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Diagonalization of large matrices in pseudopotential band-structure calculations:
Dual-space formahsm
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Combining iterative methods of calculating the eigenvectors of a Hermitian matrix with a
matrix-multiplication technique using the fast-Fourier-transform algorithm, we present an efFicient

method of performing total-energy and band-structure calculations in crystals with the plane-wave
local-pseudopotential formalism. The method can be viewed as a dual-space formalism where part
of the calculations is performed in momentum space and another part in coordinate space.
Significant savings in both computer time and memory are obtained. Results of calculations for
molecular hydrogen with matrix sizes as large as 7200 are presented as an example.

INTRODUCTION

In the modern theory of the electronic structure of
solids we must solve accurately a second-order partial
differential equation in three-dimensional space, the
Schrodinger equation. The existing schemes of solving
this difficult numerical problem, ' like the pseudopoten-
tial, orthogonalized-plane-wave, augmented-plane-wave,
muffin-tin orbital, and linear combination of atomic or-
bitals. methods and the methods derived from those, rely
on the known properties of the solutions of the
Schrodinger equation in the design of the computational
procedure. For example the chemical concept of valency
is reflected in the different treatments for the valence and
core electrons, either by replacing the core electrons by a
pseudopotential or by expanding the wave functions in
difFerent functional forms in the core and in the valence
regions.

Most electronic structure methods expand the wave
functions in a basis set, and therefore an important part
of the numerical procedure is the diagonalization of Her-
mitian matrices. For complex crystal structures the ma-
trix size can be very large and the matrix diagonalization
may require extensive computing resources. Hence the
search for new algorithms and methods of matrix diago-
nalization has been very active. As in the case of the
electronic structure methods the most successful diago-
nalization procedures are also those which exploit our
knowledge of the properties of the solutions of the
Schrodinger equation.

We implemented an efficient method to diagonahze the
large matrices that occur in self-consistent local-
pseudopotential band-structure calculations. The
method combines the iterative procedure of the direct in-
version of the iterative subspace (DIIS) algorithm, with
the computation of the product of the Hamiltoman ma-
trix by a wave vector through the use of fast Fourier
transforms (FFT) implemented in the molecular-
dynamics method of Car and ParrineBo. The resulting
procedure is faster than traditional diagonalization

methods (e.g., using the EISPACK subroutines} and since
the Hamiltonian matrix is never explicitly calculated, it
requires less computer memory. In practice the use of

Fl"&' means that we calculate the kinetic-energy
operator in momentum space and the potential-energy
operator in coordinate space. Viewed in this perspective
the momentum-space local-pseudopotential formalisms
can be advantageously reformulated into a dual-space
pseudopotential formalism. We will compare the results
of calculations of the total energy of molecular hydrogen
where matrices with sizes as large as 7200 were diagonal-
ized with a VAX 11/785 minicomputer.

THEORY AND ALGORITHM

In the electronic structure theory of crystals we must
solve the Schrodinger equation,

[ ——,
' V2+ V(r) ]g(r)=Eg(r),

where V(r) is an efFective potential with the periodicity of
the crystal lattice (e.g., a screened pseudopotential). Here
we will use atomic units e=A'=m, =l. In the plane-
wave forma1ism's the eigenfunction is expanded in a sum
of plane waves with crystal momentum k,

I'(lf. +O ] rg(r)=pa(G )e ' =a(r)e'"',
J

where the sum is over all the reciprocal lattice vectors G.
and a(r) has the periodicity of the crystal (Bloch's
theorem). In the plane-wave basis the Schrodinger
differential equation [Eq. (1)] is transformed into a inatrix
eigenvalue problem,

gH; a(GJ ) =Ea(G; ), .

where the (k-dependent) Hermitian Hamiltonian inatrix
1S

H,; =5;J.,'(k+ G; ) + V(G; —G—)),
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and the Fourier transform of the potential is

V(G)= fd r e' 'V(r) .

According to the physicists' tradition we will be using the
same symbol for s function, its Fourier transform, the
corresponding operator and its matrix representation,
and use the arguments and context to distinguish between
the diferent mathematical representations of the same
physical object.

