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Fluctuation properties of thermal solitons
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The thermodynamic properties of soliton-bearing systems can be obtained from the statistics of
their soliton components, which reflect restrictions on phase space due to interactions. Going

beyond the established agreement of the free energy with transfer-integral results, we have success-

fully tested Srst derivatives (energy, number density) and second derivatives (speci6c heat, compres-

sibility) for a one-component soliton gas (corresponding to the case of the low-temperature sine-

Gordon chain). A complete description of the equilibrium statistical properties of the soliton gas is

given in terms of the averages of occupation numbers and their fluctuations. The latter are charac-

terized by the absence of off-diagonal correlations.

I. INTRODUCTION

The thermodynamics of soliton-bearing systems has at-
tracted considerable attention since the fundamental ob-
servation' that topological solitons contribute an
identifiable part to the free energy of the P chain. In-
tegrable systems provide natural paradigms and illustrate
the underlying structure that links the exact dynamics-
in the form of phase-shift information and Hamiltonian
formulation contained in inverse scattering theory
(IST)—with Bethe-Ansatz (BA) thermodynamics. '3 The
explicit link is provided by the soliton-gas phenomenolo-

gy which deals with solitons and nonlinear phonons as
elementary excitations sharing the available phase space
due to their phase-shift interactions.

The increasing degree of sophistication of the soliton
picture has revealed that it is in fact an exact scheme
for reconstructing the thermodynamic free energy avail-
able by other means. Moreover, the soliton-gas scheme
provides us "in passing" with a formidable amount of in-
formation regarding the microscopic distribution of the
various nonlinear modes. Formally this information
refers to occupation numbers and densities of available
states in phase space. Whether these quantities are mere
"bookkeeping" devices or actually possess a dynamical
significance —detectable in, e.g., an inelastic neutron-
scattering experiment-is not a settled question.

There is, however, another microscopic manifestation
of the statistical properties of solitons: namely, theirguc-
tuations. These may serve to characterize the degree of
nonideality of the soliton gas and the ensuing deviations
from Maxwell-Boltzmann statistics; they should show up
in any direct reconstructions of thermodynamic second
derivatives as well as in bona Me dynamical quantities,
e.g. , the soliton diffusion constant. %e shall deal with the
latter in a separate contribution, since the phenomenon
itself is best illustrated in the context of numerical simu-
lations. The theory of thermodynamic fluctuations can

be handled analytically. It reveals an interesting
mathematical property, namely, the absence of off-

diagonal correlations between occupation numbers of
different states. Although this property does not survive
when we consider the phase-space densities —a natural
consequence of the fact that we are dealing with an in-
teracting system —it does suggest that there is something
fundamental about occupation numbers and that, conse-
quently, it would be sensible to keep the latter as distinct
quantities in the theory.

The main point of this paper is to show that the Que-

tuations obtained about the most probable values of the
occupation numbers possess the required degree of self-
consistency within the framework of equilibrium statisti-
cal mechamcs. In other words, it is possible to achieve a
direct reconstruction of the relevant thermodynamic
second derivatives. It may well be argued that this prop-
erty by itself does not bestow our occupation numbers
with any dynamical qualifications and that their status as
bookkeeping devices remains untouched. However, the
fact that it is possible to achieve a consistent description
of thermodynamic fluctuations should be regarded as a
further manifestation of the validity of the soliton-gas
concept at a microscopic level. A more direct connection
with the dynamics will be provided by the theory of soli-
ton diffusion.

For the sake of notational simplicity we mill present
the theory for a single-component soliton gas. The most
natural realization is the sine-Gordon (SG) breather gas,
for which we will compute the relevant thermodynamic
derivatives. Clearly the mathematical structure can be
generalized in a straightforward manner. Furthermore,
although we shall use a classical language and the corre-
sponding Maxwell-Boltzmann expressions for the entro-
py„our statements remain valid for quantum mechanical
systems solvable by the Bethe Ansatz, e.g., the one-
dimensional 5-function Bose gas.

