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Energetics of charged metallic particles: From atom to bulk solid
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The energy of a spherical metallic particle of radius R, charged with Z excess electrons, is simply

Ez ——Eo —ZS'+Z e /2(R +a), where fY is the bulk work function, e is the charge of one electron,
and 8+a is the radial centroid of the excess charge. Consequently, the ionization energy is

I = 8'+e /2(E. +a), and the electron aSnity is A = 8' —e /2(R +a). These formulas apply even

to the smallest microparticle, a single monovalent atom. Thus they may be used to estimate the

bulk work function 8'=(I+ A)/2 and density parameter (VA'gner-Seitz radius) r, from atomic

values for I and A; r, is the solution of the equation r, +a(r, )=e /(I —A }. The link between mi-

crocosm and macrocosm is further sho~n by the relationship e„&=o4mr, ' between the cohesive en-

ergy e„h and the surface tension o. These relationships are illustrated for atoms and small jellium

spheres.

I. INTRODUCTION AND SUMMARY

I= 8'+3e /8R,
A =8' —5e /8R . (2)

These equations, or a variant ' replacing + —', and ——,
'

by +—,
' and ——,', are often used to provide an elementary

tual interpretation of the results of experiments or de-
tailed calculations. It will be shown here (Sec. II A) that

Small metallic particles' mediate between single
monovalent atoms and bulk metals. Clusters of special
stability occur with 8, 20, 40, 58, and 92 atoms. These
magic numbers are shell-closing numbers of a spherical
square-well potential confining the valence electrons in-
side the particle. The jellium (uniform positive back-
ground) model of the bulk metal provides a useful
zeroth-order approximation for alkali-metal crystals and
planar surfaces, and the jellium-sphere model does the
same for alkali-metal particles. ' Starting from this
model, and introducing the ionic pseudopotentials as a
first-order perturbation, one can calculate the total ener-

gy, the ionization energy and election aSnity, and even
the atomic arrangements in space, which often diifer radi-
cally from those of the bulk crystal. The results are gen-
erally con6rmed by much more elaborate calculations of
the molecular-structure type. "'" A particularly cogent
explanation of the physics behind the success of the
jellium-sphere model has been given by Manninen. "

Of special interest is the question: How do the proper-
ties of a particle converge, as a function of cluster size,
from those of a single atom to those of a bulk crystal'7

Because of its high symmetry, the jellium-sphere model

converges via a strong shell-structure oscillation which
is partially damped when the ionic pseudopotentials are
switched on. It has been suggested that, apart from
shell-structure oscillations, the ionization energy I and
electron aSnity A of a particle of radius R should con-
verge toward the work function 8' of the bulk crystal in

the following way

the more correct equations are

I= W'+ e /2(R +a ),

A =8'—e /2(R +a),

(3)

where R +a is the radial centroid of excess charge' on a
metallic sphere of radius R. Apart from shell-structure
oscillations, the microscopic distance a depends upon
the interior density of the particle, but is almost indepen-
dent of the radius E.. ' Charging always raises the elec-
trostatic energy of a neutral system; this e8ect increases I
(the energy needed to transform the neutral atom into the
positive ion), and reduces A (the energy needed to trans-
form the negative ion into the neutral atom).

Equations (3} and (4) apply with reasonable accuracy
even to very small particles, including the smallest —a
jellium sphere containing a single electron, or a real
monovalent atom (Sec. II 8). The upshot is an unexpect-
ed link [Eqs. (17) and (19)]between the ionization energy
and electron aSnity of an atom, on the one hand, and the
work function and bulk density of the corresponding met-
al, on the other.

The revised equations (3) and (4) have some implica-
tions for the equilibrium charge and stability of a cluster
(Sec. II C}. In a collection of particles of varying size but
identical composition at absolute zero temperature, there
is always a range of chemical potentials which will make
every particle neutral, contrary to the tentative sugges-
tion of van Staveren et al. ' based upon Eqs. (1) and (2).
However, Ishii's observation remains true: the smallest
number of atoms in a cluster that can bind Z excess elec-
tron increases veiy rapidly with Z.