For practical reasons the order of the reciprocal-lattice
vectors is chosen such that

( k+G, ( &
~
k+G,

~

if i & j,
and the expansion is truncated at a size N determined by
the convergence to the desired accuracy of the physical
property (e.g., total energy) being studied. The condition

~
k+G;

~
&G,„ is often used to define the truncation,

and the calculation is said to include plane waves up to
an energy cuto8'of E,„=—,'6,„.

The solution of the eigenvalue problem [Eq. (2)] with
general-purpose subroutines (e.g., using the EtspACK. li-
brary) requires a number of Boating-point operations of
the order to N snd a computer storage of X words, and
is unpractical for problems where N is larger than a few
hundred. More eScient algorithms can be developed if
we use the known properties of the Hamiltonian matrix
[Eq. (3a}]. The algorithm need not work for an arbitrary
matrix, but should be fast and accurate for the specific
class of matrices it is designed to diagonalize. It should
detect its own eventual failure to achieve the diagonaliza-
tion when applied to a matrix outside that class.

In band-structure problems we only need the lowest ei-
genvalues of the Hamiltonian matrix, therefore iterative
methods should be considered ss an alternative. The sim-
plest iterative method is the Lanczos method, which is
based on the convergence properties of the series

(m +1) ~ {m)

This series converges to the eigenvector y of H with the
largest eigenvalue in absolute value as long ss x' " and y
are not orthogonal. The convergence is geometric with a
convergence factor given by the ratio of the second larg-
est to the largest eigenvalue in absolute value. This itera-
tion defines a basis set Ix( ),x(", . . . , x("J of an iterative
subspace, the Krylov subspace. If we define in this sub-
space the matrices P =x" Hx'J) and Q""=x"x"'

EJ IJ
then the eigenvalues of the equation Pu =A, Qu converge
to the lowest snd largest eigenvalues of H with increasing
dimension of the subspace. It is easily recognized that we
have just performed a change of basis in which we calcu-
late the Hsmiltonian matrix elements. The series gen-
erated by the Lsnczos procedure has an interesting physi-
cal interpretation in the recursive tight binding method.
We also notice that the matrices P and Q can be tridiago-
nalized with s trivial transformation. ' In the numerical
implementations of the Lanczos procedure instabilities
related to the appearance of linear dependences in the
iterative subspace can occur. Practical ways to avoid this
problem are discussed in the literature.

The properties of the Lanczos method provides the
mathematical background to most of the modern itera-
tive methods. The inverse iteration method ' is defined

by the modi6ed series

(m +1) (H )
—1 (m)

~(m+1) D —1(H gfm))X(m)+&(m)

X(m +1) (m +1)

~ (m) T~ (m)

~ (rn)T~ (m)

(4b)

(4c)

with x' ' an arbitrary guess vector. If we define the resid-
ual vector 8' '=(H —A,

' ')x' ', and the correction vec-
tors 5x( +"=y( +"—x( ', then Eq. (4a) is just a linear
equation,

Dg (m+]) g (m) (5)

The matrix D should be chosen such that the linear
equation [Eq. (5)] is easier to solve than the original ei-
genvalue problem [Eq. (3)], and such that the iteration
converges rapidly to an eigensolution of H. If we choose
D equal to the diagonal part of H then we have the Jacobi
relaxation method, if we choose D to be the lower (or
upper} triangular part of H then we obtain the Gauss-
Seidel relaxation method.

In the DIIS method the relaxation step (called the

and converges to the eigenvector y of H with the eigen-
value nearest to p as long as x( ' and y are not orthogo-
nal. The convergence properties of the inverse iteration
are triviall derived from the convergence properties of
the Lanczos series when we recognize that the eigenvec-
tor with eigenvalue F. of H is an eigenvector of (H —)M)

with eigenvalue (F. p) —'. The convergence will be very
fast if p is a good guess for the eigenvalue E since
(F. —p, )

' will have a very large absolute value. The in-
verse iteration procedure requires s matrix inversion, ex-
actly the operation we wanted to avoid in the first place,
but its convergence properties can be used as s guide for
methods where the iteration is performed with an approx-
imate inverse matrix as is the case of the DIIS procedure.

