
VOLUME 37, NUMBER 11 15 APRIL 1988-I

Local tlensity of states in double-barrier resonant-tunneling structures

Thomas B.Bahder, John D. Bruno, Ralph G. Hay, and Clyde A. Morrison
U. S. Army Laboratory Command, Harry Diamond Laboratories, 28OO Powder Mil/ Road, Adelphi, Maryland 20783-1197

(Received 3 August 1987)

%'e calculate the local density of states between the barriers of a double-barrier resonant-
tunneling structure within the context of a simplified model. As the area of the barriers increases,
there is a smooth crossover in the density of states from a three-dimensional (30) square-root-of-

energy behavior to a 20 steplike behavior. The local 10 density of states corresponding to a Sxed
electron momentum transverse to the barriers is also calculated and shows sharp peaks at energies
corresponding to the quasibound states between the wells. The width of the lowest quasibound state
is computed as a function of barrier area.

I. INiaODUCTION

Recent advances in semiconductor growth techniques
have led to a widespread interest in the physics of ul-
trasmall semiconducting systems. Quantum wells, super-
lattices, double-barrier resonant-tunneling structures, and
a variety of other exotic structures have become the ob-
jects of extensive investigation. ' The interest in these
ultrasmall systems is motivated by two factors. First,
their optical and electrical properties have quasi-two-
dimensional (quasi-2D) features which frequently offer
distinct advantages in device applications. Second, actual
physical systems whose electron dynamics are quasi-20
provide one with a rich testing ground for theoretical
models.

One of the systems attracting considerable attention is
the double-barrier resonant-tunneling (DBRT) structure.
A typical structure consists of two thin (-50 A)
Al„Ga, „As layers, separated by an equally thin (-50
A) GaAs layer, all of which are embedded in a single
GaAs crystal. The regions to the left and right of the
barriers (usually beyond spacer layers) are n doped and
are usually contacted for transport studies. Current-
voltage characteristics of this device show an enhance-
ment in the current when the applied voltage aligns the
quasi-Fermi-energy of incoming electrons with the ener-
gies of the quasibound states in the quantum-well region.
A number of theoretical calculations have been done to
describe the nonlinear current response ' in this sys-
tem. However, controversy still exists regarding the
basic mechanism behind the nonlinearity. ' ' '
Despite the large number of studies to date, we have not
found in the literature any calculation of thc local density
of states (DOS) for even a highly simplified model of a
DSRT structure. The local DOS provides information
about resonant states and gives one a measure of the ex-
tent to which the dynamics are quasi-2D. The purpose of
this paper is to present such a calculation.

In Sec. II, using a simple model potential, we calculate
the eigenvalues and eigenfunctions of an effective-mass
Schrodinger equation. These results are used in Sec. III
to compute the local DOS in the quantum-well region of
the potential. In Sec. IV, we relate this local DOS to an

%'e consider a simpli5ed model, which is de6ned by the
following effective-mass Hamiltonian:

H = — V +V(z),2

2tfl.

where m, is the effective mass of electrons at the bottom
of the GaAs conduction band and

V(z) = V05(z +a)+ V05(z —a) .

In this model, the two Al„Ga& „As potential barriers
have been replaced by 5-function barriers of strength Vo,
separated by a distance 2a along the z axis (the growth
direction). The parameter Vo is given by

Vo bb, V, , ——

where 8 V, is the conduction-band discontinuity and b is
the barrier width.

%'e solve the one-electron Schrodinger equation

H+(r i =E+(r)

subject to periodic boundary conditions in the x and y
directions

4(x +L,y, z) =+(x,y, z),

4(x,y+L, z)=+(x,y, z} . (5b)

Since Eq. (4) is separable, we can write the wave function
in the product form

it~-r%(r}=—e ' f(z),L

where ki=(k„,k, 0), k„=2mn„/L, k~=2mn~/L, and

n„,n~ take the integer values 0, +l, +2, . . . . The z part
of the wave function, f(z), satisfies the reduced equation
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integral of a one-dimensional (1D) DOS. This latter DOS
has sharp peaks at energies corresponding to the quasi-
bound states between barriers.

