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Structure of an icosahedral Al-Mn quasicrystal
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A structure model of an icosahedral Al-Mn quasicrystal is proposed based on the structure-factor
calculation and the x-ray and neutron powder-di8'raction patterns of rapidly solidified Al-Mn alloys.
The model has a local atomic arrangement similar to that of the cubic a-Al-Mn-Si and has
icosahedral point symmetry. To derive the model six-dimensional description of the three-
dimensional Penrose lattice is extended to more general quasicrystals. The model explains the x-ray
and neutron diffraction intensity, chemical composition, and density of the icosahedral quasicrystal.

I. INTRODUCTION

Since the discovery of s quasicrystal with icosahedral
point symmetry in a rapidly solidified Al-Mn alloy by
Shechtman et al. ,

' extensive studies have been made to
clarify this nonperiodic structure giving a sharp
diffraction pattern. There are three methods to con-
struct such nonperiodic quasicrystal packings: de6ation-
rule approach, "projection approach, ' and general-
ized dual method. '3 Several models have been proposed
on the basis of the above three methods or of the high-
resolution transmission electron microscopy. ' '~3 In
order to determine the structure of the Al-Mn alloy, it is
important to show that the model explains the di8'raction
intensity. Four groups have calculated the structure fac-
tors for several models. Levine and Steinhardt, ' Duneau
and Katz, and Elser and Henley have shown simple
models giving diffraction patterns similar to the observed
ones in the Al-Mn alloy. In these models only one kind
of point atom is taken into account, so these are incom-
plete as models of an Al-Mn quasicrystal. The results,
however, suggest that the structure is related to the
three-dimensional (3D) Penrose lattice. " Ishihara and
Shingu' generalized the projection method to treat more
realistic cases and calculated the structure factors of two
models which give reasonable chemical compositions,
densities, and interatomic distances. Unfortunately,
these models cannot explain the dil'rsction intensity of
the Al-Mn alloy. For other models, the diffraction inten-
sity hss not been shown. Therefore the model which ex-
plains the diftrsction intensity snd gives a reasonable
chemical composition has not yet been found.

Apart from the icosahedral symmetry, Elser and Hen-
ley pointed out that the a-Al-Mn-Si (ct phase) gives a
di8raction intensity similar to that of the quasicrystsl for
many reNections and this csn be regarded as the cubic
modi5cstion of the icosahedral quasicrystal. This sug-
gests that the icosahedral phase has similar local atomic
configuration to the o, phase. Guyot and Audier pro-
posed such a model, but its dilraction pattern hss not
been shown.

In this paper we apply the section method ' ' to the
Al-Mn alloy in order to derive the structure model of an
icosahedral quasicrystal, calculate the structure factors
for several models including the Guyot-Audier model,
and compare the results. This method is equivalent to
the projection method but it is more convenient to con-
sider the symmetry of the quasicrystals. Similar to the
superspace description of the modulated structures, the
structure of the quasicrystal is given by the three-
dimensional section of the crystal in the superspace and
its symmetry is specified by s superspace group. In par-
ticular, the superspace group explains the systematic ex-
tinction rules due to the hyperscrew axis and hyperglide
plane which are observed in the decagonal phase (d
phase) of an Al-Mn quasicrystal, though no such rule ex-
ists in the icosahedral phase (i phase) treated in this pa-
per. Therefore the section method is appropriate to treat
sll the quasiperiodic crystals based on s uni6ed method.
In the present icosahedral case, the structure is given in
the six-dimensional (6D) space and its symmetry is
speci5ed by a six-dimensional superspace group.

The atomic configuration is derived from a six-
dimensional periodic structure as a 30 section, while the
dil'raction pattern is regarded as the projection of the
Fourier spectrum of the 6D crystal onto the 3D space.
This is similar to the superspace ap roach in three-
dimensionally modulated structures. Since only
powder-dilraction pattens are available st present for
quantitative diffraction intensity snd the powder data
provide limited information, we use x-ray and neutron
powder-diffraction data to check the validity of the mod-
el. The latter gives information independent of the form-
er because the scattering factor is quite different from
that of x ray data. In particular, when an appropriate
number of Mn atoms are replaced by Fe atoms, we can
get the contribution only from the Al atom, provided
that Mn snd Fe are randomly distributed at the same
site.

