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Two-terminal resistance of quantum Hall devices
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An analytic solution of the current distribution in a two-dimensional electron gas (20 EG) near

an abrupt variation in the conductance properties is given. This solution is shown to explain the ap-

proximate quantization of the two-terminal resistance of a 20 EG at values of h lie . The dilerence

between the two-terminal resistance and the Hall resistance is shown to be determined by an inter-

play of contact and 20 EG properties, and is argued to be of the order of 10 ~ times the Hall resis-

tance or less, for Au-Ge-Ni and Sn contacts. Measurements in agreement with this prediction are

presented.

I. INTRODUCTION

To measure the dc-resistivity tensor components of a
conductive slab accurately, one always uses a four-
terminal method in order to eliminate contact e8ects
(Fig. 1). With such a method, the two-dimensional elec-
tron gas (2D EG) in MOSFET's (Ref. 1) (metal-oxide—
semiconductor fieldwffect transistors) and heterostruc-
tures has been found to give an accurately quantized,
four-terminal Hall resistance, whereas the longitudinal
resistance vanished. (See Fig. 1 for definitions of these
quantities and their magnetic field dependencies. ) This
quantum Hall effect is intensively studied for its funda-
menta1 implications and has found a wide application in
metrology. It has also been shown that the quantum Hall
efkct yields a quantized resistance in a two-terminal mea-
surement, i.e., measuring the voltage across the current

source and drain contacts (Fig. 1). The accuracy of this
quantization has been found to be quite high, ' but no
lower limit has been reported. Satisfactory explanations
of this phenomenon, taking into account the interaction
of the 20 EG with three-dimensional, meta11ic contacts
have not yet been given. In this paper we will show that
the potential distribution within a system that consists of
a 20 EG between two metallic contact regions of arbi-
trary thickness can be calculated analytically. This is
then used to estimate the accuracy of the quantization of
the aforementioned two-terminal resistance. Further-
more, we present high-accuracy measurements of this
quantity, which are found to be in agreement with the
calculation.

This paper is organized as follows. In Sec. II previous
experimental and theoretical work on the two-terminal
resistance is discussed. It is shown that the analytic solu-
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FIG. 1. Definition of resistances: the two-terminal resistance

R» given by Vso/I, the HaB resistance RH by V&/I, and the
longitudinal resistance R&, by V&, /I, as well as their magnetic
field dependencies for the case of a 2D EG between metallic
contacts.

tion of the transport problem by Bruls and van Gelder
applies to this problem. Deviations of the two-terminal
resistance with respect to the quantized Hall resistance
are evaluated. In Sec. III measurements of the two-
terrninal resistance are presented and compared to the
theory.

n. THKORV

Experiments on samples in the quantum Hall regime
show that the two-terminal resistance RsD equals the
quantized Hall resistance within a measurement accuracy
of 10 (Refs. 3 and 4). By making all kinds of intercon-
nections between contacts on the same device, RsD could
be tailored to rational fractions of the quantized Hall
resistance, and this elegantly proves that the two-
terminal resistance is due to current redistributions at
each interface between the 2D EG and a current-carrying
contact. The physical cause for such a redistribution is
the large difFerence in Hall voltage for a 20 EG and
a metallic slab: For Kirchoff's first law ( fE dl =0) to be
obeyed, the difference between the voltages across the in-
terface along the two sides of the sample has to equal the
Hall voltage dim'erence. To achieve this, the current in
the transition region will be displaced towards one side of
the sample. The quantized Hall resistance has been
shown to be equal to Ii /ie, where i is an integer, within
the accuracy of 5X10 with which this quantity is
known (Ref. 9). On one hand, the accuracy of the two-
terminal resistance is surprising, as the current distribu-
tion is highly disturbed near the current contacts; on the
other hand, a possibly significant deviation from the
four-terminal Hall resistance remains to be investigated.
Theoretical work up to now' ' has not given a satisfac-
tory description. Rendell and Girvin' and Al'tshuler

and Trunov, " considering short-circuiting contacts, cal-
culate a relative deviation of the order of the difFerence of
the Hall angle from m /2, which can be smaller than
10 ' under standard laboratory conditions. ' Finite-
resistivity contacts were very recently considered by Neu-
decker and HofFmann with numerical methods, ' but the

magnitudes of the resistivities and Hall resistances in

their analysis do not apply to the two-terminal resistance
of a 20 EG in the quantum Hall regime between metallic
contacts. Thou1ess' calcu1ates the potentia1 distribution
in a quantum Hall device obtaining results similar to
Refs. 10 and 11. He gives a correction due to the current
injection in the contact material for two-dimensional con-
tacts and an approximation of the correction for three-
dimensional contacts. He 6nds that the dimension of the
contact in the magnetic field direction is of minor impor-
tance for the dissipation near the contact-2D EG inter-
face. Syphers and Stiles' experimentally find a depen-
dence of this deviation on the contact-preparation
method, which they attempt to explain with their heuris-
tic interactive boundary model.

