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%e show that within a hydrodynamic model the ellciency of second-harmonic generation at a
vacuum-metal surface can be calculated to reasonable accuracy by a theory in which the speed of
light is set to in6nity. Both algebraic arguments and numerical results are presented. The
simplifications allowed by an electrostatic calculation should also aid the evaluation of more sophis-

ticated models.

I. INTRODUCTION
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Here the dielectric functions are either at the Srst har-
monic, e=1—coa/to with to =to(to+i/r), or at the
second harmonic a=1 —toit/6 with 0 =Q(Q+ilr)
and 0=2m. These functions allow one to Snd the normal
components of the wave vectors of transverse fields far
lnslde the metal, pT and IT, from the lnltlal conditions of
a wave of frequency m incident at 8 with respect to the
surface normal. With Q =(to/c)sin8 and E =2Q, one
has at the first harmonic pz ——[(to /c )e—Q ]' and at

Two years ago Corvi and Schaich (CS) presented both
formal and numerical results for the efficiency of second-
harmonic generation in a simple reflection geometry.
Their theory uses a hydrodynamic model to describe the
motion of free electrons at a smooth surface and the full
set of Maxwell equations to determine the electromagnet-
ic fields. Our aim in this paper is an explicit demonstra-
tion that the net result of their theory can be found from
an analysis in which the speed of light c is at times for-
mally allowed to be infinite. We will use the same hydro-
dynamic model for the constitutive relations, but will
treat (up to a certain stage) the. induced fields using only
the electrostatic limit of Maxwell's equations.

The connection between the finite-c and infinite-c cal-
culations is made via the phenomenological theory of
Rudnick and Stern. ' This theory writes the second-
harmonic-generation e(Bciency for our model system as
[Eqs. (CS-30},and (CS-31); see Ref. 4]

(1)
Nl CO C

the second Pz ——[(0 /c )e —K ]'~ . The analogous com-
ponents outside the metal are p„=(co/c)cos8 and

P„=2p„. From these defimtions we can construct the
first-order Fresnel transmission amplitude for the in-
cident p wave, txo=2p„/(p„e+pz ). Other terms needed
in (I) and (2) are either fundamental constants, trt, c, and
egO, or bulk values of hydrodynamic parameters, the
plasma frequency co+ and the scattering rate 1/r Final.-

ly, we note the appearance in (2) of the phenomenological
parameters a, b, and d. These are supposed to be func-
tions of frequency alone (not 8) and require in general a
separate microscopic calculation. CS showed that their
(everywhere} finite-c, hydrodynamic calculation could be
parametrized quite well by Eqs. (1) and (2). Indeed they
extracted fitted values of a, b, and d and found that only
a has a significant frequency dependence since b= —1

and d = 1.
We demonstrate here that one may reproduce their

finite-c calculation of a using a theory in which c~ ao,'

i e , that .an. electrostatic calculation of a, together with
Eqs. (1) and (2), allows one to accurately determine the
second-harmonic generation eSciency. The importance
of this conclusion is at the moment primarily conceptual,
but it may have signi6cant practical implications.
Specifically for the hydrodynamic model, R can now be
computed with e either always or only sometimes 6nite.
Both computations require less than a second on a CDC
Cyber 170/SSS, with the electrostatic calculation of a be-
ing roughly four times faster than the fully retarded one.

The real utility of our conclusion lies with future calcu-
lations that will employ electronic structure models more
sophisticated than the hydrodynamic. For these the
reduction in conceptual and computational efFort provid-
ed by an electrostatic theory of a may be vital. %'e have
in mind an extension of the recent calculations by %eber
and Liebsch. They use a jellium model treated within a
local-density-functional approximation to 6nd second-
order induced charge densities at a metal surface. Their
theory determines a in the double limit that e~ Do and
co~0. The results we 6nd here imply that only the ~~0
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limit need be removed in their theory to give it general
applicability. Thus one may continue to focus on density
response and to ignore transverse currents and fields. It
is precisely this simpli6cation that has led to the consid-
erable advance in computational eSciency for surface
corrections to the 6rst-order optical response, and we
hope that its utility will be just as great for second-order
properties.

In Sec. II we develop the equations necessary for an
electrostatic calculation of a within our hydrodynamic
model. The analysis is quite similar to that of CS. In the
Appendix we compare their mathematical structure with
those of the finite-c theory, ' noting the behavior of the
latter as e ~ 00. In Sec. III we show some explicit results
that directly compare with those in CS and support our
conclusion that an electrostatic calculation of a suSces.