The most important property of the matrix obtained
from a plane-wave expansion is that if it is truncated at s
smaller value of G~,„ its eigensolutions are still s reason-
able approximation of the original Schrodinger equation.
This is rejected in the matrix elements by the fact that
the o8'-diagonal values given by the potential operator V
are bounded, (the maximum of

~
V(G; )

~

occurs for one
of the smaller G;), whereas the diagonal elements given
by the kinetic-energy operator [V(0) adds a constant to
the diagonal elements and can be ignored) are unbound
and increase with row index i with the power —,. There-
fore for a suSciently large value of i the matrix is diago-
nally dominant.

Matrices that are diagonally dominant have been the
traditional candidates for the Jscobi and Gauss-Seidel
iterative relaxation methods. First we rewrite the eigen-
value problem as

x =D '(H E)x +x, —

where D is s nonsingular matrix, and then we de6ne the
iteration procedure
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Newton step in Ref. 2) is obtained with the choice of the
diagonal elements of H augmented with the off-diagonal
elements H;- such that i,j &M and M ~~X. It requires a
dlagonahzatlon of a 81atfix of size M and converges rap-
idly if this matrix gives a coarse solution to the original
Schrodinger equation. The power of the DIIS algorithm
is 111 the llsc of R collvci'gcncc accelerator rcplaclllg Eq.
(4b),

x' +"=c x"'+~~c 5x'J'
o ~ j

J

where the coefficients of the expansion are chosen such
that they minimize the residual R ' +". These
coefficients can be obtained by diagonalizin~ the Hamil-
tonian in the iterative subspace Ix,5x, . . . , 5x' ),
an easy operation given the fact that I ~ 10. The time
consuming steps in the DIIS method are the following:
(i} the calculation of the products H5x'J' needed for both
the calculation of the Hamiltonian matrix in the iterative
subspace and for the calculation of the residuals, requir-
ing 0 (N ) 6oating-point operations, and (ii) the diagonal-
ization of R small matrix [Eq. (5)], requiring 0(M )

floating-point o erations. The method requires the
storage of the N +N elements of the Hamiltonian matrix
in the computer memory and may access each of them
several times.

The e%ciency of the DIIS algorithm that we just de-
scribed briefly can be improved in local-pseudopotential
calculations through the use of FFI' to calculate the
product of the Hamiltonian by a wave vector. This ma-
trix multiplication requires only 0 (Mog2N ) Soating-
point operations, and the storage of a real array of size
0 (N). The small matrix diagonalization [Eq. (5)] still re-
quires 0(M ) bloating-point operations but only the
M +N matrix elements of D need to be stored. Inspec-
tion of Eqs. (1) and (2) show that while the action of the
kinetic-energy operator is easy to calculate in momentum
(reciprocal or G space) the action of the potential-energy
operator is easy to calculate in the coordinate space
(direct or r space). We will calculate the effec of each of
these operators in the "easy" space and Fourier-
transform the result to the space where we want to do
our "bookkeeping. " In our case the bookkeeping of the
potential and the wave vectors is done in the momentum
space where the calculation of the effect of the kinetic-
energy operator is trivial. To obtain the action of the po-
tential operator on a wave vector, we Fourier-transform
both to coordinate space obtaining the periodic functions
a(r)=e '"'g(r) and V(r), in a uniform grid. Then
VQ(r) ls obtalllcd 111 thc salilc grid by trivial lllultlpllca-
tion, and an inverse Fourier transforro is used to trans-
for111 thc rcslllt back Info B10111clltlllll spRcc. This opera-
tion can also be described as the calculation of the convo-
lution appearing in Eq. {2) through Fourier-transform
methods. This procedure has three very interesting prop-
er ties: (1) wltll R )udicious choice of thc Follrlcl'-
transform procedure it is an exact algorithm (in practice
this means that the results obtained through the two
Fourier transforrnations are identical, within computer
roundofF' accuracy, to the straightforward calculation of
thc 111atI'lx pl'oduct); (11) lt 18 RsyIllptotlcally faster tlla11

the direct matrix multiplication; and (iii) last but not
least, since the Hamiltonian matrix elements H, . are nev-
er explicitly ca1culated with the double Fourier-transform
procedure, they do not need to be stored in the computer
memory.