The arrangement of the paper is as follows. In Sec. II,
we de6ne the 60 coordinate system and discuss the in-
dexing problem occurring in the qussicrystal. A model is
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proposed in Sec. III. Its structure factor is given in Sec.
IV. In Sec. V, the calculated difFraction patterns are
compared with the x-ray and neutron powder-difFraction
experiments, and in the last section the other models and
implications obtained froin the present analysis are dis-
cussed.

II. ICOSAHEDRAL LAx uCK
IN THE SIX-DIMENSIONAL SPACE

A. Hyyercubic and icosalljedral lattices

The structure analysis is based on the 60 description
of an icosahedral quasicrystal. The real 3D structure is
given by a 3D section of a periodic structure in the 6D
space, while the diffraction pattern is given by the projec-
tion of a 6D reciprocal lattice onto the usual 3D space as
in the 6D description of modulated structures with 3D
modulation. In order to calculate the structure factor
of a nonperiodic structure in the 3D space, a model in the
3D space is embedded into a periodic 6D crystal. Then
the structure factor is given by the Fourier spectra of the
60 crystal.

The difFraction pattern and structure of an icosahedral
quasicrystal are conveniently described in the 6D
icosahedral coordinate system. The 6D space is divided
into the 3D usual space and its orthogonal complement.
We call these subspaces the external and internal spaces.
When a reciprocal-lattice vector is divided into the exter-
nal and internal components, the former represents the
position of the diffraction spot in the real space. The
difFraction pattern is indexable by using the six vectors a;
which are directed to the face centers of the regular dode-
cahedron. These have the orthogonal coordinates

ai ——(0,0, 1),
a = (sin8 cos(2m j/5), sin8 sin(2m j/5), cos8)

(j =2,3, . . . , 6) (1)

where 8 is the angle between the nearest fivefold axes and
is given by arccos(1/&5). The vectors construct the basis
of the integral matrix representation of the icosahedral
point group. These are, on the other hand, regarded as
the projection of the unit vectors in the 6D reciprocal lat-
tice. From the action of the icosahedral symmetry opera-
tors to these vectors, we have the corresponding internal
components: a& and —azj. The unit vectors in the 60
reciprocal lattice are expressed as

1 1, ]
2Q

$7 a] p dJ aj j 822a ' e

and their reciprocal vectors are

d, =~(a»ca, ), d, =a(a, —cazj) (j =2, . . . , 6),

where a is the lattice constant and e is an arbitrary real
number.

The metric tensor has a form

8 8
8 A 8 —8 —8 8
8 8 A 8 —8 —8
8 —8 8 A 8 —8
8 —8 —8 8 A 8
8 8 —8 —8 8

where A and 8 are a (1+c ) and a (1—c )/&5. The
metric tensor for the reciprocal lattice has the same form
as (4), but A and 8 are then (1+c )/(4a ) and
(I —c )/(4&5a2}. When c= 1, the unit vectors are mu-
tually orthogonal and the lattice is hypercubic.

The diffraction vector is assigned with six integersh„.. . , h6 as q= g, h d;. When we decompose a
reciprocal-lattice vector q into the external-space com-
ponent q' and the internal-space component q', q'
represents the observed position of the reflection from the
definition mentioned above while q' is related to the
diffraction intensity as shown in Sec. IV.

8. Bravais lattice and indexing problem

There are three Bravais lattices in the icosahedral sys-
tem in the 6D space, which are denoted as the primitive,
body-centered, and face-centered lattices. These are dis-
tinguished by the extinction rules for general reflections.
The primitive lattice has no extinction rules. For the
body-centered lattice, the reflection condition is g, h,
even, and for the face-centered one, it is expressed as h,
(i =1,2, . . . , 6) aB even or all odd. Noting that the last
case also fulfills the condition for the body-centered lat-
tice, we can easily distinguish the primitive lattice from
the other two: If we have the reflections with g; h, odd
(odd-parity reflections) then the lattice is primitive. The
determination of the Bravais lattice is therefore simple.
However, we have to note that the indexing of the
reflection is not unique in the icosahedral quasicrystal as
discussed by Elser. If the odd-parity reflections do not
exist, it is possible to take other unit vectors d,' which are
related to d; by d,'. = g S; d, , where the matrix Sis given
by