II. THE MODEL
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2pal

g/i" (z)+ [e—V(z)]!}{i(z)=0,

where e=F. fi—ki/2m, . For g(z), we choose the vanish-
ing boundary conditions

P( L —/2) =0, (Sa)

!t( —a —0+ ) =f( —a +0+ },
f(a —0+ ) = tP(a +0+ ) .

(10a)

(10b)

g(L/2)=0 . (Sb)

The presence of the 5 functions imposes two jump-
discontinuity conditions on the derivative of g(z) at the
ti-function positions, which are given by

P'( —~ +0+ ) —f'( —~ —0+ ) =yg( —~), (9a)

1i'(a +0+ ) —1{'(a —0+ ) =yg(a), (9b)

where y=2m, Vojfi, and 0+ is a positive in6nitesimal
quantity. These two conditions may be found by in-
tegrating Eq. (7) over the infinitesimal intervals
( —a —0+, —a+0+) and (a —0+,a+0+). In addition,
we require the wave function to be continuous at the 5-
function positions

icos(ka)sin(kl —ka)+cos(ki) =0 .
k

{13a)

Here we have used the convenient definition 1 =L/2.
Solving the three homogeneous equations for the ratios,
we And

Ai(k)
cos (ka),

!
(13b)

A, (k)

A! (k) k
=1— sin(ka)cos(ka) . (13c)

Applying the same boundary conditions to the odd
solutions given in Eq. (12) and setting the determinant of
the coeScient matrix to zero leads to the equation
satisfied by the allowed wave vectors labeling the odd-
parity states:

For the even wave functions, when we impose the condi-
tions in Eqs. (Sb), (9b}, and (10b), we get a set of three
homogeneous equations for A, (k), Az(k), and A, (k).
To have a nontrivial solution, we require the determinant
of the coefBcient matrix to vanish. This gives an equation
for the allowed k's which label the even parity states:

To look for a solution to Eq. (7), we take advantage of
symmetry and solve the eigenvalue problem in the region
0 &z &L /2. We then look for even wave functions of the
form

A, (k )cos(kz), 0 & z & a

L
A &(k)cos(kz)+ A &(k)sin(kz), a &z &—

+sin(ka)sin(kl —ka)+sin(ki) =0 .
k

Solving the associated system of equations leads to

8i(k )
sin (ka) „!

81(k ) =1+ sin(ka)cos(ka) .
!

(14a)

(14c)

and odd wave functions of the form

81(k)sin(kz), 0&z &a
P,i,.(z)= . I.8i(k)cos(kz)+8&(k)sin(kz), a &z & —.

The constants A
&

and 8, are evaluated from the normali-
zation condition

J , I k.i, {z)l '~z = I

(12) where a=e (o) for the even (odd) solutions. We find

1
i sin(2ko ) a

2ki i

2

2k k
sin (2ka}—+sin(2ka)+ + cos (ka)

k

+—cos[k (i +a)]sin[k (i —a)]
1

kl

2

2k k k
sin (2ka) —+sin(2ka) — + cos (ka)+1

sin(2ka }—1 cos (ka)sin[k (1+a)]sin[k (i —a)]kI k 2k

1 sin(2kQ ) 0 ~ 4 I 2

2ki i k
=i 1 — + 1 —— sin(2ka)+ [sin {ka)+—„'sin (2ka)]

k
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+—cos[k (I +a)]sin[k (!—a)]1

kl
[sin (ka) ——'sin (2ka)] —+sin(2ka) —1

k
' --' ' -k

r

sin(2ka)+1 sin (ka)sin[k (I +a)]sin[k (I —a)]
kI k 2k

(16}

The energy eigenvalues associated with the eigenfunc-
tions in Eqs. (11)and (12) are given by

Ak
k

[~/2][E/E, ~'/2

D (z, E)=, I dq F,(q)cos' —
q

Sa OEO 0

+F,(q)sin —
q

Q

With vanishing boundary conditions on P(z) at z =+I,
the limit of zero-strength 5 functions (y~0) is identical
to the limit where the 5 functions are placed on the boun-
daries (a ~1). In both cases one recovers the 1D
particle-in-a-box problem, where A 3/A, =B2/B, =0,
A~/A, =B3/B, =1, and A, =B,=(2/L)'

III. 30 OKNSITY GF STATES

%'e now construct the single-particle Green*s function

%~~( r )+'i, ( r' )
G(r, r', E)=g g g E —E), +tO

u

F,(q}=
q + U cos (q) Uq s—in(2q)