The electric field and current distribution in a long
two-dimensional strip with two neighboring regions,
which have difFerent Hall resistances, have been calculat-
ed by Bate, Bell, and Beer' and by Bruls and van Geld-
er. The exact, analytic solution of the transport prob-
lem in Ref. 5 has been shown to describe magnetoresis-
tance data on pure aluminum at 4.2 K, and on gallium
arsenide at room temperature, without the use of adjust-
able parameters. In those experiments the variations of
the two-dimensional resistivity tensor were realized by
varying the sample thickness of the three-dimensional
samples. However, the analytic solution can be applied
to variations in the Ha11 resistance that have been
achieved by various mechanisms, including difFerence in

sample thickness, difFerence in carrier concentration, or
spatial gradient in the magnetic field. A solution to this
transport problem can be found5 if the following two con-
ditions are fulfilled: First, the conduction in both regions
is described by a resistivity tensor. Secondly, the current
pattern far away from the interface must be homogene-
ous. Moreover, we assume, for mathematical conveni-

ence, that the transition length between both regions is
small compared to the sample width. The calculation
yields a magnetic-6eld-dependent current distribution
which is inhomogeneous over a distance L along the strip
on either side of the transition, where I. is the width of
the strip.

For the moment we will assume that for the case of a
long strip of 20 EG between two metallic contact regions
(e.g., standard Hall bar geometries) the above conditions
are fulfilled; consequences of departures from these con-
ditions will be discussed below. The two contact-20 EG
transition regions can be treated as independent parts
with a homogeneous current pattern in the intermediate
region, since they are a distance much larger than 2I.
apart. From the boundary conditions it can be shown

that in the two independent parts the current pattern is
symmetric around its interface. From these considera-
tions and using methods of conformal mapping similar to
those used in Refs. 10 and 11, one 6nds a current pattern
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as illustrated in Fig. 2, where for x &0 and 0&y &L the
current distribution is given by

2@/m —]

J (x,y) i—J (x,y)= —tanh
I m(x+iy)

y 2L

where I/J is the digaBlma function, and p js given by Eq.
(3). Expanding the digamma function as a series of
Riemann g functions yields

~ SD I Pxy, 2D Pxy, c I

where I is the current, L the width of the Hall bar,

Pxy„e Pxy, 20

pox, c +pxx, 20

+(p, , +p,„2D) 1 ——ln2+—
m m —P

(4)

0
I

contact contact

FIG. 2. Calculated current pattern across the contact-20
EG interfaces for b =10'. The current pattern is homogeneous
in the omitted part of the strip.

P=m l2 arc—tanb .

The indices c and 2D refer to the contact and the 2D EG.
We note that so far the contact has been treated as a
two-dimensional, conducting region, and that the tensor
elements in Eq. (2) are two-dimensional resistivities with
the dimension of resistance. The translation of the
three-dimensional resistivity tensor of the contacting ma-
terial into the p„, , and p„, values, which appear in Eq.
(2), has been made by means of a division by an effective
contact thickness, which will be discussed below. It can
be shown that the results of Refs. 10 and 11 can be ob-
tained as limiting cases of Eqs. (1)-(3) with p„„,=0 and

p y, ——0.
In Fig. 2 we used b =10, which is a reasonable value

for the interface between a 2D EG in the quantum Hall
regime and a contact, as will be argued in our discussion
of real contacts below. The current pattern is a function
of a single parameter that measures both the difference
between the regions and the magnetic 6eld. The constric-
tions shown in Fig. 2 will manifest themselves in a two-
terminal resistance RsD (as defined in Fig. 1) through the
dissipation associated with them. Neglecting the resis-
tance of the part of the 2D EG with a homogeneous
current pattern, we find, with the evaluated current pat-
tern, for the source-drain resistance in Fig. 2,

For b gg1, which is the case for the experimental condi-
tions considered below, Eq. (5) reduces to

~sD I Pxy, 2D Pxy, c I

+(p„„,+P„„~D)[0.12+0(1/b)] .