1 1 1 1 1 1

1 1 1 —1 —1 1

1 1 1 1 —1 —1

1 —1 1 1 1 —1

1 —1 —1 1 1 1

1 1 —1 —1 1 1

The matrix also transforms the indices h; by the same
rule Ii = g. S;Jhj and the extinction rules are left invari-
ant under the change of the unit vectors. Since detS=1,
d,

'
span the same lattice as d; together with the corre-

sponding centering translation vectors. These give
difFerent settings for the same lattice and indicate that
there are an in6nite number of settings. For the primitive
lattice, d'; related with d, by $3=2S+1 (instead of S)
span the same lattice. [Note that —,'(1,1,1,1,1,1), etc. , are
not the lattice points in this case.] The matrix S inflates
the external component by the factor of ~ and deflates the



37

internal component by the same factor.
From the above considerations, we can conclude that

the lattice constant of the centered lattice has an ambi-
guity of the factor of ~ and for the primitive one, the fac-
tor is v . In the present case, there are odd-parity
refiections, so that tlM lattice is primitive. The ambiguity
of the lattice constant means that there are an in6nite
number of descriptions for the same structure as shown
below. Hereafter we consider only the primitive lattice.

III. ICGSAHEDRAL CRYSTAL
IN THE SIX-DIMENSIONAL SPACE

%e discuss the basic ideas necessary to construct a
model with the local atomic arrangement similar to that
of the o; phase in order.

FIG. 2. Possib1e atomic sites in the unit rhombohedra of the
30 Penrose lattice. Mn atoms take the vertex positions (large
circle) while Al(a) atoms are at the edge center (triangle). Al(P)
and linking atoms occupy the vertex and one of two face-
diagonal positions. The face-diagonal positions divide the
longer face diagonal into the ratio of r:~ '.v

2 (small circle).

A. The 3D Penrole lattice

As shown 5rst by Duneau and Katz, the di8'raction
patterns of the 3D Penrose lattice are similar to those of
the Al-Mn alloy. This suggests that the i phase is related
to the 30 Penrose lattice. The 30 Penrose lattice is
given by the section of the 6D crystal in which the atom
is located at the origin of the 6D unit ceil. The atom is
continuous within the domain defined by the set of
r= g A, d' ( ——,

' & A~ & —,
' ), where the superscript i means

the internal component. The domain is the rhombic
triacontahedron with the edge length equal to ca [Fig.
1(a)]. The occupation function is 1 within the domain
and 0 otherwise. The domain is referred to as the occu-
pation domain hereafter. The structure factor is given by
the Fourier transformation of this crystal. This deriva-
tion of the 3D Penrose lattice is equivalent to the projec-
tion method developed by several people. '2 In this
case a agrees with the edge length of two unit rhombohe-
dra in the 3D Penrose lattice (Fig. 2). There are, howev-
er, an infinite number of derivations which are within the
related ambiguity of the lattice constant a in Eq. (3) of
the factor of v, and for every one of these lattice con-
stants, we can derive the same 3D Penrose lattice from an
atom with an appropriate occupation function placed at
each 6D lattice point as shown below. The same lattice is
also spanned by d,'= QJ (S );Jd~, as shown in the previ-

ous section, but their external components in6ate and
internal components debate by the factor of ~ . The new
unit vectors d'; are expressed as d', =a'(a&, c'a&),

