_’s used in H{".3! The
band structure and the density of states for H'?, with the
same E’s as in H{", are shown in Figs. 1(c) and 1(d). A
small gap of width ~0.5 eV opens up, and both the
valence and conduction bands are in better agreement
with the results of the standard third-order LMTO calcu-
lation which uses Egs. (10) and (11) (Fig. 7 of Ref. 29).

For amorphous clusters involving ~4000 orbitals,
such as the one considered here, the calculation of H? is
somewhat time consuming and we have consequently
only carried out the calculations using H'". It is, howev-
er, necessary to perform at least a two-panel calculation;
one must use two sets of E ’s. In order to treat the gap
region and the bottom part of the conduction band prop-
erly, we set all E ’s equal to an energy (zero) close to the
bottom of the conduction band. This calculation then
yields a gap of ~0.5 eV. Also, we make a small depar-
ture from a “first-principles” calculation in an attempt to
increase the size of the gap. The widths of the energy
gaps in semiconductors obtained by using the Kohn-
Sham density-functional theory in its local approximation
are typically only half of the experimentally measured
values of 1.1 eV.’? Somewhat empirically, we can widen
the gap by shifting the cg; parameters for the s orbitals
upward in energy relative to those of the p orbitals.’* For
small shifts this primarily effects the bottoms of the
valence and conduction bands, the I'j and X, points,
leaving other parts of the band unchanged. In Figs. 1(e)
and 1(f) we show the band structure and density of states
for the Hamiltonian H", where the E’s are the same as
in H\", but the cg, parameters for the s states on the sil-
icon and empty spheres have been moved up in energy by
0.1 Ry. The gap turns out to be close to that obtained
with H® without the gap correction, and the valence
band is in good agreement with the standard LMTO re-
sults?® as well as with experiment.’ In order to describe
the conduction band properly, we repeat the calculation
following the same procedure, but with all the E’s set
equal to zero. We refer to the resulting Hamiltonian as
H'". The band structure and the density of states for
this case are shown in Figs. 1(g) and 1(h). The resulting
energy gap agrees well with the experimental value of 1.1
eV. The bottom of the valence band is too low because
0 for the Si and E s orbitals are negative and the prefac-
tor (E —E,)* is of order 1 Ry?. The potential parameters
for the Hamiltonians H3" and H{" are given in Tables I
and II, respectively. For H'" all parameters remain the
same as in Table I except the ¢ parameters, which do not
have the additional 0.1-Ry shift.

The accuracy of the results using the recursion
method!” depend mainly on two factors, the cluster size
and the terminator for the continued fraction. The clus-
ter size determines the number of recursion coefficients
that can be calculated without error, i.e., without any in-
terference from the cluster surface. The terminator3*3’
attaches a tail of coefficients to the calculated values in
order to simulate the result of an infinite system. We
have used the “linear predictor terminator” proposed by
Allan.*® The calculated coefficients are fitted to a com-
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FIG. 1. Band structure and density of states of ¢-Si obtained
by using the LMTO Hamiltonians H\", H?, H", and H{" de-
scribed in the text. The H'!”s are first-order two-center tight-
binding Hamiltonians and H ‘% is the Hamiltonian in the nearly
orthogonal representation. The eigenvalues of H'? are the
one-electron energies correct to second order. For H\", H?,
and HY" the E,’s are chosen in the valence band, and for H"
they are chosen in the gap. HS" and HY" contain a correction
for the error of the local-density approximation as described in
the text.

plex Fourier series, which is then used to extrapolate
300-500 coefficients. All of these coefficients, together
with the constant chain terminator,!” are used in the ex-
pression for the diagonal matrix element of the Green’s
function. The ‘linear predictor terminator” has been
shown to yield good results for ¢-Si when applied to ap-
proximately 20 exactly calculated coefficients.’> It has
also been tested, with good results, for various model
densities of states with multiple gaps and band-edge
singularities, where the continued-fraction coefficients
were calculated from the moments of the assumed distri-
butions.>¢

It is important to assess the effects of cluster size and
the boundary conditions (e.g., periodic or free) on the re-
sults obtained with the recursion method.>” We find that
for a crystalline cluster of 432 sites (216 silicon and 216
empty spheres) the density of states obtained by using the
recursion method together with periodic boundary condi-
tions shows fair agreement with that calculated by the
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TABLE 1. Potential parameters for Hamiltonian H$! (the shift in the ¢ parameter for the s orbitals,
used to widen the gap, is shown explicitly, and the superscript a has been dropped).

1 E, Ry) ¢ (Ry) d'? (Ry'”?) o Ry 1
Silicon 0 —0.6574 —0.8829+0.1 0.4269 —0.3195
Spheres 1 —0.3083 0.0350 —0.3159 —0.3764
2 —0.3227 0.5290 0.1764 —0.6217
Empty 0 —0.4987 —0.0811+0.1 0.3287 —0.5397
Spheres 1 —0.4205 0.3482 0.2036 —0.7086
2 —0.3487 0.3194 0.0925 —1.2074

more exact Brillouin-zone-summation scheme. However,
the minima between the three main peaks are rather shal-
low and the gap between the valence and conduction
bands appears only as a minimum in the density of states.
Increasing the cluster size makes these minima more pro-
nounced and, in general, sharpens the features in the ¢-Si
density of states. We have found that to obtain a density
of states with the recursion method in acceptable agree-
ment with the more exact result (see Fig. 2), we must ex-
tend the cluster size to at least 800 sites (400 Si atoms),®
if free boundary conditions are used. In Figs. 2(a) and
2(b) we show a comparison of the recursion method re-
sults with the Brillouin-zone-summation calculation for
the density of states of ¢-Si using the Hamiltonians H!
and H'". The recursion calculations were performed for
crystalline clusters with ~ 855 sites using free boundary
conditions. Five-hundred coefficients were extrapolated,
typically from nine s, seventeen p, and twenty d calculat-
ed values, using the “linear predictor’” method. Even for
a cluster this large we found that only the first six or
seven s and nine to fifteen p coefficients could be calculat-
ed exactly for atoms in the center of the cluster. Higher
coefficients begin to accumulate errors that increase with
the length of the chain. This is the reason why even with
the “linear predictor terminator” we do not obtain a
well-defined gap, although qualitative agreement with the
more exact Brillouin-zone-summation calculation is
good.

