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Inelastic processes in extended x-ray-absorption fine structure (EXAFS) are studied using an ex-
tension of the semiclassical model of dynamical screening of a core hole and a photoelectron. This
treatment effectively includes both extrinsic and intrinsic inelastic losses, as well as interference be-
tween them. The local-density approximation is used to derive a complex, energy-dependent final-
state potential which includes dynamical corrections to the static exchange-cdrrelation potential. A
local relaxation method is developed to calculate the core-hole Green’s function, from which the
EXAFS amplitude-reduction factor can be determined. Applications to EXAFS amplitudes for the
diatomic molecule Br, and for metallic Cu yield results in reasonable agreement with experiment.

I. INTRODUCTION

In a complete treatment of many-electron effects in x-
ray-photoemission spectra or in extended x-ray-
absorption fine structure (EXAFS) a theory must include
both intrinsic and extrinsic energy losses as well as in-
terference between them. Extrinsic processes correspond
to the inelastic scattering of the outgoing photoelectron,
while intrinsic processes involve the relaxation and the ex-
citation of the passive electrons due to the creation of the
core hole. Interference effects between the action of the
photoelectron and the action of the core hole are expect-
ed to become important at low energies when the photo-
electron and the core hole are, for a long time, spatially
close to each other. In this regime they present a dipole-
like object around which the relaxation of the system
occurs. To describe the inelastic processes one can use a
model Hamiltonian"? H =H,+H . +V,, where

H =3, ekc,fck +V,. is the Hamiltonian for all one-
electron states except the core level together with
electron-electron mteractlons, H  .=¢t,.b *b, and

Ver =21 Vi k.c,Ick bb', is the transient core-hole poten-
tial. The total absorption can then be expressed"? in
terms of two Green’s functions, the core-hole Green’s
function G.(t) and the transient photoelectron Green’s
function G ;.(¢):

G.()=—i( Dy | T[b(bT(0)]]| D) , ()
(®p | T[s(t)e()e].(0)] | D)

Gy 1) = —i .
ok (@) | s(2) | DY)

Here |®,) (|®g)) is the initial (final) many-electron
ground state; the core state is occupied in | ®,), and
unoccupied in | ®y); b, bt ck,c,:r are the creation and an-
nihilation operators for electrons in the core state |b)
and in the occupied (i.e., passive or valence) and excited
one-particle states |k), respectively; and c,(t)
=exp(—iH,t)c exp(iH,t), b(t)=exp(—iHt)b exp(iHt),
and s (t)=exp(—iH,t)exp(iH't), where H' is the Hamil-
tonian with the core hole. Both intrinsic and extrinsic in-
elastic losses and interference are contained in these two
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Green’s functions. More precisely G, and G, ;- must be
calculated in terms of the time-dependent potential ¢(¢)
and the self-energy (or exchange-correlation potential)
3(t), which are created by the core hole and photoelec-
tron following photoabsorption, i.e., G.=G?
+Gc0¢ind(t)Gc and Gk,k'=GI(<),k' +ng' E(t)Gk,k" Here we
have taken the perturbation to be the induced potential
bina(t) so G? is the core-hole Green’s function calculated
in the presence of the core-hole potential V,, and Gk k18
the final-state photoelectron Green’s function.”

Given these two Green’s functions, one can write the
total absorption cross section u(w) as a convolution,'?

po)= [ do'pw—0"G ("), (3)

where pu'(w) is the single-particle absorption cross sec-
tion, which is related to the photoelectron Green’s func-
tion by

,u“’(a))=——lm2(b|e U | k)G )k’ |8 1|b),
k,k’

4)

£ being the x-ray polarization vector. Similarly, for the
EXAFS X(w), one has*?

X(w)= [ do'XV0—0")G, ("), (5)

where X'V(w) is the single-particle EXAFS spectrum, i.e.,
the oscillatory part of ' (w) normalized by the smooth
atomic background p%w): X'(0)=[p'"(w)—p%®)]/
pio).