dj =a '(a~, —c'a&~ ) (j=2, . . . , 6) with a ' =r a, c ' =r sc

It is clear that if we use the same occupation function in
this lattice, we have the same 3D section as the original
setting described above. Then the rhombic triacon-
tahedral occupation domain is expressed in terms of d,' as
the set of r= g A, d' ( —v /2&A, &~ /2) Thus .we
have an in6nite number of descriptions for the same
structure. The situation is analogous to that in the
monoclinic and triclinic lattices in the 30 space. For
these cases, we can select a reduced cell in which the off-
diagonal terms in the metric tensor is minimum in the ab-
solute value. For the present case, the reduced cell can-
not be de6ned in such a way because the scale factor e in
the internal space does not have a physical meaning and
this makes it possible to reduce the off-diagonal elements
to an arbitrarily small value for any setting. (This means
that we can take the hypercubic lattice, but it should be
noted that the symmetry of the structure is still
icosahedral because the atom is continuous in the inter-
nal space and as a result the external space is not
equivalent to the internal space. ) Accordingly, the selec-
tion of the unit vectors is left ambiguous and the lattice
constant cannot be determined uniquely. The above con-
sideration concludes that the two settings employed by
Elser and Bancel et al. are equivalent. For conveni-
ence we employ the former setting. Then a=4.6 A for
the Al-Mn alloy.

B. The Mackay icosahedron

Y
JI

FIG. 1. {a}The occupation domain of the 30 Penrose lattice
(solid line) and that of the icosahedral site (dotted line). (b) The
shape of the occupation domain of the vacant site. This is ob-
tained from the occupation domain of the icosahedral site by
truncating a tip on the Svefold axis (Ref. 27).

%'hen we place an atom at each vertex derived by the
method mentioned above (vertex model), the model
shows di8'raction patterns similar to those of Al-Mn al-
loy. From this fact, we 6rst considered models with sim-
ple decorations which give a reasonable chemical compo-
sition and density. The models, however, failed to ex-
plain the di6'raction pattern except for the disorder model
in which Al atoms occupy some sites with the probability
less than —,'. (See Sec. VIA. ) On the other hand, Elser
et al. point out that the cubic a phase shows the
di8'raction intensity analogous to that of the quasicrystal
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besides its symmetry. This consists of bcc packing of the
icosahedral clusters including 42 Al, 2 Mn, and linking
atoms connecting the icosahedral clusters. The center of
this icosahedron (Mackay icosahedron) is vacant. We
consider the quaslcrystal consisting of the Mackay
icosahedra. The essential difference in between the i
phase and a phase is the symmetry. In order to consider
the symmetry, we remark upon a difkrent characteristic
of the 3D Penrose lattice and the a phase. The skeleton
of both structures consists of acute and obtuse golden
rhombohedra with edge length of about 4.6 A. All of
their rhombic faces are the golden rhombus with two di-

agonals having the ratio of the golden number
~=(1+v 5)/2. Both phases have the sites surrounded

by 12 icosahedrally coordinated vertices (hereafter re-
ferred to as the icosahedral sites). The site is vacant, and
the 12 neighboring vertices are occupied by Mn in the n
phase. These Mn and the 42 Al construct the Mackay
icosahedron around the icosahedral site. The distribution
of the icosahedral sites in the 3D Penrose lattice is
known. 7 This is obtained from the small triacontahedral
occupation domain analogous to that mentioned in Sec.
III A but with an edge length of r ca [dashed triacon-
tahegron in Fig. 1(a)). If we can construct the Mackay
icosahedron at all the icosahedral sites in the 3D Penrose
lattice, we will have the icosahedral structure with the lo-
cal atomic arrangement similar to that of the a phase.
Such a model is given by taking the four steps shown
below,

First we consider the distribution of the centers of the
Mackay icosahedra. In the a phase, the nearest-neighbor
distance of the Mackay icosahedron is 2.384a while the
2~ sector of icosahedral sites in the 3D Penrose lattice
has a shorter nearest-neighbor distance of a. These sites
correspond to the places where two Mackay icosahedra
penetrate within each other. Such sites are not present in
the a phase. In order to avoid such a short distance, the
small triacontahedral occupation domain mentioned
above has to be truncated at the tip along the fivefold
axis. The truncated portion is ~ of the triacontahed-
ron. The shape of this occupation domain (hereafter re-
ferred to as the occupation domain of vacant sites} is il-
lustrated in Fig. 1(b).

Around the vacant sites obtained this way, 12 Mn
atoms are situated forming the regular icosahedron.
%hen the origin is taken at the vacant site, such Mn sites
are obtained from the occupation domains with the same
shape and size as the occupation domain of vacant sites.
These are located at d& and positions related with this by
the symmetry operations of the icosahedral m 3 5. This is
because d, has no internal component. This site is invari-
ant under a fivefold axis and a mirror plane including the
axis: The site symmetry is 5m. Therefore all (120) the
symmetry operations in m35 create 12 equivalent posi-
tions. Their internal components are zero and therefore
all the occupation domains for these positions are over-
lapped in the internal space. This domain is transformed
onto itself by all the symmetry operators because it has
icosahedral symmetry as shown in Fig. 1(b).