The position of the peaks associated with the critical
points L5 and L, are reproduced well by the recursion
method.*® However, the minima following these peaks
are shallower than those produced by the k-space calcu-
lation. Also, the peaks associated with the critical points
Q,; (Ref. 39) and X, are moved towards higher energies

and the weak singularity at L) is washed out. All of
these results can be understood in terms of the loss of in-
formation about the crystal structure in the recursion-
method calculation away from the central region of the
cluster. Because some of the higher calculated recursion
coefficients (or moments), and the extrapolated ones as
well, are somewhat in error, the structure “seen” by the
recursion method becomes increasingly disordered. This
results in the shift of the p-band peaks towards higher en-
ergy and the filling up of the minima following the L}
and L, peaks. These deviations from the c-Si electronic
density of states obtained by Brillouin-zone summation
should become even more pronounced for our @-Si model
because of its relatively large structural distortions.

Comparison of the recursion-method results with those
obtained by Brillouin-zone summation gives us an esti-
mate of the accuracy of our calculations (see Fig. 2). Be-
cause with the recursion method we are able to reproduce
fairly well the main features in the density of states for a
¢-Si cluster of 855 sites (except the gap region), we should
be able to apply the method to an a-Si cluster of similar
size and obtain the same degree of accuracy. In fact, we
expect the error to be larger in the crystalline case, be-
cause in order to reproduce the sharp features in the cor-
responding density of states, a larger number of correct
moments is needed. Therefore we expect the recursion
method to provide a good description of the density of
states for the amorphous structure in almost the entire
energy region of interest, except the gap.

IV. RESULTS FOR THE AMORPHOUS
SILICON MODEL

The differences in the electronic or other properties of
crystalline as compared to amorphous silicon stem direct-

TABLE II. Potential parameters for Hamiltonian HY" (the shift in the ¢ parameters for the s orbit-
als, used to widen the gap, is shown explicitly, and the superscript a has been dropped).

! E, Ry) ¢ (Ry) d'? (Ry'?) o (Ry™")
Silicon 0 0.0 —1.0214+0.1 0.4856 —0.0657
Spheres 1 0.0 0.0804 —0.3498 —0.2836
2 0.0 0.8342 0.2107 —0.4939
Empty 0 0.0 0.0300+0.1 0.4079 —0.3300
Spheres 1 0.0 0.7416 0.2632 —0.5264
2 0.0 0.8517 0.1314 —0.8443
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FIG. 2. Comparison of the density of states of ¢-Si obtained
by the Brillouin-zone-summation method (solid line) and the re-
cursion method (dotted line) applied to the TB LMTO Hamil-
tonians (a) Hi" and (b) H{". HY" yields reliable results for the
valence-band density of states, while HS" is most reliable near
the gap and the bottom part of the conduction band.

ly from the geometric and topological deviations from
perfect tetrahedral bonding that characterize the latter
phase. Calculated electronic properties will therefore de-
pend to a large extent on the particular structural model
one chooses to study. Ideally, one would like a model
with several hundred atoms, that is computer generated

to eliminate bias, with periodic boundaries for computa-:

tional convenience and to remove surface effects, and
whose pair-correlation function is (and implicitly whose
average geometric distortions are) in good agreement
with experiment. Although modeling amorphous semi-
conductor structures has reached a relatively mature
stage, the use of divergent model construction criteria is
unfortunately still the rule. Therefore it is worthwhile to
briefly examine how the model under study was con-
structed and how well its structural properties agree with
those of experiment.

A. Outline of model construction

Model construction starts with a periodic cubic unit
cell containing 216 silicon atoms in the perfect diamond
structure. We introduce simple topological excitations
(pairs of bond switches) (Ref. 14) into the crystal at ran-
dom and relax the structure after each topological change
to its minimum-energy configuration with the Keating
potential.*® We repeat this process until the pair-
correlation function of the structure has lost all features
characteristic of the diamond structure. The pair-
correlation function of such a randomized “crystal” con-