The theory of inelastic losses and interference effects in
photoemission from solids has been extensively studied
(see, for example, the papers of Chang and Langreth®). A
unified treatment based on a model Hamiltonian similar
to that used here has been given by Bardyszewski and
Hedin.” However, previous calculations of EXAFS in
atoms and molecules have been carried out only using
static exchange-correlations potentials for the photoelec-
tron final state. Such potentials are constructed using a
local density approximation (LDA) for the electron self-
energy operator® and have been applied to calculations of
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the backscattering amplitudes for many elements.>° In
those calculations the extrinsic loss was included only for
the photoelectron in the backscattering atom, and
dynamical effects were ignored. Thus an additional
overall reduction factor had to be introduced to achieve
reasonable agreement between the theoretical calcula-
tions and experimental results. This reduction factor

J
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roughly accounts for both the intrinsic and extrinsic
losses in the central absorbing atom. A more detailed
theory** for the effects of intrinsic losses in EXAFS was
formulated in terms of the core-hole Green’s function
and yields an energy-dependent reduction factor A4 (k)
for the EXAFS spectrum given by

2 2
atio=[" /Zda)Gc(a))exp[ZiR(kw—k)]/fok ? 4G (o) . ()

Here R is the near-neighbor atomic distance and
k,=(k?—2w)!"? is the shifted wave number. With both
intrinsic and extrinsic losses considered, X(k) can be
rewritten in terms of a many-body amplitude-reduction
factor S (k) as

—S (k)| f (k)
X(k):—————-—-—l—fz——lsin(ZkR +oe R ()
kR
S (k)=— A (k)exp[ —Im(83" +8{")] . ®

Here 8" and 8" are central atom p-wave scattering
phase shifts: one from the path along which the photo-
electron goes out of the atom while the other is from the
path, later in time, along which the photoelectron is scat-
tered back; f (k) is the backscattering amplitude of the
neighboring atom, ¢, is the sum of the real parts of the
central atomic phase shifts and the phase of f_(k), and
exp( —2k20?) is the Debye-Waller factor, o being the
rms bond vibrational amplitude. Calculations® of A4 (k)
for Br, were carried out* based on the sudden approxima-
tion and Hartree-Fock wave functions. However, an im-
portant factor ignored by the sudden approximation is
the dynamical or interference effect, which had to be add-
edin an ad hoc way.'°

A goal of this paper is to treat dynamical effects in
EXAFS based on a more fundamental theory and to
evaluate all the dominant inelastic losses in the EXAFS
amplitude. Our approach is adapted from the semiclassi-
cal model of dynamical screening applied to a core hole
and a photoelectron in a homogeneous electron gas.!! In
this model both the photoelectron and the core hole are
treated as point charges; their motion produces a time-
dependent potential ¢(¢) as well as a time-dependent
exchange-correlation potential 2(¢)."2~!* Applications of
this theory have been made previously both to EXAFS
and photoemission in homogeneous electron systems.!®!?
Another goal of our work is to introduce efficient approx-
imations for these dynamical effects in inhomogeneous
systems. To do this we use the LDA to obtain a dynami-
cal correction to the exchange-correlation potential. A
classical trajectory and Wentzel-Kramers-Brillouin-
Jeffreys (WKBJ) formula are then used to approximate
the dynamical corrections to the atomic scattering phase
shifts. Also a new, local relaxation method is developed
to obtain the core-hole Green’s function for inhomogene-
ous systems. With this framework, all the ingredients in
the overall EXAFS reduction factor S(k) of Eq. (8) can

[

be evaluated.

The outline of this paper is as follows: In Sec. II we
briefly review the semiclassical model of dynamical
screening and, in Sec. III, we discuss its adaptation to in-
homogeneous electron systems. In Sec. IV we evaluate
the EXAFS amplitude-reduction factor for Br,. Dynami-
cal effects are discussed and the contributions to the am-
plitude factor are calculated and compared with experi-
ment and with other calculations. In Sec. V the reduc-
tion factor for metallic Cu is calculated and compared
with experiment. Section VI contains a summary and
conclusions. Throughout this paper we use atomic units:
fi=m,=e=1; distance, 1 bohr=0.529 ;\; and energy, 1
hartree=27.2 eV.