The paper is organized according to the order of ther-
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modynamie derivative under discussion. Basic concepts
and notation are presented along with the minimization
of the thermodynamic potential in the following section
(zeroth order). First derivatives (number densities, ener-
gy) are discussed in Sec. III. The theory of thermo-
dynamic Auctuations is presented in Sec. IV, along with
the direct reconstruction of the relevant second deriva-
tives. Our conclusions are briefly summarized in Sec. V.

II. SGI.ITGN STATISTICS

%e consider a one-dimensional system of particles in-
teracting via phase shifts. The exact statistical mechanics
may be formulated by observing that the density of states
(DOS) available to any given mode is reduced in the pres-
ence of other excited modes. Thus if Ro(k} is the original
DOS for the nonlinear mode characterized by k and
h(k, k') the phase shift of mode k due to the presence of
k', then the DOS R (k) for the interacting system is given
by

=1——fdk'b(k, k')R(k')n(k'),

where n (k) is the occupation number of mode k, and L
the length of the system. As indicated in the Introduc-
tion, we wish to maintain notational simplicity and there-
fore we restrict ourselves to one "species" of particles. In
the context of the SG system this restricts us to low tem-
peratures, as measured in units of the kink energy. This
allows us to perform the analysis on the basis of an in-
teracting breather gas. The symbol "k" stands for both
parameters which describe the breather's state of motion,
e.g., momentum and frequency of internal oscillation.
The restriction to low temperatures can of course be re-
moved by introducing a system of two coupled integral
equations, as in the classical BA limit. What is less clear
is whether or not phonons have a legitimate position in
the theory. Results for the Toda lattice suggest that they
are essential. However, the current state-of-the-art calcu-
lations for the SG systems' show clearly that the correct
thermodynamics —available via the transfer-integral (TI)
route —can be recovered using either (nonlinear) pho-
nons or breathers. A similar result is obtained in the har-
monic limit. 6 On the other hand, leading-order asymptot-
ic expansions allow in principle for breathers and pho-
nons with the interesting result that the breather contri-
bution vanishes. A similar conclusion can be reached in
the harmonic limit, where, conversely, phonons may be
formally allowed, yet the minimization of the free energy
forces the phonon DOS to vanish. In the absence of an
exact solution of the full system of three coupled integral
equations (two if kinks are neglected) we regard the issue
as subtle and open. For the purpose of this work, where
the emphasis lies on understanding fluctuations, it will be
sufficient to consider a single-component (breather} soli-
ton gas.

Equation (1) determines the amount of phase space
available to all modes for any given configuration of oc-
cupation numbers n(k). The actual number of solitons
with parameters between k and k+4k wiB be given by
p(k)dk, where

p(k)=R(k)n(k) .

The following matrices will prove useful:

A (k, k') = ——Ro(k)n(k)b(k, k'),

8(k k') =5(k —k')
R(k') 5n(k')

where 5R /5n denotes a functional derivative and

(1—A) 8=1
holds (cf. Ref. 7 and Appendix A). Multiplying (1) with
n (k) and using (5) we obtain

p(k)= fdk'Ro(k')8(k, k')n(k'), (6)

which provides the formal solution of (1) and will be of
further use in what follows.

%'e consider a system of constant length and —for the
time being —allow for a chemical potential p to 6x the
number of particles. Bearing in mind that our "parti-
cles" are in fact excitations (breathers in our exemplary
calculations), it is not a priori clear how we could physi-
cally control their total number, i.e., how the correspond-
ing chemical potential could take any value difFerent
from zero. Topological excitations may couple to exter-
nal "torques" which generate asymmetries between aver-
age numbers of kinks and antikinks. It is not obvious
how one might "tune" the total number of nontopologi-
cal solitons.

For any given configuration n (k) the thermodynamic
potential is given by

Q((n j )= QQ(nk)= fdk R(k)Q(n(k)} (7)
k

with

PQ(n(k))=n(k)[P[E(k) —p]+ inn(k) —1], (8)

where E(k} is the bare excitation energy and P the in-
verse temperature. At this stage it might be appropriate
to remark that the only assumption entering (8} is that
our excitations would obey Boltzmann statistics if phase
shift interactions were turned off. Since we are dealing
with a classical system this is in fact self-evident.