is slowly varying beyond. This shows that the mean bond
length and bond angle are close to their diamond-
structure values, but that the ‘“crystal” contains large
geometric distortions; the rms bond-length (Ar) and
bond-angle (A@) deviations are typically 3% and 20°, re-
spectively. In order to reduce these distortions, we re-
quire that further topological excitations reduce the total
Keating potential energy. This reduces the average
geometric distortions, but the pair-correlation functions
of such structures remain in poor agreement with that of
experiment. We reduce the geometric distortions still
further by allowing topological excitations that increase
the total Keating potential energy. However, such bond
switch pairs are accepted only when the thermodynamic
probability (through a Maxwell-Boltzmann factor) is
greater than some random number between O and 1.
Such a pseudo-Monte Carlo method (modified Metropo-
lis algorithm) (Ref. 41) allows the structures to tunnel out
of highly distorted metastable states and results in struc-
tures whose geometric distortions (Ar =2.2%, A0=11.3°
for the present model) (Ref. 15) are near to those in real
a-Si. The pair-correlation functions of the final struc-
tures are also in good agreement with that of experi-
ment.'*!® The fact that each atom in the present model
is a member of at least one oddfold ring'® means that the
topological environment of each atom is different from
that of the diamond structure (i.e., the model is purely
amorphous). At the same time the exhaustive nature of
the model-construction algorithm ensures that the local
separation from the diamond structure will be small and
roughly the same for all atoms. Because of this homo-
geneity, the low geometric distortions, the reasonably
good agreement with the experimental pair-correlation
function, and the lack of local diamond structure, we ex-
pect such models to be good approximations to the bulk,
homogeneous structure of a-Si. The fact that the vibra-
tional properties of the present model, as well as its
structural features, are in good agreement with those of
experiment'® is a good indication that the structural basis
we have chosen to calculate the electronic properties of
a-Si is a fairly realistic one.

In order to carry out the electronic calculations for the
216-atom a-Si structural model within the TB LMTO
scheme, we first need to know the positions of the 216
empty spheres. To start with, we place the empty spheres
at sites corresponding to their interstitial positions in the
same-size diamond-structure unit cell. The positions of
the silicon spheres are taken to be the equilibrium coordi-
nates, relaxed to their minimum-energy configuration
with Weber’s bond-charge interactions,*>*3 of the model
discussed above and in more detail elsewhere.!> We as-
sume a pair potential with a steep repulsive part (6-16
form) between the spheres, irrespective of their type. The
minimum in the potential is chosen to be 2.35 A, the
nearest-neighbor distance in diamond-structure silicon.
The potential is terminated at a distance between the
first- and second-nearest-neighbor separation in the dia-
mond structure. The empty spheres are moved, keeping
the silicon spheres fixed, in order to minimize the energy
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of interaction according to the same modified Metropolis
algorithm*' used in the final stages of model construction.
The temperature was chosen to be zero for most of the
runs. Occasionally we increased the temperature to
check whether lower-energy configurations for the empty
spheres could be accessed via thermal agitation. The po-
sition of the minimum and the cutoff distance in the po-
tential were given small variations in order to minimize
the overlap of the spheres inside the fixed cubic volume.
When the empty spheres seemed to be stuck in a metasta-
ble configuration, we began a new run. The configuration
with the minimum overlap between the spheres was final-
ly selected for the electronic-structure calculation. We
extended the resultant unit cell of 432 (silicon and empty)
spheres periodically and selected a cluster of ~ 1586
spheres from this extended structure. The local densities
of states of atoms in the center of this cluster with free
boundaries did not differ significantly from those ob-
tained using the original, smaller unit cell of 432 spheres
with periodic boundaries. Thus, in contrast to the c-Si
calculation, no appreciable change in the density of states
was observed by increasing the cluster size. All further
results presented for the a-Si model were calculated for
the 432-sphere unit cell using periodic boundary condi-
tions.

Calculations for the amorphous cluster were performed
using the first-order, two-center, tight-binding Hamiltoni-
ans HS" and HY" described in Sec. III. The screened
structure matrix was calculated using the interpolation
formula (17) for the off-site and (18) for the one-site
terms. The average Wigner-Seitz radius w entering the
structure matrix was the same as that in c¢-Si because the
a-Si model has the same density as ¢-Si. We have chosen
the potential parameters for both the silicon and empty
spheres to be the same as in the calculation for the ¢-Si
cluster. In principle, one should choose sphere radii in
an amorphous structure according to the local environ-
ment, and the potential parameters should be calculated
separately for each sphere. We settle for the computa-
tionally feasible approximation of using a single value for
all spheres. In view of the fact that we expect the major
changes in the electronic structure to result from changes
in the structure matrix, this approximation seems reason-
able.

B. Average electronic properties

In Figs. 3 and 4 we show a comparison of the density
of states for ¢-Si and a-Si obtained by applying the recur-
sion method to the Hamiltonians H3" and H". Figures
3(a) and 3(b) are the results for the ¢-Si and a-Si clusters,
respectively, for H5". For this Hamiltonian the reference
energies E, are approximately at the centers of gravity of
the occupied part of the Rl-projected bands (see Table I).
Hence the valence-band density of states is fairly reliable,
while the conduction band is less so. In Figs. 4(a) and
4(b) we show similar results for the Hamiltonian H{",
where the E ’s are chosen to be zero (see Table II). In
this case the conduction band should be the most reliable,
with the results becoming increasingly less accurate to-
wards the bottom of the valence band.
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FIG. 3. Density of states of (a) ¢-Si and (b) a-Si obtained by
applying the recursion method to the Hamiltonian H}", which
yields reliable results for the valence band. The a-Si density of
states was obtained as an average over the densities of states
projected onto 40 silicon and 40 empty spheres in the central re-
gion of the a-Si cluster. The dotted and dashed lines are the
densities of states projected onto the silicon and empty spheres,
respectively, in the diamond structure, or their average in a-Si.
The solid line is the sum of these two projected densities of
states.
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FIG. 4. Same as Fig. 3, but using the Hamiltonian H}",
which provides reliable results near the gap and the bottom part
of the conduction band.
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The densities of states for the amorphous cluster
shown in Figs. 3 and 4 are an average over the local den-
sities of states calculated for 40 silicon spheres and 40
empty spheres chosen near the center of the cluster.
Each local density of states is a sum over the density of
states projected onto the nine orbitals for the correspond-
ing sphere. The dotted curve is the average density of
states projected onto the silicon spheres. The most no-
ticeable change in the electronic density of states caused
by disorder is the disappearance of the sp-bonding peak
associated with the critical point L. This is apparent
not only in the total density of states (solid curve), but
also in the density of states projected onto silicon and
empty spheres separately. The small peak associated
with the critical point Q; is missing in the valence-band
density of states for the amorphous cluster, which con-
sists of two peaks, the lower one mostly s-like and the
upper one mostly p-like. The s-like peak position is the
same as its position in ¢-Si and its shape is preserved to a
large extent. This suggests that the s-like eigenstates may
still have a dispersion relation (in a spherically average
sense) similar to that in the crystal' and that these states
are less affected by disorder. A similar conclusion was
reached by Kramer.** We show this in a more direct
manner presently.