II. SEMICLASSICAL MODEL
OF DYNAMICAL RELAXATION

The semiclassical model of dynamical screening in pho-
toabsorption'! is based on linear-response theory applied
to two point charges in a homogeneous electron gas, the
core hole and the photoelectron; it yields a dynamical
exchange-correlation potential for such systems. In this
section we briefly summarize the main assumptions and
results of this model. (a) Conduction electrons. The con-
duction electrons are described by a simple jellium model,
i.e., by an electron gas with density parameter r, in a uni-
form positively charged background. (b) Core hole and
photoelectron. The core hole and the outgoing photo-
electron are treated as classical point charges. The core
hole is assumed to sit at the origin while the photoelec-
tron moves along a classical trajectory r=k¢, where the
wave vector k is related to the photoelectron energy €, as
€x=k?2/2. If t =0 is time when the core hole and the
photoelectron are created, the bare charge density associ-
ated with these two point  charges is
polr, 1)=0(1)[8(r)—6(r—kt)]. (c) Dynamical relaxation.
The dynamical relaxation of electrons around these
charges is treated by linear-response theory. Introducing
a dielectric function €(q,w) for the electron gas, the
induced charge density is Pina(q @)
=po(q, )€ (q,w)—1], where pylq,w) is the Fourier
transform of the bare charge density py(r,z). Here the
dielectric function €(q,®) is taken to be the one-pole ap-
proximation to the RPA result,
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1 1 @p

—1=1- , 9
e(q,) €(q,0) o—ow, +ie ©

where the static term €(q,0) is the Thomas-Fermi func-
tion, i.e., €(q,0)=1+A%/g% This approximation only
takes into account the plasmon excitations in the system.
(d) Induced potential ¢, 4 and self-energy =. The induced
potential is given by

[ L8t 4 o g

Ping(T,1) = (q0)[e!

Xexpliqr—iwt) . (10)

The self-energy of the photoelectron 2(¢) can then be cal-
culated from ¢,,4(r,?) as

(=1 [ dr ypy(r,1)8(
=—1dina(kt,0)=2+3,(1), (11)

r,kt)

which consists of two parts, a static part =, and a time-
dependent, dynamical part 2,(¢). Using the approxima-
tion in Eq. (9), the explicit expressions for these two

terms are
3, =—(w,/2k)tan" '(Ak /w,)
—i(w, /4k)n[1+(A%k?*/0l)], (12a)

l_e—)\kf }Lw
R A
2kt 2 (e )’

24(t)=—cos(w,t)

kco‘,,k2

+ sin(w, 1)1,(1)

+ 2kt 2

sm(a)pt)

_e—Mi Ae?
_I__e__ ———LI](I)]

kwp?\.2

+ cos(w,1)I,(1) | , (12b)

where I,(¢) and I,(t) are given by

1 —Aktx
Il(t)=f0 dxm )

Akt (13)
xe

I()= f dx v

The static part of the potential =, has been studied pre-
viously.>!12 Its properties'® are essentially those of the
Hedin-Lundquist exchange-correlation potential® used,
for example, by Lee and Beni,?® and it gives a good ap-
proximation to that potential. The dynamical part = ,(z)
gives corrections to the static potential, and the total po-
tential is reduced from the static part due to the interfer-
ence effects.

The potentials ¢; 4 and = can then be used to calculate
the Green’s functions in Egs. (1) and (2). The photoelec-
tron Green’s function G, ;- can be expressed in terms of
complex atomic scattering phase shifts, and accounts for
the extrinsic losses. The core-hole Green’s function G,

DAN LU AND J. J. REHR 37

represents the excitation spectrum of the passive elec-
trons in the system* and accounts for the intrinsic loss.
Both Green’s functions contain dynamical or interference
terms.

III. LOSSES IN INHOMOGENEOUS SYSTEMS

Calculations'®!” of the dynamical effects in EXAFS
and inelastic losses in photoemission in metals have been
carried out for homogeneous electron systems, using the
potentials described in Sec. II. In more realistic models
one must also include the (atomic) inelastic losses due to
the inner-shell electrons. This requires a treatment of the
linear response and dynamical relaxation of an inhomo-
geneous electron system. Our approach'® is based on the
LDA," ie., the assumption that a nonuniform electron
gas behaves locally as a uniform electron gas with the lo-
cal electron density p(r). The LDA for the excited-state
exchange-correlation potential V. (r) is the electron self-
energy 2 of a homogeneous system evaluated at local
density p(r).2?%2! The LDA has also been used for the
dielectric function in linear-response theory for inhomo-
geneous systems. Calculations of the photoabsorption
cross section in atoms, made with such dielectric func-
tions and the Thomas-Fermi atomic electron density, give
a “‘universal” photoabsorption curve which agrees rough-
ly with experimental results.?>23

In this section we apply the LDA to the semiclassical
model of Sec. II. The potentials obtained with this ap-
proximation can then be applied to calculations of inelas-
tic losses by the inner-shell electrons. Our approxima-
tions are summarized as follows.