The minimization of 0 with respect to possible occupa-
tion numbers,

50
5n(k)

yields the most probable occupation numbers,

n(k) =e-i'(""'-~}

where 6'(k) is given by

@(k)=E(k)+ dk R,(k )~(k, k)e i'(""' ~)-

and the dependence of the renormalized energies on tem-
perature and chemical potential has been suppressed for
the sake of notational clarity. In the following, the over-
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bar for any quantity depending on the occupation
configuration n will denote evaluation at n =n.

Using the equilibrium values n(k) and the resulting
equilibrium DOS R(k) results in the miraculously simple
expression for the thermodynamic potential

—pQ= fdk Ro(k)n(k), (12)

~here the bare DOS appears, so that a full description of
thermodynamic properties is given by the equilibrium oc-
cupation numbers, i.e., by solving the integral equation
(11). In the soliton context, Eq. (12) was first derived in
Ref. 7, whereas (1) along with the minimization scheme
were proposed in Ref. IO. The whole scheme is of course
a transcription of the Yang and Yang-BA thermodynam-
ics" for solitons rather than particles. Details of the
derivation of (11)and (12}are given in Appendix B.

III. FIRST DERIVATIVES

%e derive and briefly comment on the expressions for
the total energy E, the number of excitations N and their
detailed distributions. Using (10), (11),and (5) we obtain

=pn(k) fdk'8(k', k)
p

in terms of a bare energy multiplied by the correct densi-
ty of excitations and integrated over all phase space. A
similar equation, i.e., with bare masses
(dilations/contractions) and the full densities (2), holds
for the thermal expansion of the Toda lattice —with
separate contributions from the soliton and phonon sec-
tor, respectively.

The results presented so far in this section demonstrate
that the exact reconstruction of thermodynamic first
derivatives (Toda length, SG breather numbers and ener-
gies) demands knowledge of the phase-space density R in
addition to the occupation numbers n. The formal solu-
tion (6) is however inadequate for practical purposes —as
opposed to the formal manipulations leading to (11) and
(12)—since it involves the generally intractable problem
of inverting the tnatrix (1—A). At this stage it becomes
vital to depart froID our general procedure and exploit
the particular symmetries of any given problem. In the
SG case the Lorentz symmetry of the underlying wave
equation implies

E( k)b( kk')= E(k')b(k', k) .

If k stands for rapidity (and internal variable),

Ro(k')/Ro(k) =E(k')/E(k)

and thus

=n(k) fdk'B(k', k)[p, —E(k')] (14) n(k') A (k, k') =n(k ) A (k', k ), (17)

Q 1 fdkR(k)Bn(k)u, p

= f dk f kd' R(ok)n( k)8( k', k)

n (k')8 (k, k') = n (k)8 (k ', k ) . .

Using (6) and the above symmetry relationships we ob-
tain

Ro(k')n(k')=fdk'8(k, k')
R,(k)n(k)

=fdk'p(k'), (15) =f dk' 8(k', k)E(k)

where we have made use of (6). The interpretation is ob-
vious; we obtain excitatlons d1strlbuted according to the
microscopic density (2). Dilferentiation of Q with respect
to p, yields the correct total number of excitations. How-
ever, it would be wrong to interpret the integrand in the
first line of (15) as the microscopic number density P(k)
in the interval dk [cf. Eq. (40) of Ref. 6]„since the equali-
ty does not in general hold under the integral sign [cf. the
derivation of the explicit form of p(k) given at the end of
this section for an exception]. In the next section we
shall see that usage of the correct number density p(k) or,
alternatively, the DOS function R (k) is essential for a
consistent treatment of Agctuations and hence for con-
struction of improved phenomenologies of dynamical
correlation functions.

The total energy E can be obtained from the thermo-
dynamic relation

E= (pQ)L „+pN = f dk p(k)E(k) .