A second close and simple line between microcosm and
macrocosm is provided by the relationship of Eq. (26) be-
tween cohesive energy and surface tension (Sec. III). Ap-
parently, for many purposes, a monovalent atom may be
regarded as a small metallic particle or even as a jellium
sphere. Similarly, a nucleon may be regarded as a small
sphere of nuclear matter.
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II. IONIZATION ENERGY
AND KI.ECTRON Ak 5 j.NrI'Y

A. Spherical metalbe particles

Let the bulk metal have work function W (binding en-

ergy of the least-bound electron) and an average valence
electron density n =3/4nr, . Consider a spherical parti-
cle which when neutral would contain N' valence elec-
trons; thc radius of its Gibbs surface 1s thus
R =r, (N')' . The problem is to determine how the en-

ergy of such a particle, with N*+Z valence electrons, de-
pends upon Z. Here N' and Z are integers. The shell-
structure effects present in very sma11 particles are to be
neglected.

Let

E[n+5n] —E[nj= fd'r 5n(r)
I' ~»

)& 5n (r)5n (r') .

Again neglecting shell structure, the functional deriva-
tives will exist; derivative discontinuities need not be
cons1dcl cd bcrc.

The total energy E[n] is the sum of the electrostatic
energy

[n (r) —n+ (r)][n (r') n—+ (r')]
E„[n]=—,

' d r d r'
r' —r

5n(r) =Zf (r )/4m(R +a) (5) (10)

be the excess electron density. Because metal is a con-
ductor, the function f (r) is nonzero only in a peak' near
the surface of the particle. Negl'ecting shell structure, the
height and width of this peak are independent2' of R, and

r 4mr r 4m A+a =1,

r4wr2r r 4w A+a = A+a
0

The parameter a is just the microscopic distance from the
infinite planar Gibbs surface to its image plane, as first
calculated for the jellium model within the local-density
approximation by Lang and Kohn. ' Those calculations
have been repeated here, and the results in the metallic
range 2 & r, & 6 have been fitted:

a(r, )=5.207r, ~ 1.415r, '+—4.814r, '~

(all distances in bohrs).
The energy E of the particle is a functional of its elec-

tron density n (r). The charging energy may be expanded
to order Z:

the kinetic energy T, [n], and the exchange-correlation
energy E„,[n]. In Eq. (10), n+(r) is the density of the
positive charge, which arises either from the nuclei in a
real particle or from the uniform positive background in-
side the Gibbs surface in a jellium model. The required
functional derivatives of Eq. (10}are

,' f "dr —4mr g(n (r))[Zf(r)/4m(R+a )2]2, (13)

5E„[n(r') n+(r')—]der
5n(r)

~

r' —r
~

5E„
5n(r)5n(r')

~

r' —r
~

Neglecting shell-structure effects, there will be no im-
portant R dependence in the first term on the right-hand
side of Eq. (9}, which may therefore be replaced by its
bulk (R~ao) limit, —HrZ. The second term on the
ri ht-hand side of Eq. (9) contains an electrostatic term
Z e /2(R +u). The kinetic and exchange-correlation en-
ergies can make no comparable contribution. For exam-
ple, if the exchange-correlation energy is treated in the
local-density approximation, its contribution of order
Z~ will be

TABLE I. Test of Fq. (16) for jellium spheres with electron number N =1 and radius R =r, . I is
the exact ionization energy, and r, is the bulk density parameter. a(r, ) is the distance from the Gibbs
surface to the iinage surface [Eq. (8)], and IV is the work function of a planar surface, calculated self-
consistently within the local-density approximation for the exchange-correlation energy. (In atomic
units where e =A=m =1, the unit of distance is 1 bohr=0. 529 A, and the unit of energy is 1 har-
tree =27.21 eV.)

1.58
1.34
1.23
1.16
1.11

3.78
3.36
2.90
2.54
2.25

2
8'+

2(r, +a)
(eV}

7.58
6.49
5.50
4.75
4.16

(eV)

7.99
6.45
5.42
4.68
4.12
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2

A =Eo—E) ——8—
2(R +a) ' (15)

and the ionization energy (binding energy of the least-
bound electron in the neutral particle) is

eI =E j
—Eo ——W'+

2(R +a) (16}

Equations (15) and (16) may be expressed in another way:
The Mulliken electronegativity is

—,
'

(I + 3 ) = 8',
and the chemical hardness is

2

—,'(I —A }=
2(R +a) ' (18)

the inverse of the capacitance R +a.
As a first numerical test of these new results, Eq. (16}

for I as a function of R may be plotted in Fig. 1 of Ref. 9,
which shows the results of Ekardt's calculations for ion-
ization energies of jellium spheres with r, =4 and
3 & N' & 168. Apart from shell-structure oscillations in I
versus R, the agreement is good. In particular, Eq. (16)
accurately describes the ionization energies for small par-
ticles with half-filled valence shells.