The p-like peak is shifted towards higher energy com-
pared to its position in the crystal [see Fig. 5(a)]. We
have already mentioned that the result for the crystalline
cluster obtained via the recursion method also shows this
shift because of a gradual departure from diamond-
_ structure symmetry resulting from the accumulated er-
rors of the higher recursion coefficients. In Fig. 5 we
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FIG. 5. Comparison of the density of states of ¢c-Si obtained
by the Brillouin-zone-summation method and of a-Si obtained
by the recursion method using the Hamiltonians (a) H5" and (b)
H{.
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show a comparison of the density of states for the amor-
phous cluster with that of c-Si obtained via the k-space
calculation. Here the shift in the p-band peak towards
higher energy due to disorder can be clearly seen. The
centroid of the p band shifts by ~0.5 eV toward the gap
compared to that of the crystal. This is in reasonable
agreement with the x-ray-photoelectron-spectroscopy
(XPS) results of Ley et al.,'* who found an 0.4-eV shift
in the p-band peak position in a-Si.

The valence-band spectrum of a-Si measured by XPS
(Ref. 13) shows a double-peaked structure, but the rela-
tive heights of the two peaks are different from those in
the electronic density of states we calculate. This is be-
cause of the difference in the matrix elements (photoelec-
tron cross sections) involved in transitions from 3s-like as
com?ared with 3p-like eigenstates [o(3s)/0(3p)=~3.4 in
Si]."* The results of our calculation [Fig. 5(a)] agree well
with the experimental valence-band spectrum of a-Si
after it has been corrected for variations in the photoelec-
tron cross sections (Fig. 3.7b of Ref. 45), except that the
L) and L peak remnants are still distinguishable in the
calculation and have not merged completely into one
broad, flat hump as in the XPS spectrum.*’

The calculated conduction-band density of states [Fig.
5(b)] compares similarly well with the x-ray-absorption
spectra measured by Brown and Rustgi'? and the partial-
yield spectra of a-Si measured by Reichardt et al.*®
They found that the near-gap conduction band was com-
pletely structureless except for a 1.3-eV-wide hump at the
conduction-band edge. The calculated conduction-band
density of states is also completely structureless; there are
no remnants of the critical-point structure of ¢-Si at the
band edge. Ley* has argued that because electron-hole
interactions are mostly responsible for the near-threshold
enhancement of the partial-yield spectra of a-Si, the
shape of the near-gap conduction band is best approxi-
mated by a simple step function. This assertion is sup-
ported by the results of our calculation and by recent
bremsstrahlung-isochromat-spectroscopy results that
show that the density of states varies smoothly above the
conduction-band edge.*’

Our calculation fails to produce a gap between the
valence and conduction bands in ¢-Si. Because the recur-
sion calculation for the c-Si cluster shows only a deep
minimum instead of a true gap, the absence of a gap in
the a-Si model can be partly attributed to the recursion
method. A further reason for the relatively large density
of states in the gap could be the approximate treatment
of the interstitial region in the present electronic-
structure calculation. We suggest some ways of improv-
ing this treatment in the next section. Finally, it cannot
be excluded that our structural model for a-Si has states
in the gap.

Hickey and Morgan'® have calculated the electronic
density of states for a similar model of a-Si, which they
refer to as the WWW2 structure, using a model local
pseudopotential. A comparison of their results with the
density of states calculated for ¢-Si by Chelikowsky and
Cohen*® using the same local pseudopotential shows no
relative shift of the a-Si p-band peak towards the gap.
Furthermore, the height of the a-Si p-band peak in their
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calculation is smaller than that for ¢-Si. In our calcula-
tion the a-Si p-like band becomes narrower and higher.
Also, Hickey and Morgan'® find a rather deep minimum
(a pseudogap as in c¢-Si) between the s-like (L)) states at
the bottom of the valence band and the higher s-p (L)
states. There is a very shallow minimum between these
peaks in our results [Fig. 5(a)], but not nearly as pro-
nounced. Because the structural models (especially the
WWW2 model) studied by Hickey and Morgan and our-
selves are essentially the same, the discrepancies in the
respective results might be due to the model pseudopo-
tential used in their calculations.

A qualitative description of the above-mentioned
differences in the electronic density of states of a-Si and
¢-Si in terms of local disorder has been attempted.>’ %%
It has been suggested that the shift in the p-band peak is
primarily due to bond-angle variations,*> but that near-
gap p-band states are also sensitive to dihedral angle dis-
order.>® The changes in the region of the L) and L,
peaks are usually associated with topological disorder;’
the presence of oddfold rings in the network introduces
states between the main L, and L, peaks and results in a
filling up of the gaps between them. The a-Si model con-
tains bond-angle variations, dihedral angle variations,
and oddfold rings. If these structural features are indeed
directly responsible for characteristic features of the a-Si
electronic density of states, we might expect to observe
some correlation of the local densities of states of particu-
lar atoms in the a-Si model with the surrounding local
structure.