Similarly, 12 Al atoms at the edge center joining the
vacant site and the neighboring 12 Mn sites are obtained

from the same occupation domain at kd; /2
(j=1,2, . . . , 6), which are related with d;/2 by the sym-
metry operations. This is referred to as an Al(a) site.
Their site symmetry is also 5m. It is clear that if the va-
cant sites appear in the external space, then these 12 Mn
and 12 Al sites also appear because their occupation
domains spread in the internal space over the same range
as that of the vacant sites.

The other 30 Al atoms [Al(P)] should be located on
(d, —dz)' and sites derived from this by the symmetry
operations. %hen the same occupation domains are
placed at (d, —12)' and equivalent positions, there exist
30 atoms around each lattice point which have the same
internal position. These sites are invariant under the
twofold axis and the mirror planes including the axis, and
their site symmetry is 2mm. The position in the external
space is on the longer face diagonal of each rhombus of
the acute and obtuse rhombohedra which divides its
length into r:r '. (See Fig. 2.} Since their occupation
domain agrees with that of the vacant sites, if a vacant
site appears in the external space, 30 Al atoms appear
around it.

This quasicrystal consisting of only Mackay icosahedra
has the icosahedral point group m 3 5, the order of which
is 120. The superspace group is symmorphic and the lat-
tice is primitive: this has no centering translation. The
superspace group is Pm 3 5. The model gives a density of
2.68 g/cm which is much smaller than that (3.52 g/cm )

of an icosahedral A14Mn structure. The chemical com-
position is about A13 3Mn (23.2 at. % Mn). The Mn per-
centage is about the same as that of the stoichiometric
composition (22 at. % Mn). This implies that Mn link-
ing atoms exist together with Al linking atoms, as in the
a-phase.

C. Linking atoms

%e consider the occupation domain to have the same
shape as the occupation domain of the vacant sites, but
enlarged by a factor (in a hnear dimension) of r . When
this occupation domain is situated at each lattice point of
the 6D lattice, we have a 3D Penrose pattern decorated
with an additional vertex on the face diagonal of most
golden rhombuses and on the body diagonal of some (few)
acute rhombohedra in the usual 30 Penrose pattern. The
relation between the decorated 30 Penrose and the usual
30 Penrose pattern is the same as that between the
icosahedral vertex and the 3D Penrose pattern inflated
with a factor of v . The latter is examined by Henley and
therefore the nature of the decorated Penrose pattern is
known. In particular, it is noted that its nearest-
neighbor distance is 0.563a (2.59 A for a=4.6 A). The
crystal chemical consideration allows us to place Al or
Mn atoms for all the vertices. However, the center of the
Mackay icosahedron should be vacant. This is achieved
by considering the occupation domain with the vacant
core at the center, the shape of which agrees with that of
the occupation domain of the vacant sites. Furthermore,
since this occupation domain includes the 12 occupation
domains for Mn sites and 30 occupation domains for
Al(P) sites shown in Fig. 3 (see Appendix), we have to re-
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FIG. 3. (a) A part of the occupation domain cluster, which
consists of the domains for 12 Mn. This is located at the center
of the cluster shown in (b). Each domain has the shape shown
in Fig. 1(b) but is denoted by a sphere with the same volume for
simplicity, Each domain is in contact with the other sharing a
plane normal to the twofold axis of the domain. The figure
shows the view along the fivefold axis of the cluster. (b) The oc-
cupation domain cluster around each lattice point. The
domains for 12 Mn and 30 Al(P) construct a cluster with the
icosahedral symmetry. These domains are in contact with each
other sharing ten planes of Fig. 1(b) around the Svefold axis or
the plane normal to the twofold axis. Only 25 domains for
A1(P) and one for Mn (shaded part) are visible.

move these occupation domains to get the occupation
domain of the linking atom. Thus for the linking atom,
the occupation domain has a complex shape including 43
vacant cores. When we place atoms for all the sites de-
rived from such an occupation domain, me have an unac-

ceptably large density. From this reason, we assume that
the linking atom takes these vertices with the occupation
probability of —,'. In order to get the reasonable chemical
composition, it is assumed that the chemical composition
of the linking atom is the same as that of the Mackay
icosahedron and Mn and Al are randomly distributed at
these sites. This model gives a reasonable density of 3.55
g/cm and the chemical composition of Ali 3Mn (23.2
at. % Mn}.