1

1+ (1+e'")I', U

2'

F,(q)=
q +U sin (q)+Uqsin(2q)

(23a)

where the eigenstates 4 i,(r) are given by Eqs. (6), (11),
and (12), and k=(lri, k ). Here a (=e or o) labels a
state's parity, lti=(k„, k~ ), and k, are given by the roots
of Eqs. (13a) and (14a) for even- and odd-parity states, re-
spectively. Using the Green's function, we calculate the
local DOS (including both spins):

D (z,E)= ——ImG (r, r;E)2

g g g ~ g k (z)
~

5(E Ei, ) . (20)—2

In the limit when the system size goes to in6nity, with
a held constant, the density of a11owed wave vectors be-
comes 2m/L. This allows us to change the sums in Eq.
(20) to integrals

lim IA ia/I ~0 0
=F,(q),

lim IBi ——F,(q) .
a/I ~0 0

2.0

1+ (1—e' ~)
2'

the dimensionless otential strength U is defined by
U =ya =2m Voa /, and a convenient energy scale,
Eo vr fi~/Sm, a, h——as been introduced. The functions
F,(q) and F,(q) are related to the wave-function ampli-
tudes by

D(z, E)=
3 J d'k,

x I dk g ( f I, (z)
~

'5(E —Ek) .

CF'

0.0- „"

—0.5P

-1.0-

The integration over ki=(k„,k ) is over all positive and
negative wave vectors, whereas the z-component wave
vector k is integrated over positive values only. Using
the explicit form of the wave functions and changing to
spherical momentum coordinates, we have for the region
—Q Qz g+9

5.0 10.0
Re q

15.0 20.0

FIG. 1. The locations of the poles of I', (q) are shown for
U =3. The poles of I', fq) 4,

'not shown) lie between the poles of
F, (q).
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The local DOS of states given by Eq. (22) is a sum of two
terms. The term containing F, (q) gives the local density
of even states in the well, and the term with F, (q) gives
the local density of odd states. Each function F (q),
o.=e or 0, is an even function with an in6nite sequence of
(complex-conjugate) pairs of simple poles in the complex

q plane (see Fig. 1). Each pair of poles with Re(q)&0
corresponds to one resonance. In the limit U~o (no 5-
function barriers), these poles move away from the real-q
axis to infinity and F (q) ~1 on the real axis. In this lim-
it, D (z, E) is simply the local DOS for a free-electron gas
in a box of volume 2'. ~.

As we approach the limit of strong barriers, U g~ I, the
poles of the functions F,(q) move in toward the real axis
in pairs (one pole above and one pole below) (see Fig. 1).
In the region of Uygl, and O~q & U, the functions
F (q) are well represented by a sum of Lorentzians

F (q)-g
(q —q,„) +I" „

where the real and imaginary positions of the poles,

q „kiI „, are functions of U. For U~~, we have

1,„~0,q,„~(2n +1)m/2, and q,„~no. .

In this limit we find

20.0" ~ ~

LLI 18.6-
Cl

m 12.9-
LLI

8.0-

0.5—

0.4—

''bio
'

5.0 10.0 45.0
0

.0 6.5 1.0 1.5 2.0 2.5 3.0 3.5 4.6 4.5 5.0

E,/E()

The function N(E} gives the number of states in the well
per unit energy interval. In the limit of weak barriers,
Ug~1, we 6nd

FEG. 3. On the outer axis, a plot of 2EOXID(E, ) vs E, /Eo is
shown. In the inset, the solid line is a plot of the energy of the
lowest resonance (lowest energy peak in the DOS} vs the dimen-
sionless potential U. The vertical distance between the dotted
curves gives the full width at half maximum of the lowest reso-
nant level, as a function of U.

hm F (q)~m g 5(q —q „}.
U~ co

(25)

Rather than look at the local DOS in more detail, we
consider its integral over the well volume

1 2in

2m

' 3/2

2aJ '&E,

(&/2)(E/Eo) /

&(E)=
2 J dq F,(q)+F, (q)

+ [F,(q) —F,(q)]

sin(2q)

2'
(26)

which is the DOS for a free-electron gas in a volume
2aL .