C. Local densities of states

We have examined more than 50 local densities of
states in order to determine the origin of their particular
spectral features. In Fig. 6 we show some of these local
densities of states for the Hamiltonian H'", obtained by
projection onto the orbitals of eight silicon spheres near
the center of the cluster. For comparison we present in
Fig. 7 the local density of states projected onto a silicon
sphere in ¢-Si along with the s, p, and d projections.
There is substantial variation in the a-Si local densities of
states of the atoms presumably due to differences in the
local environment.

We have attempted to relate the variation in the local
density of states with the local distortions from the ideal
diamond structure surrounding the atoms. The mean
bond length and bond angle and their rms deviations, the
local ring statistics, and the charge deviation from the
mean (see next subsection) associated with each of the
eight silicon atoms whose local densities of states we con-
sider here are given in Fig. 6. Particular features in the
local density of states do not seem to be correlated in any
obvious way with these distortions. One might expect,
for example, that the s-p —bonding peak would be present
only in locally crystalline (or nearly ideal tetrahedral) en-
vironments. But this is not the case, at least not for the
eight atoms whose local densities of states are shown in
Fig. 6.

It is important to ascertain to what extent the compu-
tational methodology is responsible for the absence of
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FIG. 6. Local densities of states for eight silicon spheres in
the central region of the a-Si unit cell using the Hamiltonian
H!Y. The mean bond lengths and bond angles and their rms de-
viations, ring statistics (upper right-hand corner, five-, six-,
seven-, and eightfold rings), and charge deviation from the mean
for the corresponding atoms are also shown.
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FIG. 7. Density of states projected onto a silicon sphere in c-
Si obtained by using the recursion method in conjunction with
the Hamiltonian H}". The s, p, and d projections are also
shown.
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correlations between an atom’s local bonding environ-
ment and particular features in its local density of states.
We note that the same absence of correlations has been
observed in a recent self-consistent TB LMTO recursion
calculation of the electronic structure of a large (400
atoms) amorphous FeB cluster,?’ so that adding self-
consistency to our computational prescription would
probably not alter the situation to any significant degree.
The improper treatment of the interstitial spheres, which
might lead to the large density of gap states found in the
a-Si calculation, might also be responsible for this ab-
sence of correlations. However, the fact that an average
over the local a-Si densities of states agrees well with the
experimental a-Si spectra suggests that the errors due to
the method are small. In any case, differences in the local
densities of states (and there are quite distinct differences,
see Fig. 6) due to differences in the local environment
should be less sensitive to the computational methodolo-
gy because of the expected cancellation of errors. There-
fore, we must look elsewhere for an explanation of the
observed lack of correlations between local bonding envi-
ronments and the local electronic densities of states.

The loss of long-range order in amorphous silicon,
demonstrated by the lack of structure beyond about 10 A
in the pair-correlation function,* leads to the loss of k
conservation normally required in its crystalline counter-
part.®® Calculations of the valence-band density of
states* have shown that the loss of long-range order
leads only to a slight broadening of the crystalline density
of states. Because short-range order is basically
preserved in a@-Si, the remaining intermediate-range order
should then to a large extent determine its electronic
properties. We have mentioned the qualitative effects of
dihedral angle disorder and the presence of oddfold rings
on the valence-band density of states in a-Si, and that
simple model calculations confirm these effects. It may
therefore not be surprising that features in the calculated
local densities of states are not correlated in any simple
way with the local (short-range) geometric distortions
surrounding the respective atoms. In particular, neither
the width nor the position of the p-like band of states is
correlated with the mean angle or its rms deviation. This
raises some doubts about the interpretation of the a-Si p-
band shift relative to its position in ¢-Si as due to the
presence of bond-angle fluctuations in the amorphous
network. These results suggest that, in general, correla-
tions beyond nearest neighbors are important in deter-
mining the features in the valence-band density of states
in a-Si.

Dihedral angle variations or the distribution of rings
provide some measure of the intermediate-range correla-
tions in an amorphous network. On the basis of simple
model calculations, we might expect these measures to be
linked in some manner to the origin of particular features
in the electronic density of states of amorphous silicon.
Because the dihedral angles in the @-Si structural model
studied here are rather sharply distributed about their c-
Si values,'® deviations from the ideal diamond-structure
ring statistics (i.e., the presence of oddfold rings) are the
most likely determining structural distortions for the
electronic density of states. However, we also find no
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clear correlation between the local ring statistics and the
local densities of states (see Fig. 6). Atoms that are
members of fivefold rings have local densities of states
that are qualitatively indistinguishable from those of
atoms that are members of no fivefold rings. Whether lo-
cal topological distortions are correlated in any quantita-
tive way with the subtle variations in the local valence-
band densities of states or not remains unclear; we do not
have a reliable way of quantifying the local topological
environment surrounding atoms in an amorphous net-
work. If there are indeed correlations between the local
electronic properties and the local structure, there is no
reason to expect that such correlations, which apparently
must involve many atoms, will be simple functions of one
physically intuitive variable.