II. BASIC EQUATIONS

Since the electrostatic theory only produces the a term
in {2), not the complete R in (1), it has a somewhat
difFerent formal structure than the fully retarded theory.
Helice we summarize its derlvatlon before coiilparlllg iil
detail with the equations of CS. One studies the first- and
second-harmonic response of a metal surface to an exter-
nal 6eld at frequency u applied normal to the surface.
With this perturbation and since the surface is presumed
to be Sat, the only spatial variation is with respect to x,
the coordinate normal to the surface, and vectors may be
written as scalars since they are all perpendicular to the
surface. The basic variables we study are the total elec-
tric field E and the polarization of the metal P. From the
latter we can obtain the induced charge density
p= dP/Gx and—the current density j =dP/dr. As did
CS, we expand these quantities in a series of orders and
focus on the spatial dependence of the complex ampli-
tudes such as the P, (x}for the polarization;

P(x, t)=2Re[P, (x)e '"'+Pi(x)e ' '+ ],
where Re denotes "real part of."

The a parameter is found from the integrated weight of
P2.

'2

Idx P&(x)=2

where E';"" is the (constant) value of the total electric
Aeld at the first harmonic outside the metal and pz ~0 is
the bulk equilibrium electron charge density. The metal
lies in x ~ 0 and we need to require that Pi(x ~ oo )~0 in
order that the integral be well de6ned. This is equivalent
to the constraint that the total induced charge at the
second harmonic is zero for the single surface problem.

Our basic method of finding Pi(x) is the same as in CS.
%e imagine that the equilibrium electron charge-density
profile of the metal can be represented by a sequence of
steps of constant height, say, po. Then within each step
we expand the full solution in terms of "partial waves, "
which individuaHy satisfy the equations of motion there.
Finally, boundary conditions are imposed in order to
match these expansions between successive steps. This

scheme is applied twice, beginning with the first-
harmonic equations whose solution is used to generate
driving terms for the second-harmonic equations.

The forrnal derivation of the equations of motion at
each harmonic is essentially idelltical to that ill CS, so we
simply list them here and note their partial-wave solu-
tions. At the 6rst harmonic one has

2 2
2d ~o—co —Po Pi(x)= Ei(x),

4n

with

p2 (g 2 ~2)/P2

The L subscript denotes "longitudinal, " since only these
solutions have an associated charge density. The con-
stant solutions are the remnant of the transverse waves
that appear in the finite-c theory. ' The boundary condi-
tions on E, and Pi imply that (1 coo/ei )E', '—is the
same everywhere, which merely describes the classical
screening of the external Beld.

At the second harmonic one has

2 2—z 2d o—0 —Po Pz(x}= Ei(x)+S(x),
dx 4m

(10)

where the driving terms are determined by the first-order
solution;

1 d . 2 Pi o, 2d 1.S(x)=- (A) +— Ei+-', &O, Pi ——ji
2Po dx Po 2% d~

Equation (14) is the analog of Eq. (CS-14), with the omis-
sion of the magnetic field contribution. It is worth re-
marking that S(x) has no position-independent contribu-
tion, so it is nonzero only close to the surface because the
longitudinal, 6rst-order solutions are all chosen to decay
as x ~ ao. Within a general step S(x) has contributions

+ IQIX
that vary as e, where Q& has four possible values:
+pz or +2pl . The partial-wave solution driven, (D), by

IQ(X
Q I8 is

where Po is the local velocity parameter and coo the local
plasma frequency. At each internal interface we require
continuity of P„E,, and P~p, /po. At the external inter-
face (i.e., at x =0, where vacuum starts), we require E, to
be continuous and P& to vanish. The partial wave solu-
tions of (5) are of two kinds: either constant, denoted
{C},or spatial varying, denoted (I.). For the former

4n.P') ' ——— E') ' (6)
CO

while for the latter

P"'(x)~e "'"
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(D, i) I 0 '~lP2' (x}=-
2 2e

Qi' P—L'

with

(12)

PL ——(0 —coo)/P(), (13)

4IrP' '"(x)= E' —'"(x)
2 2 (14)

We must also include solutions of (10) when S is zero. As
in the first-harmonic case these are either constant or
spatially varying. With an analogous notation we have

mension 4n —1. The difference arises because there are
transverse waves in the retarded case moving along +x
within each step while in the electrostatic case the con-
stant 6elds can be separately found and removed.