IV. STRUCTURE FACTOR

The structure factor of the model is given by the
Fourier transformation of the 6D crystal. Although we
can derive the analytical structure-factor formula for
such a complex structure model, we employ an approxi-
mation in which the shape of each occupation domain in
the internal space is replaced anth spheres having the
same volume. This is a good approximation because each
occupation domain is nearly spherical. The validity of
the approximation for the strong reflection is confirmed
by comparing the structure factor of the 30 Penrose pat-
tern in this approximation with the exact one. We em-
ploy the isotropic overall temperature factor for simplici-
ty. The effect of the phason condensation is taken into
account by an additional factor exp[ —8'(q') /4]. The
structure factor in this approximation is given by

F(q)=exp[ —8(q') /4 —8'(q') /4]g f"(q')p"m" g exp 2ni gh (Rx") +ii 7. F"(R 'q')
P (R

I
v) j

(6)

where 8 is the isotropic overall temperature factor,
f"(q') represents the atomic scattering factor of pth
atom in the 60 unit cell, p" the occupation probability,
m" the multiplicity, R the rotation operator in the
icosahedral group, and (Rx"}, and r, are the 1; com-
ponents of the positional vector Rx" and translation vec-
tor ~ accompanied by the rotation operator. The super-
space group is symmorphic as mentioned above, so that
v, =0 (mod 1) for all the rotation operators. Fg(q') stands
for the Fourier integral of the function which takes one
swithin the sphere of ihe radius r" and zero otherwise.
This is written as

Fg(q') =4m(r") (sins" s "coss")/(s")—i

with s"=2m'q'r". In Eq. (6), the summation with respect
to p is takeo over all the independent atoms. In the
present case there are four independent atoBl sites Blen-
tioned in the previous section. Of these, the linking-atom
site has a complex occupation domain with vacant core.
To calculate the structure factor for this site, we use the
linearity of the Fourier transformation. The structure
factor is obtained, from the structure factor of the large
sphere, by subtracting the contribution of the vacant
cores. The summation of (R

~

~) is over all (120) symme-
try operators of the icosahedral group. The matrix repre-

sentation of the rotation operator R is defined by
Rd,'= g R,J 'd' Then (Rx. }' is expressed as g R,~x~.
The matrix representation of the icosahedral group gen-
erators has been given by Janssen. As is clear from Eq.
(7), the diffraction intensity strongly depends on the value
of q'. The dependence of (q'} means that only
reflections with small q give strong diffraction intensities,
though the phase factor in (6) may reduce the intensity of
several reflections. It should be noted that (7) is appli-
cable to all quasicrystals with spherical occupation
domains. In more general cases in which the occupation
domain is not spherical, Fic(q ) in (7) will depend on the
direction of q' in addition to its length.

U. DIFFRACTION PATTERNS

The values of xI', r", p", and mI' for the independent
atoms in the present model are Usted in Table I and the
calculated electron dil'raction patterns from this model
are shown in Fig. 4 together with the observed patterns
for A14Mn. (In Table I, the positions of each atom
(di, di/2, di —12}are expressed in terms of the 6D coor-
dinates x .. The coordinates are obtained by using the re-
lations of d;=[1,+(12+1,+ d„+d,+16)/&5]/2, etc. )
The figure shovrs that the electron diffraction patterns
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FIG. 4. The observed (top) and calculated (bottom) electron
diffraction patterns of the icosahedral phase of an Al-Mn alloy.
(a) Fivefold axis. (b) Threefold axis. (c) Twofold axis. The
structure factors within the range of —5 & h; & 5 {i =1, . . . , 6)
are calculated and reAections above a given threshold are plot-
ted. The radii of the circles are proportional to the structure
factors.
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along fivefold, threefold, and twofold axes are well ex-
plained by the model. The x-ray powder pattern is illus-
trated in Fig. 5(d). This simulates an experimental result
in Fig. 5(e) taken from A17~Si6Mn20 with Cu Ka radiation
monochromatized by graphite monochromater. The pa-
rameters in this analysis are 8 and 8', which are adjusted
so as to explain the diFraction intensity. The experimen-
tal results require a large temperature factor, 8=4 A,
and 8' =4(ca) . These suggest that Mn and Al atoms are
statistically distributed within the range of about +0.23
A around their regular positions and the large structural
fluctuation due to the phason, exists. '