D. Atomic charge distribution

We have calculated the total charge in 50 silicon
spheres near the center of the a-Si cluster by integrating
local densities of states up to the Fermi energy, and we
find an average charge of 3.14 electrons per silicon sphere
and 0.86 electrons per empty sphere. The rms charge
fluctuation about the mean value for the silicon spheres is
0.14e, in reasonable agreement with the experimentally
measured value of 0.11e.5! Although the total charge in
a given sphere depends on the sphere radius and thus is
somewhat arbitrary, the calculated variation in this quan-
tity should be a good measure of the charge fluctuation
from one atom to another. For the purposes of compar-
ison, the recursion-method calculation for ¢-Si with H"
gives 3.18 electrons per Si atom and 0.82 electrons per
empty sphere. Standard LMTO results for c-Si (Ref. 29)
are 3.26 and 0.74, respectively.

Guttman, Ching, and Rath*? calculated the electronic
structure for several 54-atom network models of a-Si us-
ing the orthogonalized linear combination of atomic or-
bitals method. They also found a wide distribution of
charges on the atoms (rms deviation from the mean 0.2e)
and attempted to relate the charge deviations to local
geometric distortions in their models. They found that
60% of the calculated charge deviations could be ac-
counted for by a simple function of first- and second-
nearest-neighbor distances and suggested that correla-
tions of four or more atoms might be required to account
for the rest.

Winer and Cardona have shown that phenomenologi-
cal models of charge transfer based on bond-length and
bond-angle deviations from the ideal diamond structure
are sufficient to account for the first-order infrared (ir) ab-
sorption in a-Si (Ref. 53) and the second-order ir absorp-
tion in c-Si (Ref. 54). One would intuitively expect that
charge transfer in covalently bonded amorphous net-
works would depend to a large extent on short-range
(geometric) structural distortions. The partial success of
Guttman et al. in correlating charge fluctuations with
geometric distortions, and the use of similar correlations
to successfully describe the ir absorption in a-Si supports
this expectation.

We have also attempted to correlate the deviations of
the charges in the silicon spheres from the mean value
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with the local geometry surrounding the corresponding
silicon atoms (Fig. 6). The charge deviations from the
mean show no obvious correlation with the average local
bond length or average local bond angle surrounding the
atoms. The absence of such correlations in the model
may result from the lack of self-consistency in the calcu-
lation or from the use of interstitial spheres, which may
lead to an unrealistic distribution of charges. However,
we believe these effects to be minor. The absence of sim-
ple correlations between the local charges and the local
structure is indicative of the dependence of the local elec-
tronic properties on the intermediate-range environment
surrounding atoms in the network. Just as with particu-
lar features in the local densities of states, the amount of
charge in an atomic sphere seems to be determined by the
distribution of many surrounding atoms, which apparent-
ly precludes simple correlations with one or another
physically intuitive variable. That such correlations are
found in very small clusters with model Hamiltonians
might be an artifact resulting from the lack of an
intermediate-range environment in the corresponding
structural models. Further investigation is needed to
clarify the role of structural distortions in static charge-
transfer processes in a-Si.

E. Spectral functions

Remnants of the crystalline E-k dispersion relations in
a disordered phase can be studied with the help of spec-
tral functions.® The projected density of states onto a
traveling wave of the form

luf)=3 [Xgpde™® (19)
R

can be computed by choosing Eq. (19) as the starting vec-
tor in the recursion method. We consider the basis orbit-
als centered on the silicon spheres only and compute, us-
ing the Hamiltonian H'", the s- and p-state spectral func-

tions defined as

AME)=—- lim Im(u¥|G(E —ie)|uk) |

T g0t

(20a)

PKE)=— lim Im 3 (u¥|G(E —ie)|u¥) .

T g0t P=xpz

(20b)

The difference between these functions and the
momentum-energy spectral functions considered by
Hickey and Morgan'® (projected density of states on
plane waves of wave vector k) is discussed in Ref. 55.
The existence of well-defined peaks in either of these
spectral functions is the analogue of a crystal band struc-
ture.

Some care should be taken in the interpretation of k.
For a crystalline structure with more than one atom per
cell, k does not correspond to a Bloch-wave vector; in-
stead it is an arbitrary parameter determining the relative
phases of the orbitals in the travelling wave of Eq. (19).
However, for a crystalline structure with only one atom
per primitive cell, it does correspond to a Bloch-wave
vector. In Fig. 8(a) we show the s-state spectral function
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FIG. 8. Spectral functions for s states in (a) the ¢-Si cluster
and (b) the a-Si model. The relative phases of the nearest-
neighbor orbitals for the two extreme values of k are shown to
the right of each figure.

for the ¢-Si cluster for various values of k in the [001]
direction with k, varying from O to 4m/a,, where g, is
the lattice constant for the diamond structure. We also
show the relative phases of the nearest-neighbor orbitals
for the two extreme values of k. At k=(0,0,0) all orbit-
als in Eq. (19) appear with the same sign and the corre-
sponding s-state spectral function exhibits a peak only at
the bottom of the valence band (T, state); it has zero am-
plitude on the I') state in the conduction band. At
k=(0, 0, 47 /a), the nearest-neighbor orbitals appear in
Eq. (19) with opposite signs and the s-state spectral func-
tion shows a peak in the conduction band at the I'} point.
As k goes from (0,0,0) to (0, 0, 47 /a,), the spectra func-
tion picks up states with s character from the valence and
conduction bands. In fact, a given k may or may not be a
good quantum number. If it is, then the corresponding
spectral function contains sharp peaks. A variation of
the peak position with k indicates a dispersion relation,
although it does not reproduce a band in any particular
symmetry direction.

