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The parameter dependence of vacancy and self-interstitial formation energies has been studied
with an analytic nearest-neighbor atomistic model based on the embedded-atom method. The mod-
el was designed for fcc copper, but the results should not depend on either the structure or the ele-
ment. Exponentially decreasing functions were used for both the electron density function and the
two-body interaction. Energies were dependent on the cutoff procedure for these functions between
first and second neighbors, but the conclusions indicate trends and are quite general. Defect ener-
gies (vacancy and self-interstitial) were found to have negligible dependence on the cohesive energy,
vary only slightly with the bulk modulus, but to be linearly proportional to the average shear
modulus. Defect energies were insensitive to variations in the exponent parameters if their average
was held constant and thus to whether the two-body potential was attractive or repulsive. Vacancy
energies decreased while interstitial energies increased with an increase in the average of the ex-

ponent parameters.

INTRODUCTION

An analytic nearest-neighbor model for fcc metals
based on the embedded-atom method (EAM)"? has re-
cently been developed.’ This model was applied to de-
fects for which there is little change in energy with relax-
ation, so that the unrelaxed energy provides a good ap-
proximation to the fully relaxed case The dependence of
the defect energies on various physical input parameters
was then studied.

A set of calculations for vacancies, self-interstitials,
and small clusters, in which relaxation is significant, has
been carried out with this model. As in the earlier re-
port, the emphasis is on the implications of the
mathematical format of EAM.

Details of the model and references are given in Ref. 3
and will not be repeated in detail here. In EAM, an
atomic electron density function f(r), a two-body poten-
tial ¢(r), and an embedding function F(p) must be pro-
vided. In the present model, both f(r) and ¢(r) are taken
as exponentially decaying functions, and F(p) is deter-
mined from a universal energy curve of energy versus lat-
tice constant given by Rose et al.* Model parameters are
obtained by fitting to physical properties such as the lat-
tice constant, the cohesive energy, the vacancy formation
energy, and elastic properties.

The mathematical formulation of the present model is
then
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where r, is the nearest-neighbor equilibrium distance, E,
is the cohesive energy, and a is 3(QB/E,)!/? with Q the
atomic volume and B the bulk modulus. The electron
density experienced by some atom i and the bond energy
associated with this atom are given by sums over neigh-
boring atoms:
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and the subscript e indicates evaluation at the equilibri-
um value. For this nearest-neighbor fcc model, p, =12f,
and ®,=6¢,. The crystal energy is then just the sum of
the energies of the individual atoms, i.e.,

E=TS(F+9®,). (6)

The parameter f, cancels from the model, and ¢, is relat-
ed to the average shear modulus G by

$.=5QG/[2y(y—-B)] . @)

For a specific metal, values of E,, B, G, r,, B, and v are
required, as well as information about the cutoff between
first- and second-neighbor distances. [ is obtained by
fitting to the atomic electron density and y by approxi-
mate fitting to the unrelaxed vacancy formation energy.

CALCULATIONS

In Ref. 3, the electron density function f(r) and the
two-body potential ¢(r) were cut off in an unspecified
manner between first- and second-neighbor distances in
the fcc lattice and the results were insensitive to this
choice. Calculations with significant changes in the
atomic configurations are affected by the cutoff pro-
cedure, however, and three methods were used in the
present work. First (case a), the functions f(r) and ¢(r)
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were simply truncated at a cutoff distance r,. Both ener-
gies and forces are discontinuous with this scheme.
Secondly (case b), these functions were decreased by a
constant so that their value at r, was zero. This elimi-
nates the discontinuities in energies, but leaves the forces
discontinuous. In case ¢, quadratic factors were added to
these functions and were adjusted for zero value and
slope at r, and for matching value and slope to the ex-
ponential functions at match point distances rg and r,
determined by the fitting for f(r) and #(r), respectively.
Both of these distances are greater than the nearest-
neighbor distance in the present case, so that the electron
density function and two-body potential are unchanged at
nearest-neighbor distances, and smoothly go to zero
value with zero slope at distances less than second neigh-
bor. The two-body potential is shown in Fig. 1 for the
three methods using the parameter values for copper in
Ref. 3 and r.=3.45 A (about 84% of the distance be-
tween first and second neighbors).