(a) LDA for 2,(t). We use the LDA for both the static
and dynamic parts of the exchange-correlation potential
[Eq. (12)], 2(r,)=Z(p(r),p(r))+ 2 (p(r),p (r),t). Here
p(r) is local electron density and p (r)=[k?+k2(r)]'/? is
the local electron momentum. The same results for X in
Eq. (12) can be obtained from direct calculations of linear
response in an inhomogeneous electron gas, using the
LDA for the dielectric function, ie.,
e(q,w;r)=eh(q,w;p(r)). We then use this local dielectric
function in Eq. (10) to obtain the induced potential
®ina(1,1) and the electron self-energy 2(r,t) at a point r
for a photoelectron at local excited momentum p(r),

¢ind(r,1)=f'—("zg——;r :ﬂ-po(q,w)[e q,w r)——l]
xXexpliqr—iot) , (14a)

S(r,0=—1 [ d% ¢ypg(r,08(r—p(r)r)

—Loia(p(rie,e) . (14b)

(b) Dynamical corrections to atomic phase shifts. To
calculate the scattering phase shifts for the photoelectron
state using the complex time-dependent exchange-
correlation potential, we assume the photoelectron moves
along a classical trajectory determined by the time func-
tion ¢ (r),

tin= [ dr'/p(r) . (15)
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The dynamical corrections to the static atomic scattering
phase shifts are then evaluated approximately using the
WKBJ method,”

S?yn:__f’;md,-[kZ_zV(r)——ZE(r,t(r))
—(I41)2/r2)172
_ff"" dr{k*—2V (r)—23,(r)
o
-_(I+%)2/r2]'/2 , (16)

where V (r) is.the final-state Coulomb potential in the sys-
tem in the presence of the core hole, ry1 the muffin-tin
radius of the atom, and r;, the “turning point” deter-
mined by k2=2V(ry)+2ReZ(ro)+(/ +1)2/r3, and
similarly for ry with 2 replacing =.

(c) Local relaxation approximation for G,. We intro-
duce here a new, local relaxation method to calculate the
core-hole Green’s functions in an inhomogeneous elec-
tron system. In this method we treat the passive elec-
trons in each local volume element 8v =83 of the system
as a homogeneous electron gas. These local homogene-
ous regions are assumed to be sufficiently large to relax
independently so that the core-hole Green’s function can
be written as a product of local Green’s functions, i.e.,

G.()=T] gXp(r),1) . 17
Sv

Here g/(p(r),t) is the core-hole Green’s function in a
homogeneous electron system with electron density p(r),
which is given in terms of ¢ by!”

h _ s 3 t s ’
gc(t)—exp[ i dq [dr'gla,r )] , (s

9<q,

gO0=exp |1 [ ¥ £(0) [ dt bl (D1m) | |
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where g.(r)=w,(r)/k;(r) is the plasmon cutoff wave vec-
tor. Substituting (18) into (17), we obtain the following
result for G, for inhomogeneous systems:

G.(n=exp i [ &% f1)
t ’ ’
x [ dt'giap(o),r e’y |, (19)

where f (r)=[sin(g,r)—gq,r cos(g,r)]/2m%r>. In the limit
of a homogeneous system this formula reproduces the ex-
act quantum model results.?*

IV. INELASTIC EFFECTS IN EXAFS OF Br,

In this section we use the semiclassical model of Secs.
II and III to treat the inelastic effects in the K-shell
EXAFS spectrum of the diatomic molecule Br,. Our cal-
culation is summarized as follows.