The neutron powder-difraction pattern gives new in-
formation. Dubois et al. carried out the neutron
diffraction experiment for A185Si,Mn&4 and

AlssSi&(MnozzFe02s), 4. The former shows a difFraction
pattern different from the x-ray pattern because Al and
Mn have a scattering factor with opposite sign. In the
latter, the same site is occupied randomly by Mn and Fe

I

3P SP 7 13 P

and the ratio of Mn and Fe are selected so as to cancel
the scattering factors with each other. (Mn and Fe have
neutron scattering factors with opposite sign. ) This pro-
vides information on the Al site. Respecting that the
powder-di8raction pattern gives only limited information

lp P IO 150

2&(de@)
FIG. 5. The (a)-(d) calculated and (e) observed x-ray powder

dil'raction patterns. (a) Vertex model. (b) Guyot-Audier model.
(c) Modi6ed Hirage-Hirabayashi model. (d) The model pro-
posed in this paper. (e) A17&Si6Mn20. The half width at half
maximum is assumed to be 0.25' in the calculation and the sin-

gle Gaussian line shape is employed.

TABLE I. The atom coordinates x; (i = 1, . . . , 6), the radius of the spherical occupation domain r, cg, the occupation probability

p and the multiplicity m for each atomic site. Al/Mn(2)-Al/Mn(4) with negative p must be taken into account for the vacant cores
in the occupation domain of the linking atom.

Xl X2 X4 X5 X6

Al{o. )

Al(P)

L1nklng atoIH

Al/Mn(1)

0.5

QQ

O.O

0.5

0.2236

0.1118
—0.2764

0.0

0.2236
—0.2764

0.2236

0.1118

0.0

0.0
0.0

0.0

0.2236

0.1118

0.4472

0.0
0.0
0.2236

0.4472

0.2236

0.1118

0.4472

0.0

0.0
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FIG. 6. The calculated [(a) and {b)]and observed [(c) and (d)]
neutron powderMiFraction patterns (Rcf. 30}. (a) The total con-

tribution of the present model. (b) Aj contribution. (c)
A &Sgsi ]Mn )p (d) A&agsi )(Mno. 72Fe0, 28)$$.

vridth at half maximum is 0.5'. The hatched lines in (c}and (d)

are attributed to the cubic Al.

compared with ihe single-crystal experiment, we calcu-
late the neutron powder pattern for these cases based on
the model mentioned above. The results are shown in
Fig. 6 together with the experimental results. In the
figure, the hatched hnes are attributed to the fcc Al.
Since the chemical composition of the samples used is

different from that of the present model, the detailed
comparison is meaningless, but it is noted that except for
the hatched lines, the calculated pattern can explain well
the characteristic feature of the experimental data. In
particular, Fig. 6(b) shows that the model describes well
the distribution of Al.

patterns for several models. The models considered here
are (I) the vertex model, (2) the Guyot-Audier model, i
and (3) a modified Hiraga-Hirabayashi model. We use
the common temperature factors 8 and 8' for all the
models for comparison. The structure factor of the ver-
tex model is known. ' %e placed Mn atoms at all the
vertices. The Guyot-Audier model seems to agree with
the model consisting only of Mn, Al(u), and Al(P) sites
as described in Sec. III. The last model is obtained from
the Hiraga-Hirabayashi (HH) model. ' In the HH mod-
el, Mn atoms are placed in the vertex position of the 3D
Penrose lattice and Al are on the two positions of the
longer face diagonal of each golden rhombus which
divide the diagonal into ~:~:~,with an occupation
probability of —, (Fig. 2}. Although this model gives