So in this model the two-terminal resistance is equal to
the Hall resistance of the 2D EG, with corrections origi-
nating from the Hall resistance and the diagonal resis-
tance of the contact. In most cases, p„„2Dggp„„as fol-
lows from the discussion below.

%e mentioned above that the resistivity tensor of the
contact that is used in Eqs. (2)-(6) is given by the three-
dimensional resistivity tensor of the contacting material
divided by an efkctive contact thickness. This effcctive
thickness is introduced by the averaging of the three-
dimensional current density and electric 5eld in the con-
tact, over the coordinate along the magnetic Acid direc-
tion, after which a solvable two-dimensional transport
problem remains. Details on this procedure can be found
in Refs. 6 and 7. Only the parts in the three-dimensional
contact through which a current is flowing, must be tak-
en into account for this averaging. We will estimate this
elective thickness for two commonly used —but in this
respect inequivalent —types of contacts. For evaporated
contacts the actual thickness t will be much smaller than
the width of the 2D EG I. (see Fig. 3). The three-
dimensional current distribution will be homogeneous
along the magnetic field direction at in-plane distances t
from the contact-2D EG interface. Therefore the
effective thickness will equal t. However, for alloyed met-
al dots (Fig. 4) the thickness t will be comparable to or
larger than L. In that case the current will not be homo-
geneously distributed along the magnetic 6eld direction
at distances L from the interface. As the resistance asso-
ciated with the constriction is located within distances L
from the interface, one should take as the effective thick-
ness of the contact the thickness of the current pattern at
distances L from the interface. Due to the harmonic
character of the potentials associated with this problem,
this extent —and therefore ihe contact's eit'ective
thickness —is of the order L.

As Fig. 2 shows, the current is squeezed into one
corner of the contact —2D EG interface, and the locally
high current density will result in a breakdown of the
quantized Hall effect. ' ' Under standard experimental
conditions with overall current densities in the 20 EG of
0.1 —0.01 Ajm, the calculated current density exceeds the
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FKJ. 3. Cross section of the contacts to the 20 EG: 1

denotes the heterostructure, 2 the 20 EG, 3 the alloyed contact,
4 the metalhc overlayer, and 5 a lead. The e8'ective thickness of
the contact is 0.5 pm, the distance between the contacts is -1
IBITl.

experimentally determined breakdown current density of
0.5 A/m (Ref. 18) in a region with the size of 10-1 Wo of
the bar width. In this region, p, zo increases 5 orders of
magnitude. ' However, this hardly affects the parameter
P„which determines the current distribution, because P is
dominated by p,» zD and p„„„aswill be shown below.
Therefore, the current distribution of Eqs. (1)-(3)applies
to the entire sample.

Now we will consider the properties of realistic, three-
dimensional contacts to a 2D EG in GaAs-(Al, Ga)As
heterojunctions in more detail, in order to estimate the
corrections on the quantized HaB resistance that can be
expected in a two-terminal resistance measurement. (The
ideas will be applicable to the case of a 2D EG in a MOS-
FET as well. ) The two most commonly applied contacts
are the Au-Ge-Ni composite, which is widely used in
commercial electronic devices, and pure tin. The latter is
usually restricted to laboratory applications because,
though simple to apply, it is not stable over long periods
of device operation.

We will Srst focus on the Au-Ge-Ni contact. The al-
loyed contact consists of a mixture of alloys such as
NiGe, NiAs, Ni2AsGe, and Au&Ga, of which the Srst
three are most important in reducing the contact resis-
tance. 20 It has been shown that these alloys are
stoichiometric, zo and although no data are available on
their resistivities and carrier concentrations at cryogenic
temperatures, it seems reasonable to take as an order-of-
magnitude estimate the values for impure nickel, i.e.,

10 Qm and 10 m, respectively. ' The thickness of
the contact as seen by the 2D EG is of the order of 0.5
pm, being the thickness of the evaporated contact layers.
Alloying times of the order of minutes are sufficient to let
the alloys reach the 2D EG (typically 200 nm below the
surface).

As the tin contact has limited commercial use, very lit-
tle is known about the exact contact structure. A typical
fabrication procedure is to alloy tin dots of less than 1

mm diameter in a reducing atmosphere at 400'C for 4
min. Probably a mixture of SnAs and SniAsz alloys will

be formed, with rcsistivities and carrier concentrations
comparable with the alloys in the Au-Ge-Ni case.