The parameter a, which is of great importance for very

which is clearly proportional to (R+a) . The local-
density approximation gives accurate ionization energies
even for particles as small as a single atom. The self-
interaction error of this approximation is not a serious
one when the ionization energy is computed as a
difference of total energies, as it is here.

The energy of a metallic particle of radius R, charged
with Z excess electrons, is thus

Z 2e 2

Ez ——Ec—ZS'+
2 R+a

The electron affinity (binding energy of one excess elec-
tron) is

small particles, has been omitted in previous
theories ' ' ' of the charging energy. Except for the
early mork of Kubo and that of Cini, these previous
theories' ' have been based nonrigorously upon a corn-
parison between the classical image potential experienced
by a test charge outside a metallic sphere and outside a
semi-infinite metal with a planar surface. This approach
leads to Eqs. (1) and (2), with coefficients +—', and ——', .
The coeScients + —,

' and ——,
' mere asserted in Ref. 18, but

were obtained there via an incorrect evaluation of a re-
quired limit. Note that the classical image-potential for-
mulas are valid only far outside the surface, and are
essentially irrelevant to the determination of the work
function. In fact the local-density approximation for
E„,[n], which asymptotically yields no image potential,
still accurately predicts the work functions of bulk met-
als and the ionization energies of atoms.

B. Atoms as spherical metallic particles

As a second and more extreme numerical test, Table I
applies Eq. (16) to the smallest jellium spheres with half-
filled valence shells —those with N" =1 electron, and ra-
dius 8 =r, . The bulk work functions 8'were computed
self-consistently by the method of Ref. 29 within the
local-density approximation for E„,[n], using the
Ceperley-Alder correlation as parametrized in Ref. 31.
The ionization energies I were computed with no approx-
imation. Evidently, Eq. (16) extrapolates successfully to
the very smallest particles, although the physics behind
its derivation is only qualitatively (not quantitatively)
correct in this limit.

As a final numerical test, Table II applies Eqs. (15) and
(16) to the smallest real microparticles with half-filled
valence shells —the monovalent atoms (R = r, ). Re-
markably, the atomic ionization energies and electron
affinities3 are predicted reasonably well. Reversing the
viewpoint, one may then use known atomic values of I
and A to predict the work function via Eq. (17), which
was 6rst present as a semiempirical relationship by Chen,

TABLE II. Test of Eqs. (15) and (16}for monovalent atoms. I and A are the measured iomzation energy and electron affinity of
the atom. fV is the measured bulk polycrysta11ine stork function, and r, the measured bulk density parameter. See also the caption of
Table I.

Li
Na

K
Rb
Cs
Cu
Ag
Au

'Reference 34.
Reference 36.

'Reference 32.
Reference 33.

2.9
2.75

2.30
2.16
2.14
4.65
4.26
5.1

r'
S

{bohrs)

3.25
3.93
4.86
5.20
5.63
2.67
3.02
3.01

a(r, )

1.31
1.24

1.17
1.15
1.13
1.40
1.34
1.34

e28'+
2(r, +a )

{eV)

5.9
5.38

4.56
4.30
4.15
7.99
7.38
8.2

Ic

(eV)

5.39
5.14

4.34
4.18
3.89
7.73
7.58
9.23

2
W'—

2{r,+a)
(eV)

—0.1

0.12

0.04
0.02
0.13
1.31
1.14
2.0

{eV)

0.62
0.55

0.50
0.49
0.47
1.23
1 ~ 30
2.31
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%entworth, and Ayala. The bulk density parameter
r, may be estimated by solving Eq. (18) in the form

r, +a (r, ) =e /(I —A } . (19)

The utility of this formula is more conceptual than corn-
putational. For the hydrogen atom, where the right-hand
side equals 2.12 bohrs, Eq. (19) has no solution in the
range where a(r, ) is known, reflecting the absence of a
zero-pressure metallic phase.

2

I'
I 2(g

(20)

This condition may always be achieved by taking p
sufFiciently close to —W.