In the limit of strong barriers, U py I, we find

U~co ~I 2 oo

X(E) =
2 g e(E nEO), —

VER

25.0

6.9-

5.0-
20.0.

4.6
04

2.6 3.6 4.6 5.0 8.0 7.6 8.0
EIE() 66, "

6.6 6.2 6.4 6.6 6.8 1.9 1.2

FIG. 2. The dimensionless DOS between barriers,
(~ A~/mL )X(E},is plotted as a function of dimensionless elec-
tron energy, E/Eo, for values of U=O„1,3,5, 10,20. Higher
values of U correspond to an increased steplike structure.

E,/Eo

FEQ. 4. The 1D DOS, 2EoX»(E, ), is platted vs E, /Eo in

the region of the resonance peak for several values of U.
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where e(x)=1 for x ~0 and e(x)=0 for x &0. This is
the well-known staircaselike DOS one ~ould expect in a
quasi-2D system. For intermediate values of U, the DOS
X(E) is plotted in Fig. 2.

IV. 19DKNSII Y GF STATES

Since the Hamiltonian in Eq. (1) conserves transverse
electron momentum, k„and k„are good quantum num-

bers, and an electron placed in a state of definite kt will

remain in this state inde6nitely. %'ith this in mind we
consider the Green's function

in which the summation on k~ is omitted. Using this
Green's function we define the 1D local DOS (including
both spins) by

2D io(z, E, )= ——ImG, D(r, r E)

, X X I it.k.(z)
I

'
k.

(29)

where 1( i. (z) is given in Eqs. (11) and (12), and

E, =E —fi ki/2m, . The function D,D(z, E, ) gives the
number of states (labeled by a and k ) per unit volume,
for a given ki. This function displays peaks which are as-
sociated with the resonances. Substituting the explicit
form of the wave functions into Eq. (29), we find

(z,E )= F, —+e cos — +e1 m' —
2 mz

1D & z 2Q
I

+I", —vs sin ve
m' . 2 m'Z

2 20

(30)

where the dimensionless z component of energy, e, is
defined by s=E, /Eo. Again, rather than looking at this
in more detail, we consider the integral of D iD(z, E, ) over
the well volume

&iD(E, )=I D,D(z, E, )d'r
well

sin(n&e)
c. 1+

2Eo&e ' 2 ~v s

sin(m&E)

(31)

This function specifies the number of states in the well la-
beled by a,k, per unit energy, for a given kz. In the lim-
it of weak barriers, U~0, the function
N, D(Ez)~l/(Eoe' ) which is the DOS for a 1D free-
electron gas. In the limit of strong barriers, U~ 00, the
number of states in the well per unit energy is just a sum
of 5 functions. In this limit the resonant states are the
eigenstates of the 1D particle-in-a-box problem and the
resonance peaks shift to the appropriate limiting eigen-
values. For intermediate values of U (and energies
0 ~ e & U), the function N, o(E, ) is approximately a sum
of Lorentzians (see Fig. 3). The lowest energy peak is
composed predominantly of even wave functions, while
the second peak is composed mostly of the odd wave
functions. In Fig. 4 we show the DOS X,D(E) for several
values of U, in the energy region of the lowest resonant
level. The inset of Fig. 3 shows the peak position of the
lowest resonance as a function of barrier strength U. For
energies much larger than U, c gy U, the functions
F ((m/2)v e)~1 and the DOS returns to its value in the
absence of barriers, Nio(E, )~ I/(Eo&s).

&. SUMMARY

Within the context of a simple model for a double-
barrier structure, we solved for the normalized eigen-
states. Using these eigenstates we calculated the 3D local
DOS between the barriers. This quantity shows a cross-
over from a 3D square-root-of-energy behavior to a
quasi-2D staircaselike behavior, as the barrier strength U
is increased. For electron energies c. AU the DOS al-
ways returns to the free-electron DOS. %e also calculat-
ed the 1D DOS for a given transverse momentum k~.
This quantity shows sharp peaks at energies correspond-
ing to the resonant states. In a more realistic model, one
can use the width of the lowest peak in X&D(Ez ) to reli-
ably estimate the lifetime of the lowest quasibound state.
The inverse of this lifetime gives an estimate of the
characteristic frequency above which resonant contribu-
tion to the current becomes negligible.
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