In practical samples the contact areas are approximate-
ly square or circular, with dimensions of about 100 pm,
and the current and voltage leads are positioned near the
center of the contact. The transition region between con-
tact and 2D EG is a ribbon of at most 0.5X0.5 pm
cross section, so the solution of Ref. 5 can be applied.
The contact-2D EG geometry in practical samples may
differ somewhat from the mathematically convenient
form in Fig. 2, but as the main part of the dissipation
occurs in a very small region near the interface, the ex-
pression in Eq. (6)—possibly with slightly altered numer-
ic constants —will apply to practical contact-2D EG
geometries. The same conclusion follows from considera-
tions of inhomogcneities in the current pattern in the
"bulk" of the 2D EG as observed by various work-
ers, because the constrictions will be dominated by
the difference in properties of the contact and the 2D EG.

For the Au-Ge-Ni contact (0.5 pm thickness), one finds
relative corrections to the quantized resistance h/ie at
the i =2 plateau due to the second, third, and fourth
terms in Eq. (6) of about 10, 2X10, and 10 '2, re-
spectively. The accuracy of the two-terminal resistance is
therefore limited by an interplay of contact and 2D EG,
and not by the finiteness of the ratio p„» zD/p„„2D.

For the tin contacts (100 pm effective thickness) one
finds from Eq. (6), for the aforementioned corrections,
5 p 10 ",10,and 5)& 10 ', respectively.

III. EXPERIMKNTAI. RKSUI.TS AND DISCUSSION

FIG. 4. Sketch of the current pattern in the Sn contact: I
denotes the heterostructure, 2 the 20 ECi, and 3 the Sn dot.
The current Sows through an elongated part of the dot, with sn
elective thickness t =I.= 100 pm.

The measurements were made with four samples,
whose properties are listed in Table I. Three samples
were provided with Au-Ge-Ni contacts by vapor deposi-
tion and subsequent alloying. The resistance of the
current leads was measured separately and corrected for
( —10 ). Sample 4 was provided with small Sn dots,
which were alloyed into the 2D EG. In this sample the
two-terminal resistance Rso was measured directly at the
juncture of the current leads to the sample.

The resistance Rso was compared with the Hall resis-
tance RH by means of the potentiometric resistance com-
parator at the Van Swinden Laboratories (VSL) of the
Dutch National Standards Institute with a resolution of
better than 3)&10 . The measurement of the current
leads (for samples 1-3) adds an uncertainty of 10 . The
data were taken at a temperature of 1.2 K so as to mini-
rnize p 2D. A complication is the possible inhomogenei-
ty of the samples: The magnetic 6eld is chosen such that
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TABLE I. Sample properties. MOCKED denotes metallic-

organic chemical-vapor deposition, MBE molecular-beam epi-

taxy.

Growth
technique

MOCVD
MOCVD

MBE
MBE

Electron
density

(10' m )

3.6
4.0
3.7
2.5

Mobility
(m2/V s)

10
15
13.5
60

Au-Ge-Ni
Au-Ge-Ni
Au-Ge-Ni

Sn

p„„20 as measured in the middle of the channel is
minimal. Owing to the variations of electron density
along the channel, some parts of the sample might be well
oif the p„„2D minimum. Then the resulting (nonvanish-

ing) longitudinal resistance of the 2D EG that connects
both contact regions might contribute signi6cantly to
RsD. To confirm the absence of this, it was checked that
the channel current was low enough so that no current
dependence was detectable, neither in the quantized Hall
resistance nor in the two-terminal resistance. As p „20 is
also strongly current dependent, this proves that it does
not contribute signi6cantly to the observed resistances.
Only in sample 2 do both the i =4 and i =2 plateaus
have suSciently low p„„20 to ensure that the contribu-
tion of the longitudinal resistance to Rsn is negligible.

Table II gives the results. For the thin Au-Ge-Ni con-
tacts the values of RsD —RH are of the predicted order of
magnitude. For sample 2, RsD —RH is independent of
the plateau index i, in agreement with our model. For
the case of the Sn contact the predicted difFerence is
smaller than the instrumental resolution. This is in
reasonable agreement with the experimental result. It
should be noted that the given uncertainty is merely a lo
estimate. To confirm that the small value of R so —Rir in

sample 4 is caused by the larger thickness of the contact,
we spread a Sn layer, with an estimated thickness of -10
pm, on the Au-toplayer of the Au-Ge-Ni contacts of sam-
ple 3, by melting small pieces of Sn on the contacts. The
sample was heated to a temperature just above the melt-
ing point of Sn for a short time to minimize damage to
the underlying Au-Ge-Ni contact. The value for
(RsD RH )/RH was fo—und to be 7x 10 for these thick-
er contacts.