(a) Model atomic charge density. We have used the
Thomas-Fermi atom?*2 to approximate the atomic elec-
tron charge density p,(r) and the Coulomb potential
V (r), which are the basic ingredients in our LDA calcu-
lations of the Green’s functions. Although the accuracy
of the Thomas-Fermi atom is not as good as that, say,
from self-consistent atomic codes, it provides a charge
density which is probably adequate for the approximate
treatment of many-electron effects discussed here.

(b) Calculation of G.(¢t) and A (k). The core-hole
Green’s function G.(t) is calculated using our local relax-
ation approximation, Egs. (17) and (19). Since the over-
lap between the electron charge densities of the two
atoms is small and can be neglected, we simply write
G (1)=g.(0,t)g.(R,t). Here g.(0,t) is the contribution
to G, from electrons in the central atom,

(20

and g.(R,t) is the contribution from electrons in the neighboring atom,

g.(R,t)=exp

where p,(r) is the Br atomic charge density and
|R|=4.31 a.u. is the near-neighbor distance in Br,.
The Fourier transform of G.(t) is given by

Gc(cu)=f—2‘i1t;gc(t)ei“”

= [ dw'g (0,08, (R,0—a) . (22)
We have calculated G,(w) in (22) numerically, and the re-
sult is plotted in Fig. 1. Note, as one expects, that the
weight of the high-energy excitation channels are reduced
as the kinetic energy of the photoelectron decreases.
These dynamical effects are seen to be important at low
and moderate energies up to about 500 eV. The reduc-
tion factor A (k) due to intrinsic effects is then calculated
using Eq. (6). In Fig. 2 we compare our result with two

i fd3rf(r)fo'dz'¢ind(pa(r+m,r,z')] :

21

1.0 1.5

w (a.u.)

FIG. 1. Core-hole Green’s function G.(w) from Eq. (22) for
Br, for different photoelectron wave numbers.
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A (k)

o.71 1

0.6 | 0 1
0] 2 4 () 8 10

k (a.u.)

-

FIG. 2. Amplitude-reduction factor A (k) for Br,: (a) this
theory (b) Hartree-Fock theory (Refs. 5 and 10) and (c) dynami-
cally corrected Hartree-Fock theory (Refs. 5 and 10).

Hartree-Fock (HF) calculations:*>'® one is the result in
the sudden limit (no dynamical effects), the other is that
in which an ad hoc dynamical correction factor is includ-
ed. At wave numbers k£ > 3.0 our result is in accord with
the dynamical HF calculations.

(c) Central atom phase shifts. To approximate extrin-
sic losses, the corrections to the p-wave scattering phase
shifts of the central atom are evaluated by the WKBIJ
method of Sec. III. We find that the dynamical correc-
tion is only significant for the outgoing path, i.e., for 8"

1.0 T T T T
(a) rg=0.5
»w 0.5 n
W
& k=2.0
=
=, O k4.
X ///O
) k=6.0
&
05 k80 ]
-1.0 1 1 1 !
0] 2 4 6 8 10
r(c.u.)
1.0
w(h
€ 0.5
X
;é‘c
— 0]
1
-0.5 1 1 1 1
o 2 4 6 8 10
r (a.u)
FIG. 3. (a) —ReX,(t)/ReZX; for various final-state wave

numbers k for a homogeneous electron gas (r;=0.5); (b) simi-
larly for —ImZ,(z)/ImX,.
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This implies the central atom generally relaxes quickly
compared to the transit time. To illustrate this more
clearly, we plot in Fig. 3 the dynamical potential of a
homogeneous electron system with a typical atomic core
charge density (r;,=0.5). Note that the dynamical part
of the potential becomes small for » > 3.0, which is com-
parable to the muffin-tin radius in Br,, ry;r=2.74 a.u.
Thus the dynamical corrections can be neglected in 87'.
The phase shift 83" is then given (with / =1) by