In the Appendix we compare the two sets of equations
in greater detail. This explicit analysis complements the
formal arguments given earlier by Sipe et al. ' ' that an
electrostatic theory of a can suffice. In the next section
we furthermore present speci6c electrostatic solutions
whose implications may be numerically compared with
those of the fully retarded theory.

III. ILI.USTRATIVK KXAMPI. KS
2

4mP2 ——— E2(c) O ~c)

0
for the former and

(15) Begin with a single-step model; i.e., bulk metal in x & 0
and vacuum in x&0. The electrostatic problem then
simpli6es enough that we can present the explicit solu-
tion. At 6rst order

P' '(x) ~e

with

4~P' )(x)= —E',"(x)

(16) 0, x&0
4~P)(x)= —EI'"t) X ~2B p"(1—e ' )/e, O~x

Q 2

(18)

for the latter.
At each internal interface we require continuity of P2,

E2, and

2 ~0 1 i2)
2 2

2U&+ Pz—1 2

1, x(0
E) (x)=E 1 X ~B ipLx

(out)

1 — e '
CO

e, O~x .

Substituting into (ll} yields for the driving terms in the
metal

where U, =j) /po,
' while at the external interface we re-

quire both E2 and P2 to vanish. The continuity of P2 and

E2 together with (14), (15), and (17) imply that
(1—F00/0 )Ei2 ' is the same everywhere. The additional
assumption that E2 vanishes outside implies that no con-
stant partial wave is allowed anywhere. As noted earlier
this is done so that a in (4) is unambiguous.

We have now set the basic equations for the nonretard-
ed calculation of a. Their evaluation on a computer is
straightforward. For an n-step model one needs to work
with matrices of dimension 2,n —1. In contrast, the fully
retarded, n-step model calculation used matrices of di-

I

S(x}=
4m

2 .
PL, (PLx 2iPLx

(v e +v2e
PB

where

v, = (3o) +in—)/r),

v2 ——(co B+8co +2ico/r)/3 .

The second-order solution is, for x & 0,

(21)

(22)

P2(x) =
4m.

/PL

&BPB

iPL x iPL X 2IPL X IPL X

2 2' ' + 2 2'
PL —PL (2PL )' PL'— (23)

with E2 ———4mI'2 there. Both vanish for x gO. Finally
the definition (4) yields

Vi v2/2a= +
PBPL PL+PL 2JIL+PL

where Eqs. (8) and (13) are to be evaluated with bulk pa-
laIIletel's, po=pB aIld cijo=fdB.

Vhth this formula we can reproduce the plot of the
6tted a shown in Fig. 2 of Ref. 1. If we further set
b = —1 and 1=1 and use (1) and (2), we also duplicate
the R shown there. Note that the primary structure in

a~ '

CO —+ ao3 f
(25)

If we now add a surface layer to our system to form a
double-step model, the algebra becomes su5ciently in-
volved that we only present numerical results. The pa-
rameters are chosen identical to those of the double-step
model of CS, illustrated in their Figs. 5 and 6. The model

this a comes from the PL
' factor, the sharpness of which

is controlled by the choice of 1/r. The limiting values of
a are material independent:

2 67~0
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simulates Al using a surface ledge of width 4 A and den-
sity p0=0. 7pii.

' The scattering rate satis6es everywhere
MgT'= 10.

In Fig. 1 we show an analogue of Fig. 6 from CS. The
electrostatic a reproduces all the structure found in the
fully retarded calculation. The agreement is not perfect,
but is typically better than a few percent. %'e checked
that the retarded answers become closer to the electro-
static results as we (artificially) increase the speed of light.
The rate of convergence is consistent with the arguments
in the Appendix.

We have compared results for several other sets of pa-
rameter choices. The agreexnent remains good. %e also
examined the spatial variation of the fields, which is in-
tegrated over to form a. The difFerences in these profiles
occasionally exceed a few percent, especially when the in-
duced longitudinal fields are weak. However, an increase
in c by about a factor of 10 restores agreement. Hence
we remain confident that strong structure in a can be
eSciently calculated with adequate accuracy by setting
the speed of light to infinity. We feel that this conclusion
is more generally valid than the hydrodynamic model
used here, because the important corrections to this mod-
el do not involve retardation effects,

0.9
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Here we briefly outline algebraic reasons why the
finite-c theory should yield the same a in the limit
c/Po~ oo as the electrostatic theory described in Sec. II.
The key point is that the normal component of wave vec-
tors of longitudinal fields, '

pL and Pr, become in this
limit much larger than any other wave-vector com-
ponents such as Q, E, pT, p„, Pr, or P„.