Both the potential V(r) and the function a(r) are
periodic functions in coordinate space represented in the
computer by their Fourier components at the reciprocal
lattice vectors, V(G;) and a(G; }. The expansion of P is
truncated at 6,„, and inspection of Eq. (2) shows that
the expansion of V can be truncated at 26,„. The result
of the convolution wil1 also be truncated at 6,„. All
these functions are therefore bandwidth limited in (spa-
tial) frequency. Before using the discrete Fourier-
transform methods (DFT) we must define periodic func-
tions in momentum space by convoluting with the period-
ic function

Sn N n (6)= g 5(G —(mlN, b, +m2%212
m&, m2, m3

+m2N2bl)),

where bi, 12 and bi are the reciprocal-lattice basis vec-
tors. %e can calculate the three dimensional
N, )&N2 XN& DFT of the periodically extended functions
f'=S»g and V'=S» Vobtaining the values of V' and a'
in a N& gN2/N3 grid in coordinate space. In the grid
points r„„„=n,t, /N, +n2t2/f2+nit&/NI, where t„

Rlld t3 are the primitive translation vectors of the crys-
tal (b;*t, =2Ir5,J ), the unprimed function are identical to
the primed functions, a{r„„„)=a'(r„„„) and

1 2 3 1 2 3

V(r„„„)=V'(r„„„),and therefore their product isn&n2n3 n~n~n3

also identical. The application of the inverse DF I' gives
the periodic function V'»a' from which we want to ex-
tract the values of Va(G;). If we define GBFT as the ra-
dius of the largest sphere that fits inside the rhombus
with cdgcs +lb1 N2b2 Rlld %211 tllcn rccovcrlng the
values of Va(G;) for

~ G, ~
&6,„ is only a well-defined

operation if 6,„&Gz,FT. Moreover, since V'»a' has a
bandwidth of 36,„ for all the reciprocal-lattice vectors
satisfying

~
G;

~
& 26DFT —36,„, we have that

V'» g'(G; ) = Vg{G; ), whereas for all the other
reciprocal-lattice vectors the equality is only approxi-
mately satisfied. Therefore if we want to obtain the exact
product we roust choose GDFT &26,„. The choice
GDFT &6,„ is, however, physically sound as we wi11 dis-
cuss later.

A comparison of the computing times between the
straight matrix multiplication and the FFT method de-
pends on the computer and on the algorithms used and
how they access the roemory or vectorize, but an estima-
tion of the number of multiplications needed for each
method mill be a good guide of their respective perfor-
mance. The matrix multiplication requires X multipli-
cations whereas the two three-diroensional Fourier trans-
forms (the Fourier-transform of V needs to be done only
once) require 6N'log 2%' multiplication s where
N'=X&%2%3. For the exact multiplication N' is larger
than the matrix size X due to the "wasted space. " The
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"padding" of the momentum space gives a factor of 2
which is to be multiplied by the wasted space when we in-

scribe a sphere inside a rhombus. For the case of a cube
this last factor is 6/m =2. Getting all the factors together
we obtain the critical matrix size X, where the FFT
method becomes more eScient than straightforward ma-
trix multiplication, 100K,log2E, =X„giving a value of
N, =700.

cal within computer accuracy to the results of the tradi-
tional momentum-space calculation, but are a different
approximate solution of the original Schrodinger equa-
tion with an accuracy determined by the choice of 6,„.
The momentum-space formalism and the dual-space for-
malism results will both converge to the exact solution
with increasing G,„with similar rates of convergence.