B9t — f,lMT dr[k2—2V (1 —23(r,t (1) — (I +1)2/r?]'72

— [ a2, (23)
o

and similarly for 8" with =(7,2(r)) replaced by = (r).
Here V(r) is the Coulomb potential in the central atom
with a core hole present, as determined by the Thomas-
Fermi equation; £ and Z; are the exchange-correlation
potentials with and without dynamical corrections; ¢ (7) is
the time function of Eq. (15), and 7, and r,, and r, are
determined by

k2—(14+1)7/r3=0, (24a)
k2—2V(r;)—2Re3(r,t(r))) =1 +1)/r? =0,
(24b)
= ]
e
=
p~ ]
14
L 1 1 1 1 1
(o} 2 4 6 8 10 12
k (a.u.)
02 T T T T T
0.15 4
3
e
= 0.l _
(78]
£
0.05 E
0]
12

k (a.u.),

FIG. 4. (a) Real part of the central atom phase shifts 83", 5"
for Br, calculated using Eq. (15); (b) imaginary parts of 89", 5'".
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k2—2V(ry)—ReZ (ry)—(1 +1)*/r3=0. (24c)
The numerically calculated phase shifts are plotted in
Fig. 4. Note that the dynamical corrections become
small at large r, so it is sufficient to use only the static
part of = in Eq. (12a) for calculations of the backscatter-
ing amplitude.

(d) EXAFS amplitude reduction factor S(k). The
overall reduction factor S (k) of Eq. (8) can now be calcu-
lated. In Fig. 5 our result is compared with experiment?’
and with Hartree-Fock calculations.'® These results
agree reasonably well with each other in the range
k =3.0-7.0 a.u. An interesting result is that the intrin-
sic losses compensate for and, for the first shell, almost
cancel with the dynamical corrections in the extrinsic
losses, i.e., A (k)exp(—Im&$")=1.0. This suggests that
(for the first, and most important, shell) the reduction
factor might simply be calculated by the extrinsic losses
without dynamical corrections, ie., S(k)
=exp(—2Im&54), Unfortunately this approximation
does not work well for the case of Cu, so its general valid-
ity is questionable.

(e) Core-hole lifetime effects. The semiclassical model
discussed above assumes that the core hole has an infinite
lifetime; the validity of this assumption must be examined
carefully since the core-hole lifetime is finite, due mostly
in this case to Auger transitions. Noguera et al. argued'’
that this lifetime is long compared with the typical relax-
ation time. The effect of a finite lifetime (or energy
broadening width T) is an additional decay factor
exp(—T'R /k) in S (k). In the case of Br, the core-hole
broadening width ', =2.1 eV, as estimated from a linear
interpolation of results in Ref. 28. As shown in Fig. 5,
this effect is seen to be small, but not negligible.

V. INELASTIC EFFECTS IN EXAFS OF Cu

In this section we apply our semiclassical method to
study an extended system, metallic Cu. As in Sec. IV we

|

G (t)=exp

—i frgrod3rf(r)foldt‘qbind(Pa(r),r,t’) ]

Xexp [-—i f’>r0d3rf(r)fotdt’d’ind(porr’t’) ]=

The two parts, g2(¢) and gZ(¢), represent, respectively, the
relaxation of the core electrons in the central atom and
the conduction electrons outside. The excitation spec-
trum is then

Gc(a))=f do'gle')gllwo—a') . (27)

The contribution from the conduction electrons gJ(w)
can be expressed as a sum of 8§ functions at various
plasmon excitation energies. i.e.,

n
_ "% w 90
gllw)=e ’Z,On!ﬁ(w—nwp),
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o8r a b = A
=
~ d
(%2}
0.6 B
Br,
0.4 1 s 1
3 4 5 6 7

k (0.u)

FIG. 5. EXAFS amplitude reduction factor S (k) for Br,: (a)
experiment (Ref. 27) (b) S(k) from Eq. (8) of this work, (c)
theory of Ref. 10, and (d) S(k) from this work corrected for
core-hole lifetime, i.e., S (k)exp(—TI' R /k).

calculate the inelastic losses for the first-shell EXAFS
spectrum.

(a) Model charge density. The intrinsic losses in metal-
lic Cu come largely from relaxation of the core electrons
in the central atom and from the conduction electrons.
Thus we use as a model charge distribution p(r), a central
atom surrounded by a uniform gas of conduction elec-
trons, i.e.,

plri= N (25)

Here p,(r) is the electron charge density in the central
atom, and p, is the charge density of the conduction elec-
trons. The boundary parameter r, is chosen so that the
charge density is continuous; we find r,=2.82. A more
detailed calculation should take into account the effect of
the d electrons in neighboring atoms.