In Fig. 8(b) we plot the s-state spectral functions for
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the a-Si cluster for the same values of k as considered in
Fig. 8(a). These results for the c-Si structure were calcu-
lated for a cluster of 855 sites (428 Si spheres, 427 empty
spheres) with free boundary conditions. Because of the
free surface the peaks in the corresponding spectral func-
tions are somewhat broadened. For the ¢-Si structure we
consider the 432-site cluster (216 Si spheres and 216 emp-
ty spheres) with periodic boundary conditions, thus
minimizing finite-size effects. Any broadening in the
peaks of the spectral functions for a-Si over that found
for ¢-Si is thus mainly due to disorder and hybridization.
It is clear that the s-state spectral functions for a-Si and
¢-Si show similar behavior from k=(0,0,0) up to almost
k=(0,0, 2w /a,). Near k=(0,0,0) the s-state spectral
functions for ¢-Si and a-Si are remarkably similar. This
suggests that the lower part of the valence band, which is
predominantly s-like, remains basically unaffected in the
transition from the c¢-Si to the a-Si phase.

In Fig. 9 we show the p-state spectral functions. The k
values considered are the same as in Fig. 8 and the rela-
tive phases of the nearest-neighbor p orbitals for the two
extreme k values are also shown. At k=(0,0,0) the p-
state spectral function has zero amplitude on the I'}s (top
of the valence band) states and shows a peak at an energy
corresponding to the I' 5 states (bottom of the conduction
band). At k=(0, 0, 47/a,) states from the top of the
valence band (T'55) are picked up by the p-state spectral
functions. This behavior is exhibited by both the ¢-Si and
the a-Si p-state spectral functions. Near k=(0, 0, 47 /a)
a subband structure in the p-state spectral function [see
Fig. 9(a)] for the c-Si cluster can be seen. This subband
structure is absent from the a-Si spectral functions. The
different subbands seem to merge into one peak, which is
somewhat broader than the main peak in the c-Si spectral
function. As k goes from (0, 0, 47 /a,) to (0,0,0), the am-
plitude of the spectral function in the valence band de-
creases both for the a-Si and ¢-Si clusters and at
k=(0,0,0) only the states with I' |5 symmetry in the con-
duction band are present.

Although the k values considered in the study of the
spectral functions cannot be identified with the Bloch-
wave vectors, it seems plausible to conclude that the s-
like eigenstates in a-Si follow a dispersion relation similar
to that in ¢-Si for a substantial range of k near k=0. The
double-branched part of the p band appears as a simple
broad peak in the p-state spectral functions. In short, the
spectral functions in the disordered phase seem to exhibit
the broadening behavior suggested by Ziman (see Fig. 8
of Ref. 1).

V. CONCLUDING REMARKS

There are some weak points in the present electronic-
structure calculation. Most of them concern our applica-
tion of the two-center tight-binding Hamiltonian,

Hyp rep =Cridperer+(dp) *Spp e ldr)’? 21

in the open amorphous structure using the potential pa-
rameters ¢ and d, which characterize the atomic- and
interstitial-sphere potentials in crystalline Si. This ap-
proximation could, in principle, be responsible for the rel-
atively large density of states found in the gap region.

) p states ’_88
e

= 8 |
x 4 ) N
: g
N ———
-1.0-08 -06 -04 -02 O 02 04
Energy (Ry.)
41t
10
U -
_éf 6
x 4
2
0

1.0-08 -06 -04 -02 O dz OJA
Energy (Ry.)

FIG. 9. Spectral functions for p states in (a) the c-Si cluster
and (b) the a-Si model. The relative phases of the nearest-
neighbor orbitals for the two extreme values of k are shown to
the right of each figure.

Whereas the atomic-sphere approximation (ASA),
upon which the Hamiltonian in Eq. (21) is based, works
well for crystalline Si (and, for instance, yields a charge
density identical to that obtained from full-potential
linear-augmented-plane-wave calculations?*), this is not
necessarily so for amorphous Si, because there the inter-
stitial regions are not as compact as in the crystal, and
they are not all identical. In the a-Si model the devia-
tions from sphericity could presumably be regarded as
small, provided the interstitial regions were filled with
spheres of variable size. Hence, if instead of using only
one sphere size the radii of the interstitial and the atomic
spheres were adjusted locally in the amorphous structure,
large sphere overlaps could be avoided and the ASA
could be quite accurate. So far we have not attempted to
do so because a determination of local sphere size plus
calculation of potential parameters for each sphere
seemed tedious; we believe that the fluctuations of the on-
and off-site elements of the structure matrix, S, are far
more important than those of the potential parameters.

Another possibility for avoiding large overlaps of inter-
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stitial spheres onto atomic ones is to include the so-called
combined correction to the ASA.!%212327 With this
correction the overlap integrals are evaluated exactly
rather than as the sum of integrals over spheres, and the
requirement that the spheres be ‘“space filling” is no
longer valid. The potential in the interstitial region is
now described as a flat potential superposed onto spheri-
cal potentials whose spheres may be small. This ap-
proach has not yet been implemented for amorphous sys-
tems because the Hamiltonian for the recursion calcula-
tion is more complicated than Eq. (21).

Our electronic-structure calculation was not self-
consistent for the amorphous system. The main difficulty
underlying such a calculation is, again, that the potential
varies locally from one sphere to another and the poten-
tial parameters have to be calculated separately for each
sphere. This problem can be handled at various levels of
approximation.?! For amorphous metallic alloys current
approximations amount to calculating the average poten-
tial for all spheres of the same type, or calculating the po-
tential exactly for a relatively small number of spheres at
the center of the cluster and using the average value for
the rest. However, it is not obvious whether for a-Si any
of these approximations offer a substantial improvement
over the simplest treatment, which assumes the potential
in the Si and interstitial spheres to be the same as in the
corresponding crystalline structure. For a-Si a more
relevant approximation would probably be to allow local
rigid shifts of the Si and interstitial-sphere potentials;
that is, to allow the on-site potential parameters ¢ (and
not merely the on-site elements of the structure matrix)
to be site dependent. This leads to the problem of calcu-
lating Madelung shifts for a large amorphous cluster.
The standard Ewald technique demands enormous com-
putation times for this task.® Recently, an alternative
method involving the “unscreening” of the TB structure
matrix has been proposed,?"?> but remains to be tested
for large amorphous clusters.