The embedding function in the present model is based
on fitting to the universal equation of state given by Rose
et al.* and it is altered by any change in the electron den-
sity or two-body potential functions. This variation is
seen in Fig. 2 for the three cases with the same copper pa-
rameter values as used in Fig. 1. In case a, the embed-
ding function is not defined for p<p.exp{—B[(r./
r,)—1]}, which corresponds to the density at an atom
site in the perfect crystal if the nearest-neighbor distance
is expanded to r,. This part of the curve is never used in
these defect calculations. The finite value of F(p) at p=0
in cases b and c occurs because the universal energy
curve is not zero at the cutoff distance at which p is zero.

All three cases fit the perfect-crystal parameters exact-
ly: E. and QB are inputs for determining the embedding
function, equilibrium is maintained at the input 7,, and 8
and y are held fixed. Since shear is only dependent on
the slopes and curvatures of f(r) and ¢(r) at the equilib-
rium distance, G is also unaltered in going from case a to
cases b and c. However, the unrelaxed vacancy forma-
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FIG. 1. The two-body potentials for the three cutoff mecha-
nisms. Case a is truncation at cutoff distance r., case b involves
subtracting a constant from case a, and case c requires fitting a
parabola to case a at r,,. The nearest-neighbor distance is r,.
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FIG. 2. The embedding functions for the three cutoff mecha-
nisms. The embedding function outside the range
0.5 <p/p. < 1.5 is not used in the present defect calculations.

tion energy, which is an input in case a used to determine
v and is maintained in case c, is not matched in case b.
Numerous runs were made in which the physical parame-
ters E,, B, G, r,, B, and y were varied, and the effects of
varying r. and the cutoff form have been studied.

The relaxation calculations were carried out with the
computer code DYN52 developed at Sandia National Lab-
oratory, Livermore,” Cubic sets of 108 atoms and 256
atoms were used for vacancy and interstitial calculations,
respectively. Energy minimization was obtained with the
conjugate gradient method,® and periodic boundary con-
ditions were applied. Volume change is determined with
this method and permits the use of such small sets of
atoms. In a typical case, the change in interstitial energy
was insignificant when the smaller 108-atom set was used.
However, if volume change is not allowed, the interstitial
energy increased by 0.06 eV with the 256-atom set and
0.15 eV with the 108-atom set.

RESULTS

Cutoff mechanism

The energies of a number,_ of point defects for the three
basic cases with r,=3.45 A are given in Table 1. The
stable and saddle-point configurations for migration for
single vacancies and divacancies are V|, V'}, V,, and V3,
respectively. The single-vacancy formation energy is
fixed at the experimental value of 1.30 eV (Ref. 7) in case
a, which carries over to case c. The self-diffusion energy
is 2.07 eV,® which corresponds to the formation energy of
the vacancy saddle point, while the energies of the other
listed defects are not well known experimentally. It is
commonly accepted that the divacancy migration energy
is less than the single-vacancy migration energy in fcc
metals. Since self-diffusion occurs by a vacancy mecha-
nism, the formation energies of the interstitial
configurations should be significantly higher than the va-
cancy energies.
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TABLE 1. Defect formation energies, in eV, for the three cutoff mechanisms with r, =3.45 A.

Defect Case a Case b Case ¢
Vacancy, stable V, 1.30 0.90 1.30
Vacancy, saddle point 144 1.75 1.70 2.45
Divacancy, stable vV, 241 1.67 241
Divacancy, saddle point 12864 2.87 2.34 3.31
Interstitial, [100] split H, 2.09 2.68 3.26
Interstitial, octahedral o 1.91 2.82 4.00
Interstitial, possible HJ: oc 2.09 2.79 3.56

The notation for self-interstitials is that used by
Johnson® with H,, the split octahedral or [100] split, O
the octahedral, and OC a local minimum on the line con-
necting an octahedral and a crowdion site. If H,, is the
lowest-energy interstitial configuration as is commonly
found, then OC is a likely saddle-point configuration for
migration.