As an alternative explanation for the observed
difFerence between Rso and RH, one could think of the

I I l I I I / / I I I l I

experiments, this work

theory, this work

experiments, reh. 3,L

theory, refs. 1D, 11

i 4 l I

hXXXXXX%

I I l

1D+

metal-semiconductor contact resistance. The magnitude
of such a resistance in the case of a metal-2D EG con-
tact is unknown. One would expect, however, that such a
mechanism would give approximately the same results
for Rso —RB for the Sn and Au-Ge-Ni contacts. This
mechanism would not explain the dependence of
R sn —RH on the thickness of the metal contact that is in-

dicated here.
Figure 5 shows the results of this work as well as previ-

ously published results on this subject. A striking conse-
quence of the result summarized in Eq. (6) is that RsD
could, in principle, be smaller than RH if the contact ma-

terial has a large p„,. The physical cause for this rather
unexpected result can be seen from Fig. 2: In both con-
tact regions there is a current component perpendicular
to the long axis, which causes a (Hall) voltage along the
long axis that opposes the voltage drop within the 2D
EG. In this argument it is essential that VsD is measured
with potential leads that have their connections to the
contact on the 2D EG within the magnetic Geld region
(see Fig. 1). A different situation occurs if VsD is probed
on the leads for current supply at such distances of the
2D EG that the potential difFerence is registered between
points that lie outside the magnetic field. In that case

p„~,=0 at the measurement positions and the negative
contribution to RsD —RH will vanish. However, the
analysis of realistic contacts given above shows that even
in the measurement con5guration of Fig. 1 a negative
value for R sn —RH will not be readily observable.

Now that measurements support our model, we would
like to finish up by pointing out how RsD —RH can be
measured directly in a three-probe configuration on a
sample thit is in the quantized regime. %e propose to
apply the current through the source and drain contacts
as in Fig. 1, and to measure the voltage between the
source contact and a Hall probe. It follows from our cal-
culations and from Fig. 2 that this value is approximately

Sample
Plateau
index

9-27
9-27
9—27
9—18
4.5

(Rso —R~ )/RH
(10 )

0.8%0. 1

0.4+0. 1

0.8+0. 1

1.2+0. 1

0.05+0.03

TABLE II. Relative difkrence between the two-terminal
resistance (RsD) and the four-terminal Hall resistance (RH ) at
the plateaus. The indicated uncertainties are lo. estimates.

FIG. 5. The relative difference of the two-terminal resistance

Rso and the Hall resistance RH according to previous theoreti-
cal and experimental work and the present work. It was report-
ed that Rso equals RH experimentally within the measurement
accuracy of 10 ' (Refs. 3 and 4). The published theories, con-
sidering idealized short-circuiting contacts, predict di6'erences
of 10 ' or less (Refs. 10 and 11). Our model for realistic con-
tacts predicts larger differences. Our measurements with thin
evaporated contacts (the larger values} and with thick alloyed
contacts (the lower ones) show a significant dilerence between

Rso and RH, which can be explained with our model.
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equal to RH for Hall probes on one side of the sample.
However, for the probes on the opposite side, the mea-
surement yields (RsD —RH)/2 directly. This way of
determining 8so —R& requires only a nanovoltmeter and
a pA-current source, instead of a high-resolution resis-
tance comparator. This can be applied for measuring
properties of the contact via Eq. (6), taking advantage of
the well-dined resistive properties of a 20 EG in the
quantized regime.

In summary, we have presented a theoretical model for
Rsn —RH and order-of-magmtude calculations of this
quantity for commonly used contact methods: alloyed Sn
dots and evaporated Au-Ge-Ni contacts. Furthermore,
we have presented experimental results in agreement with
our calculations. Our experiments show that thin Au-
Ge-Ni contacts produce a measurable difFerence between

RsD and R& in the quantized regime. In order to make
more aSrmative statements, the exact properties of the
alloys constituting the contact regions have to be known
more accurately. Conversely, one may start from our
model and then the two-terminal resistance, or the results
of a newly proposed three-probe measurement, may yield
information on the contact properties.
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