Finally, consider the binding energy of the least-bound
electron in a particle which carries Z ~ 0 excess electrons:

C. Equilibrium charge and stability of a cluster

The equilibrium charge on a metallic microparticle in
contact with an electron bath of chemical potential p and
a heat bath of temperature T may be found by using Eq.
(14) in the grand-canonical ensemble, following van Sta-
varen et al. ' The present discussion is restricted to
T =0. The particle will be strictly neutral if
—I ~p & —A, i.e., if

TABLE IV. Test of Eq. (26) for neutral jellium spheres with
electron number X =1 and radius 8 =r, . c„& is the exact
cohesive energy from Eq. (27). s is the mean total energy per
electron in an in6nite jellium, and o is the surface energy within
the local-density approximation. (1 eV/bohr =57 219
ergs/cm2. )

(bohrs) (eV)

0.06
—1.82
—2.10
—2.06
—1.93

cr4mr,

(eV)

—0.76
0.44
0.57
0.53
0.47

noh

0.11
0.81
0.76
0.65
0.53

BI. COHESIVE ENERGY AND SURFACE TENSION

The link between microcosm and macrocosm is also
refiected in energy differences which involve no charging.
For example, the mean total energy per electron in a neu-
tral jellium sphere of radius R is

0.4mB 2
"s

F + =E +0 O'ITrq

e
Ez i Ez ——8' —(Z ———,

'
)

(R +a)
1.1050A' 0.4582e +f

r~
(25)

The particle is stable against field emission of an electron
if this expression is positive, i.e., if

~A+a +Y
e

(Z ——,
' )e

8'r, r,
(23)

When the excess electron number Z is chosen to mini-
mize the energy Ez, Z increases with R, but of course the
surface charge density Ze/4nR vanishes as R ~Dc.
The inequality (22) may be recast:

is the mean total energy per electron in infinite jellium,
and o is the surface energy. Table IV shows e and o as
functions of r„ for the Ceperley-Alder correlation energy
s, (r, }.3 ' The surface energy o was calculated self-
consistently within the local-density approximation, fol-
lowing the method of Ref. 29. The right-hand side of Eq.
(24} may be plotted on Fig. 2 of Ref. 9, which shows the
results of Ekardt's calculation for the mean energy per
electron of jellium spheres with r, =4 and 3 &N' & 168.
Apart from shell-structure oscillations, the agreement is
good.

In the extreme limit of a single monovalent atom
(N =1), Eq. (24) predicts that the cohesive energy (ener-
gy per atom needed to break up the solid into neutral

As Ishii has observed, the smallest number of atoms
that can bind Z excess electrons increases very rapidly
with Z (Table III).

TABLE V. Test of Eq. (26) for monovalent elements. c,„h is
the measured cohesive energy from Ref. 36, and o. is the mea-
sured surface energy extrapolated to temperature absolute zero
in Ref. 37.

TABLE III. The smallest number of monovalent atoms that
can bind Z excess electrons, from Eq. (23). r, is the bulk density
parameter. The metal particle is treated as a jellium sphere.

23
115
325

Element

Li
Na
K
Rb
Cs
Cu
Ag
Au

o 4mr, '
(eV)

1.21
0.89
0.75
0.69
0.66
2.80
2.50
3.00

1.63
1.11
0.93
0.85
0.80
3.49
2.95
3.81
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atoms) is just the work done to create the surface of the
atom:

&co} =o 4~rs2 (26)

A similar relationship with a diferent numerical
coeScient was presented by Tyson and Miller, and dis-
cussed by Rose, Smith, and Ferrante. Table IV com-
pares the approximation of Eq. (26) to the exact cohesive
energy of jellium,

38 —ICO

S

(27)

The term in parentheses in Eq. (27) is the total energy of
a neutral jellium sphere containing one electron; I is the
exact ionization energy from Table I. Except for r, =2,
where jellium is far out of equilibrium, Eq. (26) works
reasonably well. In the high-density (r, ~0) limit, s„„
and 0 both tend towards —m. In the metallic range
(2&r, &6), the correlation energy e, is needed to make
jellium cohere (e,„i,& 0).

Equation (26) also apphes to real metals (Table V). The
estimate would be improved by using, instead of the area
4mr, of the Wigner-Seitz sphere, the area of the Wigner-
Seitz polyhedron, which is 10% bigger for the body-
centered cubic lattice. Once again, a monovalent atom

may be regarded as a smaH metallic particle.
Finally, note that Eq. (26) apphes even to nuclear

matter: From the semiempirical formula for nuclear
binding energy, the left-hand side equals 15.6 MeV
while the right-hand side equals 17.2 MeV. A single nu-
cleon (neutron or proton) may be regarded as a smaB
sphere of nuclear matter.

Note added in proof Th. e parameter "a" of Eq. (14)
and following equations is not strictly equal to the dis-
tance from the Gibbs surface to the centroid of excess
charge. A better estimate may be a=1.S4 bohrs, in-
dependent of r, . In a subsequent article, "a" will be
defined and evaluated. Numerical tests of Eqs. (15) and
(16) will be presented for multi-atom clusters as well as
single atoms.
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