Our calculations used a fairly large basis set consisting
of the nine s, p, and d orbitals for both the Si and intersti-
tial (E) sites. It is possible to reduce this set’®2! at the
expense of sacrificing the two-center Hamiltonian (21) for
a “down-folded” one which contains three-center terms
and/or the combined correction.?’” Such three-center
terms also occur in the second-order Hamiltonian (14b)
used in recursion calculations®” in order to avoid slicing
the energy range into narrow panels as done in first-order
calculations. A minimal TB basis set for the valence
band consists of the four Si s and p orbitals plus the E
(empty-sphere) s orbital; the Si d partial waves should be
treated explicitly in the Hamiltonian, i.e., through three-
center terms, whereas the E p and d waves are most easily
treated implicitly through the combined correction. For
the conduction band we have seen that the Si d orbitals
provide a substantial contribution to the density of states
and, for this energy region, the Si d and preferably also
the E p orbitals must be retained in the basis.’® In order
to describe accurately the partial waves not included in
the basis, the corresponding screening constants ag; must
be chosen to vanish and, as a consequence, smaller basis
sets have longer range.?'?® In a real-space calculation
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one would gain in terms of storage by having a smaller
basis, but the longer range of the structure matrix might
necessitate the use of a larger cluster, as well as more dis-
tant neighbor interactions. Thus, whereas in k-space (su-
percell) calculations a smaller basis set is of definite ad-
vantage, this is not necessarily true in recursion calcula-
tions.

The question as to what extent the high density of
states found in the gap region results from our use of the
recursion method, from our use of the TB LMTO ASA
method, from our correction of the gap given by the
local-density approximation, and from the structural
model for a-Si, cannot be answered in the present paper.
Conventional LMTO band-structure calculations for the
model crystal with 216 atoms per cell are presently being
performed in order to shed light on this question.”®

In spite of the various approximations and
simplifications, we believe that our first-principles calcu-
lation provides a fairly accurate description of the elec-
tronic properties of the a-Si model considered. In partic-
ular, our conclusion that an atom’s local density of states
is affected less by the short- and more by the
intermediate-range topology than is usually assumed
should be taken seriously. The same conclusion was re-
cently reached from similar calculations for amorphous
transition-metal alloys whose structures are closely
packed.?!

The agreement between the calculated total density of
states and the available experimental results suggests that
the structural model is a reasonably realistic representa-
tion of the bulk, homogeneous structure of a@-Si. This
model is therefore a worthy candidate for future studies
of the effects of hydrogen incorporation, alloying, or dop-
ing on the vibrational and electronic properties of a-Si.
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APPENDIX

The potential parameters cg; and dg; entering the
first-order two-center tight-binding Hamiltonian (21) are
calculated from the value and slope at the sphere bound-
ary, r =sg, of the normalized solution, ®,(7), of the ra-
dial Schrodinger equation at the energy E, g, using the
following relations:*""?*

[D(®(s))+1 +1][Df(s)—D(D(s))]
DP(s)+1+1

c*=E +sd(s)?

(A1)

and
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Df(s)—D(d(s))
Df(s)+1+1

(da)l/zz(s/w)H—l/2(s/2)1/2<p(s)

(A2)

Here and in the following we have dropped the subscripts
Rl and

D(d(s)= Al 20)]

A3
dlnr s (A3)

is the radial logarithmic derivative of ®, whereas
Df(s)=D((s/w)~' "' —(s /w)a; /[2121 +1)])  (A4)

is the radial logarithmic derivative of the tail expansion
of the envelope function K* With all spheres of the
same size, sy =w, and with the values in Eq. (4) for the
screening parameters we have

D&s)=2.3, 2.4, 2.6, and | , (A5)

for 1 =0,1,2 and / > 2, respectively. It is the existence of
a Wronskian relation between ®(r) and ®(r) which
makes it possible to evaluate the two-center, first-order
Hamiltonian without calculation of &(r).

The third potential parameter, the radial overlap, og;,
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depends on the radial logarithmic derivative of ®(r), and
it may be obtained from

[D(D(s))—D(s)|[D(D(s))—D(P(s)] |~

0%= [sd(s)? -
D(P(s))—Df(s)

(A6)

The standard'®2!~2% potential parameters, C=c?,
A=d?, and y, are those of the two-center Hamiltonian in
that special representation which is characterized by hav-
ing vanishing radial overlaps, i.e., by having 0¥ =0. This
is the so-called nearly orthogonal representation, and the
corresponding Hamiltonian is correct to second order
and equals H'? in Eq. (14a). The screening parameters,
v, are seen to be given by the condition that
D7(s)=D(®(s)), and C=c" and (A)"/2=(d")'? are
then given by (A1) and (A2), respectively. Elimination of
the values and slopes of ®(r) and ®(r) yields the follow-
ing relations between the potential parameters appropri-
ate for the TB and the nearly orthogonal representations:

172
c*—E, 1 a—y a—y
cE = = =112k,

0% A
(A7)
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