Case a, in which energy and force are both discontinu-
ous at the cutoff distance, does not fit the experimental
pattern well: the vacancy migration energy is too small,
the divacancy migration energy is very similar to the
single-vacancy value, and the interstitial energies are too
small. As will be discussed later, more realistic values are
obtained with variations in the physical parameters. The
pattern for case b, in which only the force is discontinu-
ous, is better in that the vacancy and divacancy migra-
tion energies are reasonable while the vacancy and diva-
cancy formation energies and interstitial formation ener-
gies are somewhat small. Again, variations in the physi-
cal parameters can yield improved results. In case c the
vacancy and divacancy migration energies show the
correct relation but are too large, and the interstitial en-
ergies are larger than expected. The embedding function
is unchanged near the equilibrium electron density in go-
ing from case a to case ¢ and only this part is used in the
defect calculations. Both the two-body potential and the

electron density are lowered with this shift, but the
configuration energies increase. The decrease in the two-
body energy is more than compensated by the increase in
the embedding energy due to lower electron density.

Cutoff distance

The results for case a are very sensitive to an increase
in the cutoff distance, with an increase in r, from 3.45 to
3.50 A decreasing formation energies of six interstitials
(the first six listed in Table II) by an average of 16%, for
example. Decreasing r, to 3.35 A, twice as large a
change, only increases this same set of energies by an
average of 2.6%, i.e., there is a relative plateau in defect
configuration energies as a function of cutoff distance
with r,=3.45 A a satisfactory choice.

The decrease in case b for the same six interstitial
configurations with twice as large an increase in r, aver-
aged 13%, while a decrease in r, from 3.45 to 3.35 A
gave an average increase in interstitial energies of 6.6%.
Thus the same general pattern is found as in case a, but
the plateau is altered to a more continuous slope.

The full set of configurations was not investigated with
case c, but enough runs were made to determine that the
pattern is similar to that of case b. However, the varia-
tion with cutoff is somewhat greater than with case b,

TABLE II. Defect formation energies, in eV, for two cutoff mechanisms with parameters modified as
discussed in the text. Results of Foiles et al. are shown for comparison. Defect notation from Johnson
[R. A. Johnson, Phys. Rev. 145, 423 (1966)] is used, and the two di-interstitials involve H, single inter-
stitials at nearest-neighbor sites with the axes of the configurations parallel and perpendicular, respec-
tively, as shown in Figs. 2(a) and 2(b) of Johnson [R. A. Johnson, Phys. Rev. 152, 629 (1966)].

Foiles

Defect Case a Case b et al.®

Vacancy, stable V, 1.28 1.10 1.28

Vacancy, saddle point 144 2.02 2.07 2.00

Divacancy, stable v, 2.36 2.03 2.29

Divacancy, saddle point Vs 2.99 2.82 2.67

Interstitial, [100] split H, 3.16 3.26 2.76
Interstitial, octahedral o 3.31 343
Interstitial, [111] split Hy 3.52 3.46
Interstitial, tetrahedral T 3.77 3.71
Interstitial, [110] split H, 3.39 3.55
Interstitial, crowdion C 3.50 3.57

Interstitial, possible HJ oc 3.42 3.40 2.85
Di-interstitial, parallel I,, 5.09 5.54
Di-interstitial, perpendicular I,p 5.73 5.64

S. M. Foiles, M. . Baskes, and M. S. Daw, Phys. Rev. B 33, 7983 (1986).



6124

even though case c is continuous in both energy and
force.

From the results given above, as well as from other
runs with different sets of the physical parameters E., B,
G, r,, B, and y in which the cutoff distance was also
varied, r,=3.45 A has been adopted as the best
compromise. The cutoff is too close to the second-
neighbor distance with larger values (the model has been
designed to match the perfect crystal with nearest-
neighbor interactions only) and the magnitude of the
cutoff is too great with smaller values.

The conclusion here is that there is considerable arbi-
trariness in this short-range model because the results
vary with the cutoff mechanism and cutoff distance.
They are incorporated into the model to obtain a simple
scheme in which the effects of varying the physical pa-
rameters can be studied. Fortunately the results from
varying the physical parameters are not dependent on the
cutoff procedure.

The Sandia group has used a cutoff procedure similar
to the present case b, but the cutoff distance was taken
between the third- and fourth-neighbor distances.!® The
functions are much smaller at this distance and thus the
effect of the discontinuity in force should be minor com-
pared to the present model for most properties. Howev-
er, the stacking-fault energy and the relative fcc-hcp sta-
bility can depend sensitively on the choice of cutoff dis-
tance,'! even at large values.