Consider the Srst-order polarization in the retarded
case. Its partial-wave decomposition within any step has
terms of both transverse,

+IpTX +IQ'X

and longitudinal,

(L+)(+g0)+&PL x+&Qx

form. Here the two-dimensional vectors Q and X lie in
the surface plane and the triplet of numbers denote the
vector components along the surface normal x, along Q,
and along t=xXQ, respectively. ' The requirements of
continuous x Pi, x Ei, Q.E„and Po pi/po make

0.6 ~~(T,+) (L, k)~Q} ~PLO. ~
(A 1)

0.3

Q,Q—

where —denotes "of the same magnitude in the limit of
large c/Po. " This implies that p, = —V P, will be dom-
inated by —(8/Bx)(x P, ) and that the full driving term
may be approximated by

Q.Q
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FIG. 1. Frequency dependence of the second-harmonic gen-
eration parameter a that results from an electrostatic calcula-
tion for a double-step model of Al. In the lower panel the real
(imaginary) part of a is a sohd (dashed) line. The upper panel
sho~s R in units of 10 0 cm, ~. The solid (dashed) line is for
the nonretarded (retarded) calculation. Other model parame-
ters are given in the text.

if one considers only its e5'ect near the surface. This last
constraint is necessary in order to suppress the small but
long-range contribution to S from the magnetic field, 8.'
This contribution leads to the d term in (2), but is ir-
relevant for the calculation of a and b, which require only
the short-range part of the polarization field. '

Now consider the second-order polarization in the re-
tarded case. %'ithin any step its driving terms are dom-
inated by functions of the form
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u, (K, P—„O)e

01

ui(Pi, K, O)e

where K=2Q and I', -P, -pr . If we choose the incident
first-order field E, —1, then u, -uh —1, too. The solu-
tions of the analogue of (10) [Eq. (CS-13)],are quite sensi-
tive to the polarization of the driving term. For the lon-
gitudinal case l one finds [cf. (12)-(14)]

terms (e.g., x.P2 ' or Q Piz ') and hence yield consistently
~(T, +}
CX2

These arguments lead io the conclusion thai the short-
range normal component of the second-order polariza-
tion is dominated (to within corrections of order po/c) by
the longitudinal field calculated from electrostatics using
E", ""=x-E'&'"". The numerical results for a in Sec. III
support this argument. For the transverse component
matters are even simpler since the dominant pari ofA

Q Ei- 4'(—ro /coo)Q P, is constant on the short-range
scale. Hence

Mi /po'''(Z Ito) ''""=
p2 p2

I L

E(D, I) 4~p(D, I) .
2

———r 2

(A3) f dxQ P2- —Jdx Q S/Q

2
coo -2= —(Q Ei) dx

8mpo
(A7)

while for the transverse case, which does not arise in the
electrostatic theory,

but roo/Smpo=e/2m and

P' '" — (K PO)— (A5)
Gfx p) ~ x'E)

4m

Together (A7) and (8) imply that

0E' "-—4m P' '"/(c/Po)
2

No
(A6)

We must augment the above with partial-wave solu-
tions of the homogeneous second-order equations. These
are either transverse,

(A9)

Finally we return to the remark that 1/v. must be the
same in each step for the above to hold. This extra con-
dition arises from the need to make equivalent as
c /Po + 00 the requirements at internal interfaces of con-
tinuity of

or longitudinal, '

kiPrx+ix X
po

—,'(vi) +
p

1P&
P22

( kL)( P+It 0) L

and the o,"s are to be determined by matching boundary
conditions. Provided 1/r is the same everywhere (see
below}, we can satisfy the continuity constraints on

X P2

r

z Po 1 Pi
—,'(vi)'+ p&

———
Po 6 Po

by focusing on longitudinal waves alone. The driving
terms make o.'~z

'+—'-1. In fact, the equations satisfied by
the az ' are as c/po~ ao isomorphic to the electrostatic
ones. The other continuity requirements of Q E2 and
x-(E2+4mP2)=x (Ei2 '+4mPz ') do not involve large

and

2 2
po

2U&+ P&—
po

' 6 po

for the retarded and electrostatic theories, respectively.
If 1jr is continuous through an interface, then Q vi is
also continuous as clpo~ ao because it is dominated by
transverse waves which satisfy

~2 .Ei Tl

Q.„iri (A10}
4mPo ro+i jr

and because we already require Q.Ei to be continuous.
We checked numerically that allowing 1/r to be difFerent
in different steps created noticeable differences in 8 be-
tween the electrostatic and retarded theories. These
differences could not be removed by increasing c.
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