better di8'raction patterns than the other two models, a
slight modification shows much better diffraction pat-
terns. The modified Hiraga-Hirabayashi model places Al
at the face diagonal positions mentioned above, with an
occupation probability of 0.4, and at the edge-center posi-
tion with an occupation probability of 0.2. Since the Al
sites have occupation domains far from the sphere (the
rhombic icosahedron and rhombic dodecahedron}, we use
the analytical expression for the structure factor. The
structure-factor formula (6) is apphcable, but the expres-
sioll of Fo (q ) is different froill (7). Tllc cxpllc1t expres-
sion for Fio(q'} is referred to in Ref. 29. The former two
are unrealistic models in the sense that the chemical com-
position or the density does not agree with the experi-
mental value. On the other hand, the third model gives
reasonable chemical composition and density (25 at. Mn,
3.57 g/cm ). Mn atoms are completely ordered while Al
atoms are completely disordered. The former two models
qualitatively explain the difFraction pattern [Figs. 5(a)
and 5(b}] but the agreement with the experiment is not
enough. The last model gives a better result [Fig. 5(c)].
In order to check the validity of this model we calculated
the neutron diffraction patterns, but the model failed to
explain these patterns. In particular, the Al contribution
of this model shows two strong lines around 28=40', in
contrast to the experimental result of
Als, Si,(Mno, iFCO is),~ [see Fig. 6(d)].

B. Meaning of the large temperature factor

The large temperature factor may suggest another pos-
sibility, that in the real structure each atom may displace
around the 1deal pos1tlon considered above. Th1s 1s taken
into account by using the displacement field u'(r') which
is parallel to the external space and dependent on the
internal coordinates. In fact, the displacement from the
ideal position is observed in the 0. phase. The average
displacement of 0.23 A is a reasonable value in compar-
ison with that of the a phase. The ref1nement of the
model is the subject of further study.

A. Comparison anth the other models

To compare the present model to other models pro-
posed so far, we calculated the powder x-ray diffraction

C. Conclusion

The present analysis shows that the i-Al-Mn quasi-
crystal consists of the Mackay icosahedra and the
linking-Al or Mn joining there. The Mackay icosahedra



are situated on the icosahedral sites of the 3D Penrose

pattern. The section method ls eSclent 1n describing

such a complex model in the superspace and in calculat-

ing the structure factor.
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APPENDIX

The occupation domains of Mn and Al(P) form a clus-
ter with the icosahedral symmetry in the internal space
near each lattice point. The occupation domain of Mn at
—d, +d& is located at the internal space which passes
through the origin. From d, =d', +d'„wehave the occu-
pation domain belonging to the lattice point —d, at —d', .
The 12 equivalent positions obtained from —d', are situ-
ated at the tips of the regular icosahedron. forming the

icosahedral cluster [Fig. 3(a)]. Similarly, the occupation
domain of Al(P} at —(d, —dz)+(d, —dz)'= —(d, —dz)'
and the domains equivalent to it construct a cluster con-
sisting of 30 domains in the same internal space (through
the origin) [Fig. 3(b)]. Note that

~

d',
~

=ca and

~
(d, —dz)'

~

=1.7016ca. The average radius of these
domains is 0.5315ca while that of the domain for the link-
ing atoms, considered in the text, is 2.251ca. (See Table
I.} This shows that the latter includes the 12 domains for
Mn and 30 domains for Al(P). It should be noted that
the domains at —d', and —(d, —dz)' or their equivalent
pair of domains contact with each other sharing the ten
planes of Fig. 1(b) around the fivefold axis. The distance
of the centers is ea while the average radius of the
domains is 0.5315ea. Therefore these two may be partly
overlapped. There exists, however, no overlapped part in
the real domains because of their shape [Fig. 1(b)]. Simi-
lar consideration shows that the domain at —d', and —diz

or —(d, —dz)' and —(d, —dz)' or their equivalent
domains also contact sharing the plane normal to the
twofold axis. As a result, all (42) the domains are con-
nected to form a multiply connected cluster. This cluster
is not overlapped with the occupation domain of the va-
cant sites which is located at the center of the cluster due
to the shape of the domains. (Note that the domains for
12 Mn are also ca apart from the origin. )
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