DUAL-SPACE FORMALISM

The procedure of evaluating the kinetic energy in
momentum space and the potential energy in real space
can be thought of as a dual-space formahsm for pseudo-
potential calculations in contrast with the momentum-
space formalism where all the calculations are carried on
in momentum space. In this context the truncation of
the expansion of the wave function at G,„and of the po-
tential at 26m„, is equivalent to neglecting details of the
wave function with linear size smaller than 2m/6, „,and
details of the potential with linear size smaller than
m/6, „. It is reasonable to assume that we do not need
more details in the description of the potential than in the
description of the wave functions and that we should cal-
culate everything with the same kind of detail, that is
truncate all expansions in plane waves at G,„. Con-
sistently with this requirement, the choice GDFr &6,„
represents the functions in coordinate space with the
same level of detail. In the dual-space formalism we cal-
culate in coordinate space the product of the potential-
energy operator by an eigenvector, the modulo square of
the wave function

~ P ~, and the exchange and correla-
tion potential, while we calculate in momentum space the
effect of the kinetic-energy operator, the total electronic
charge density, and the Hartree potential. The book-
keeping is still done in the momentum space. With this
choice of GD~ & Gm, „ the break-even point for the dual-
space formalism is given by 12K,log2N, =X„ that is

X, =100.
In contrast with the choice of GD~ &2G,„, the re-

sults of the calculation with GD~ & G,„are not identi-

The method was tested in calculations for molecular
hydrogen with the Pa3 structure (8 atoms per unit cell)
with a cutoff energy of E,„=36 Ry or E,„=64 Ry,
and for several lattice constants a. The total energy was
calculated with a single special k point, and the eight
lowest-energy eigenvectors were calculated at this k
point. It took four iterations to achieve self-consistency,
and the size M of the small matrix of the DIIS algorithm
was determined by an energy cutoff of 7 Ry.

The total computing times for five difFerent combina-
tions of lattice constant and energy cutoff giving different
matrix sizes X are presented in Table I for four different
diagonalization procedures: EISPACK subroutines, DIIS
method, DII$ method plus the matrix multiplication us-
ing the FFT (GDFr &26,„), and the dual-space method

(GDFr & 6,„). Our estimates of the critical matrix sized
of N, =700 for the DIIS plus FFT method and N, = 100
for the dual-space method are verified in practice. We
notice that the relative performance of the different
method may depend on the computer being used and on
the efficiency of the FFT algorithm.

The savings in computing time are evident from Table
I. For the calculation with a matrix size of 7200 where
the EisPACK routine would take more than a year, ' and
the DIIS method would take three days, ' the dual-space
method takes only 2 h. The storage of a 7200 by 7200
matrix requires 415 Mbytes of computer memory while
the storage space required for a11 the variables in our cal-
culation with the dual-space formalism is less than 10
Mbytes. It is also apparent from Table I that for very

TABLE I. The performance of the difFerent methods described in the text is compared for several
calculations with difkrent matrix sizes N, for the test case of Pa3 hydrogen (8 atoms per unit cell) with

lattice constant a {in Bohr radii) and energy cuto8' E,„(in Ry). The computing time is given in

minutes of VAX 11/785 CPU times for the full self-consistent total-energy calculation. The percentage
of CPU time spent in the EISPACK subroutines and in the iterative diagonalization subroutines is given
in parentheses below' the computing times.

EISPACK
Computing time in minutes

DIIS DIIS + FFT ~max

305

3031

6.2
(1,62)

32
(2,71)

8.2
(1,75)

30
(2,80)

98
(6,71)

167
(40„45)

1.6
(4,66)

7.9
(8,74)

39
(16„68)

104
(64,30)

126
(53,38)

4.35

5.5

7.0

9.4

36.0

36.0

64.0

36.0
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large matrices the computing times starts depending
strongly on the small matrix size M. Increasing N by in-
creasing the energy cutoff' does not change the small ma-
trix size M and causes only a moderate increase in com-
puter time. Increasing N by increasing the ug. it cell size
implies also an increase in the small matrix size M and
may increase signi6cantly the total computing time. The
diagonalization of the small matrix is thus the factor that
will ultimately limit the application of the method to
more complicated systems.

CONCI. USIGNS

The combination of the iterative diagonalization DIIS
algorithm with a matrix multiplication using FFT tech-
niques allowed us to perform total-energy calculations in
the local-pseudopotential plane-wave formalism for very
large systems. The method saves both computer time

and memory for problems with Hamiltonian matrix sizes
larger than a few hundred and can be used for problems
with matrix sizes of several thousand.
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