(b) Calculation of G.. By using Eq. (19) and the elec-
tron charge density in Eq. (25), the core-hole Green’s
function G_.(¢) is given by

glt)gi(e) . (26)

[
ao::},f d’r £ (Pina(po,r,t =0) .
p

Equation (28) is similar to the core-hole Green’s function
of the conduction electrons in the quantum electron-
plasmon model,>* which has been used to count the in-
trinsic losses in photoemission. The modification intro-
duced here with central atomic relaxation included is
given by Eq. (27).

(c) Central atom extrinsic losses. The extrinsic losses
in the central atom are expressed in terms of the imagi-
nary parts of the p-wave scattering phase shifts 87" and
8", Again we use the WKBJ formula of Eq. (22) to ap-
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FIG. 6. EXAFS amplitude-reduction factor S (k) for Cu: (a)
S (k) from Eq. (8) of this work (b) S (k) from this work correct-
ed for core-hole lifetime, (c) experiment (Ref. 28).

proximate these two imaginary phase shifts. As in the
case of Br,, the dynamical correction for the exchange-
correlation potential is only included in the calculation of
8. The muffin-tin radius ryp=2.41 a.u. is half the
near-neighbor distance in Cu, R =4.82 a.u.

(d) EXAFS reduction factor S (k). Having obtained
the core-hole Green’s function G.(w) and the central
atomic scattering phase shifts Im§,, we can construct the
overall EXAFS reduction factor S(k) due to inelastic
losses of Eq. (8). This factor is plotted and compared
with the experiment® in Fig. 6.

(e) Core-hole lifetime effects. For Cu the core-hole life-
time, expressed as an additional broadening energy
width, was estimated®® to be I',=1.5 eV. To gauge
whether this core-hole lifetime is significant, we may ex-
press the reduction factor S (k) as an effective broadening
energy width T§% ie., S(k)=exp(—T'{R/k). With
R =4.82 a.u. we find that 1"',"2“: 5.4, 6.6, 7.8, 8.8, 9.5, and
9.8 eV for k =2, 3, 4, 5, 6, and 7, respectively. Thus a
core-hole lifetime of 1.5 eV is small but not negligible.
By adding the core-hole width to the imaginary part of 2,
one obtains even better agreement with experiment in
this case (Fig. 6).

V1. SUMMARY AND CONCLUSION

In this paper we have discussed the semiclassical model
of dynamical relaxation in photoabsorption and we have
presented, as applications, calculations of the many-body
amplitude-reduction factors due to inelastic losses in
EXAFS. We have introduced several modifications based
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on the LDA which enable the model to be used for inho-
mogeneous electron systems. We have also developed a
new local relaxation method to calculate the core-hole
function directly from the induced potential in an inho-
mogeneous electron system. To calculate the extrinsic
losses due to the dynamical (interference) part of the
exchange-correlation potential, we have used a time func-
tion along the classical trajectory of the photoelectron to-
gether with the WKBJ method.

As a first application, the semiclassical model was used
to obtain the reduction factor S (k) to the EXAFS ampli-
tude for Br,. In the range k > 3.0 a.u. the results are in
reasonable agreement with experiment and with other
theoretical calculations based on the Hartree-Fock ap-
proximation. Our calculations indicate that dynamical
effects are important even at moderate energies, hundreds
of eV above threshold. A second application was made
to the EXAFS amplitude of metallic Cu. A simple model
of the charge density was used to calculate the core-hole
Green’s function, which only includes the losses from
core electrons in the central atom and conduction elec-
trons outside. The result for the amplitude-reduction fac-
tor agrees fairly well with experiment. The core-hole life-
time effect is also discussed, and we find that it is small
compared with the effective lifetime from the inelastic
losses, but not negligible.

In both of these cases we find that the reduction factor
S (k) is mainly due to the inelastic losses inside the cen-
tral absorbing atom. The effects from neighboring atoms
such as dynamic corrections to the exchange-correlation
potentials and intrinsic losses in the core electrons are
small compared to those from the central atom. There-
fore it is sufficient to use only the central atomic calcula-
tions to get a reasonably good reduction factor S (k).
Moreover, it is sufficient to use only the static part of the
self-energy 2 in calculations of the backscattering ampli-
tude. These findings suggest that dynamical corrections
are not very sensitive to the chemical environment.
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