The last equation has the expected direct interpretation

1

gp
(P+(k)) (19)

P(k) =R (k)n (k) = —Ro(k) n (k },1
(20)

R PE(k) 2

PE(k) (21)

practically indistinguishable from the result obtained in
the classical limit of the BA.' lt is worth noting that the

where in the last step of (19) we have set p=O, appropri-
ate to the case of the SG breather gas (cf. our discussion
above). Using the expression (20) along with the analyti-
cal solution of Ref. 6 for n (k,p,p=0) we can verify that
the total number of breathers (15) is equal to one-half the
original (particle) degrees of freedom and that the energy
(16) is indeed 1/p per particle, as expected in the har-
monic limit of the SG chain. More interesting from our
point of view is the explicit form of the DOS function
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right-hand side (rhs) of (21) depends on the breather pa-
rarneters only via the ratio of breather energy to tempera-
ture. For energies far above thermal levels, R/Ro tends

to unity; there is no restriction to the availability of
phase-space —although of course such states have very
low occupation probabilities n(k). Conversely, for very

low breather energies —where the occupation probability
tends to unity —the available phase space, as measured

by R /Ro, shrinks to zero.
In the case of the 5-function Bose gas" the relevant

symmetry is h(k, k')=b(k', k) and the bare density of
states Ro is a constant. Thus, although (17) and (18) are
still valid, the first line of (19) now yields

(5n(k)5n(k') ) = 5(k —k'} .n(k)
R(k}

The fact that there are no o5'-diagonal correlations in the
n's indicates that there is a technical as well as a concep-
tual advantage in making a clear distinction between the
auailability of phase space and its thermal occupation, as
expressed by the functions R and n, respectively. Howev-
er, it does not allow us to draw the conclusion of com-
plete statistical independence of modes belonging to
di8'crent k's, since thc physically important number den-
sities p(k) exhibit fluctuations according to

(5p(k)5p(k') ) = f dk "p(k")8(k,k")8(k', k"), (28)

=fdk'8(k', k)=1— e(k)
Ro Bp

(22} i.e., contain in general an o8'-diagonal contribution.
Equation (28) is obtained by making use of

p(k)=Ra — n(k} .1

P Bju
(23)

In this particular case the integrands in the first and
last hnes of (15) are identical.

IV. FLUCTUATIONS

+O((5n ) ), (24)

where C(k, k') is the functional derivative of PQ with
respect to occupation numbers, taken at their equilibrium
values:

1
C(k k, }

5

Q(In

I�)
P

' 5n(k)5n(k')

In Sec. II we calculated thermodynamic averages by
extremizing the thermodynamic potential Q. The expres-
sions (10) for average occupation numbers are such that
they reduce to Boltzmann probabilities when the phase
shift interactions are turned og This of course does not
imply Maxwell-Boltzmann statistics for our excitations,
since any occupation number can in fact be brought into
the form (10) if we are willing to accept thermally renor-
malized excitation energies 8(k, T). The actual type of
statistics involved in our system depends on the details of
the phase shift functions and can ultimately be character-
ized by the behavior of the jluctuations of the occupation
numbers around their equilibrium values.

The probability of occurrence of a fluctuation 5n(k) is
controlled by

P[Q(tn+5n J )—Q(In I )]= ,' fdk f-dk'C(k, k')

X5n(k)5n(k')

5n(k')
=8(k, k')R (k'), (29)

which in turn follows directly from the definition of p(k)
and (4).

%'e may now proceed to test the consistency of the
fluctuation formulas by performing a direct calculation of
((5N) ) and ((5E) ) and comparing with the corre-
sponding thermodynamic derivatives. It will be helpful
to use the auxiliary relationships

5 k'
dk'R (k')8(k, k')

au
'

ae
(30)

fdk R(k )8(k k') "'" '
Bp Bp

(31)

both derivable from (29). Using (15) we find

5N= fdk 5p(k) (32)

((5%) ) =fdk fdk' fdk "p(k")B(k,k")B(k',k")

in agreement with the thermodynamic derivative

((5~)')=-
P Bp

(33)

(34)

obtainable by direct difFerentiation of (15) and application
of (31).

Energy Auctuations can be similarly computed using

5E= fdk E(k)5p(k) (35)

((5E}')= fdk fdk' fdk'p(k")E(k}E(k')

xB(k,k")8(k', k"),
It is shown in Appendix C that the matrix C(k, k') after
a series of cancellations takes the diagonal form

C(k, k') = 5(k —k'),
n(k}

which allows us to extract the Gaussian fluctuation aver-
ages

in agreement with the result obtained via the thermo-
dynaI111c de11vatlve

(PQ),
j.

P' dP'

where we have taken p =0 in the last equation.
Equations (32}—(37) demonstrate that our treatment of
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Auctustions does indeed pass the self-consistency test, in
the sense that Auctuation averages calculated within the
spirit of soliton phenomenology are in exact agreement
with the results obtained from thermodynamic deriva-
tives. Using (27) and (28) averages of aibltrary Quctuat-
ing quantities can be computed in the Gaussian approxi-
mation. Thus Eqs. (27) and (28) provide us with a com-
plete formal description of soliton statistics. In addition,
the rhs of (27) suggests a direct physical interpretation:
(classical) sohtons exhibit 8oltzmann-type fluctuation
properties, except for an overall phase-space restriction
factor R /Ro in the denominator. Since R is a functional
of all n(k) this may be technically quite nontrivial (note,
however, that our use of explicit symmetry properties
may facilitate even this technical aspect). Yet the physi-
cal content seems rather straightforward. Indeed this is
the sort of relationship one might have conjectured in the
context of an ad hoc treatment of soliton statistics. The
fact that it can be proued is certainly gratifying and
should lend further credibility to dynamical phenomeno-
logies which have to rely on a correct description of equi-
librium statistical properties.

V. CONCLUDING REMARKS

%e have presented a treatment of the statistical prop-
erties of solitons in integrable systems. The picture
which arises in the SG context —and csn readily be gen-
eralized to other systems —can be summarized as fol-
lows: Solitons are distributed in phase space according to
the density of states R(k) available in the neighborhood
of a particular point and according to an occupation
number n (k) specifying the probability of occupation of
a given available state. The equilibrium values of n(k}
and R(k) can be obtained by minimization of the ap-
propriate thermodynamic potential. Furthermore, the
fluctuations of the n's around their equilibrium values
can be calculated exactly and are characterized by the ab-
sence of off-diagonal correlations.

For classical systems it is thus possible to maintain the
fiction of 8oltzmann statistics (in spite of the interacting
nature of our system), provided we are willing to incorpo-
rate into our formalism (i} thermally renormalized soliton
energies and (ii} the overall phase-space restrictions
which determine the density of actuaHy available states
snd the behavior of thermal fluctuations. Alternatively,
we may regard the thermal averages n (k) and the Auctua-
tions ([5n(k)] ) as "carriers" of information regarding
the exact nature of the solitons' statistical properties.

The thermodynamic properties of soliton-bearing sys-

Functional differentiation of both sides of (1} with
respect to 5n(k') leads to

Ro(k) 5n(k') L
dk"h(k, k") R(k")5(k' —k")

(kgb)
5R (k )

5n(k')

(Al)

Multiplying by n (k)RO(k)/R(k') and using the
definition of A, Eq. (3), we obtain

"'",' 5 ', ' =Idk- ~ (k, k")
R(k') 5n(k')

5(k, k„) n(k") 5R(k")
R(k') 5n(k')

or, inserting (4),

B(k,k') 5(k k') =—J—dk" A (k, k")B(k",k'),

which can be written in compact form as

8—1=A 8. (A4)

APPENDIX 8

Functional differentiation of the thermodynamic po-
tential with respect to n (k) yields

5(pQ)
5n(k)

=R(k)IP[E(k) —p]+ Inn(k)]

+ fdk' n( k)[P[ (Ek) —p]

+ inn(k'} —l I . (81)

At the extremum demanded by (9),

tems can be exactly reconstructed on the basis of what
has commonly been referred to as soliton phenomenolo-

gy. The high degree of self-consistency manifested in the
agreement of fluctuation averages with the corresponding
thermodynamic derivatives and the absence of o8'-

diagonal correlations support the validity and the useful-
ness of "direct" soliton statistics.

APPENDIX A

P[E(k) @(k)]+Jdk —[B(k',k) 5(k k)][I3[—E(k ) —e(k )]—1]=—O,

where the overbars denote that n (k) = n(k) = exp [ —P[b(k) —iM] I. We now rewrite (82) as

Jdk'B(k', k")P[8(k') —E(k')]= 1 —J dk'B(k', k")=Idk'[5(k' —k")—B(k',k")],
multiply both sides of (83) by [5(k"—k ) —A (k",k )] and integrate over dk", obtaining

P[@(k)—E(k)]=—Idk'A (k', k ) =—fdk'R (k'}h(k', k )e

(82)

(83)
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i.e., the integral equation (11) determining the thermally renormalized soliton energies I @(k)j in terms of the phase
shifts I h(k, k ) j. The expressions for the thermodynamic potential (12) follow trivially by using {84)and (5) in

PQ=PQ{ In(k) j ) = —fdk'R (k')n{k') I 1 +P[6'(k') —E(k'}]j, (85)

pQ—= fdk' fdk" fdkRO(k")n(k")8(k', k")[5(k —k') —A(k, k')]= f dk Ro(k)n(k) .

APPENDIX C

The fundamental second derivative (24) can be obtained by a further functional differentiation of {81):

5 (PQ) 5R(k)
j P[E(k)—p, ]+ inn {k) j

+ „5(k—k')+ IP[E(k') —p]+ Inn(k') 1+—I j
R (k), 5R (k')
n k n k

+ fdk", n(k")IP[E(k") p)+ ln—n(k") —1 j,5 R(k")

or, at equilibrium I n =n j,

C(k, k') = [8(k,k') 5(k ——k')] P[E(k ) —h(k)]+ k~k'+ 5(k —k')R(k') R(k)
n(k) n(k)

5R k"—fdk", n(k") I 1+P[@(k") E(k")]j—.

(C 1)

(C2)

The rhs of (C2) contains a contribution diagonal in k, k [the third term (III)], and other explicitly symmetric contribu-
tions, e.g., the sum of first and second terms (I + II) or the fourth term (IV). Of those, only (IV) contains the unknown
second derivative 5 R /5n 5n, which we proceed to compute. From (A 1) we obtain

= ——Ro(k)h(k, k')R(k') ——fdk Ro(k)h(k, k), n(k)5R(k) 1, , 1 — — 5R(k )
(C3)

R (k)h(k k') R (k)h(k, k")
5n(k')5n(k") L ' 5n(k") I. ' 5n(k')

De6ning

52R k——fdk Ro(k)h(k, k}, „n(k) . (C4)

5 R(k)X(k;k', k")=n (k) (C5)

~e readily obtain

f1k [5(k —k ) —3 (k, k )]X(k;k', k")= 2 (k, k')[8(k', k" ) —5(k' —k")]
n(k')

n(k")+ A (k, k")[8(k",k') —5(k"—k')]

or, using the fact that 8 (1—A) =1,
k'

g(k", k, k')=[8(k",k ) 5(k" k)][8(k,k—') —5(k——k')]
n(k)

+ [8(k",k') —5(k"—k')][8(k', k )—5(k' —k )] n(k')

With the help of (C7) we proceed to evaluate term IV in (C2), i.e.,

—fdk"j(k";k,k'}I 1+P[@(k")—E(k")]j .

(C6)

(CS)
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Since the two terms in the rhs of (C7) only serve to guarantee the symmetry of X(k";k,k') under the interchange of
k, k' we only need to compute the contribution of the first term. The first factor enclosed in square brackets is the only
quantity dependent on k" and thus entering under the integral (CS). Now

—fdk "[B(k",k ) —5(k"—k )][1+P[@(k") E—(k" )] j = 1+P[6'(k)—E(k)]—1

=P[6(k)—E(k)] (C9)

generates a contribution to (CS),
I

P[b(k) —E(k)][B(k,k') —5(k —k')]
n(k')

which cancels the first term in (C2). Similarly the second
C(k, k')= 5(k —k') .

n(k)
(C10)

term in (C7) generated by the interchange k~k' cancels
the second term in (C2) leaving us with (III),
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