Parameter variation

It was reported in Ref. 3 that the cohesive energy had a
negligible effect on vacancy formation and binding ener-
gies and on surface energies. Relaxation calculations for
three vacancy and three interstitial configurations (V,
Vi, V,, Hp, O, and OC) were carried out with the same
result: varying the cohesive energy by a factor of 1.5 did
not change any of these six defect energies by as much as
0.01 eV.

Again, as reported in Ref. 3, the bulk modulus is found
to have a minor effect on defect formation energies. Each
of the six defect energies was increased by 3—-4 %, with a
50%, increase in B. However, the six defect energies
vary approximately linearly with the shear modulus G:
increasing G by 48% increased all the energies by
42-44 %. Flynn'? investigated atomic jump rates with a
quantum-statistical treatment based on dynamical fluc-
tuations. His result for the vacancy migration energy in
cubic crystals can be recast in the form

EM~15QGe(1—v)/(T—10v) (8)

with € a parameter dependent on crystal structure and v
Poisson’s ratio. Since Poisson’s ratio varies little from
metal to metal, this result indicates the same functional
dependence on the shear modulus for vacancy migration
as found with the present approach.

The variation of defect energies with 8 and ¥ is quite
complex and numerous functional forms for fitting the six
defect energies with five combinations of these parame-
ters have been tried using least-squares analyses. The
form
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Ef=K,/By +K,(B+7) 9)

has been found to fit these formation energies reasonably
well, with K, and K, being constants which determine
the admixture of the two contributions for a particular
defect. The first term is dominant for the formation of a
single stable vacancy and arises from the decrease in
bonding, i.e., similar to two-body bond breaking. Using
an analytic expansion, this term was shown to provide a
good approximation to the unrelaxed vacancy formation
energy in Ref. 3. The second term accounts for the addi-
tional repulsion when some atoms are tightly squeezed
together. The vacancy migration energy contains about
equal contributions from these two terms. For self-
interstitials, the second factor dominates both formation
and differences between configurations.

The stable vacancy formation energy is therefore al-
most independent of variations of S and ¥ if their
geometric average is held constant, while interstitial ener-
gies are little affected by such variations if the arithmetic
average is unchanged. In broadest terms, defect energies
vary little if the average value of B and ¥, either
geometric or arithmetic, is held fixed. For example, with
the values B=6 and ¥ =8 as the base, using =4 and
¥ =10 or =4 and y =12 had but a minor effect on the
defect energies. The numbers depend on case and cutoff,
but for one set of parameters, increasing the average by
21% produced an average 25% decrease in three vacancy
formation energies and a 7% increase in three interstitial
formation energies. Because interstitial formation ener-
gies are significantly higher than vacancy formation ener-
gies, the actual magnitudes of the changes were compara-
ble.

While the functional dependence of the first term in
Eq. (9) was expected from earlier studies,’ the form of the
last term was not anticipated. At first, (y —B) or just ¥
alone were tried. However, the present form can be un-
derstood with an expansion of the effective potential
given in Ref. 3. It was shown that, by adding a term
linear in p to the embedding function F(p), an effective
two-body potential of the form

e —y(r/re——l)_ le —Blr/r,—1)

B

could be obtained which provides a two-body approxima-
tion to the embedded-atom model. Expanding this equa-
tion to third order in terms of the fractional decrease of
the interatomic separation, i.e., with §=1—r/r,, yields

dea=9. (10)

. (11)
By

The first-order term is zero because of equilibrium, and
the second-order term is independent of B and y. For
short interatomic distances, the interaction energy in-
creases proportional to (B+7).

bur=30G [—L+%52+%53(B+y>

Sign of two-body potential

Jacobsen et al.!> have recently derived an expression
for the total energy of a set of atoms based on effective
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medium theory (EMT). With approximations to render
their results amenable to defect calculations, the
“embedded-atom format,” i.e., Eq. (1), is obtained for
simple metals. Indeed, an fcc nearest-neighbor exponen-
tial electron density form is used. Although the format is
the same, there are differences in interpretation between
EAM and EMT. The two-body potential arises from
atomic-core—electron-gas electrostatic attraction in
EMT, whereas the two-body potential is taken as a repul-
sion in the EAM. Also, except in the perfect-crystal case,
the electron density is not a simple superposition of con-
tributions from neighboring atoms in EMT, but such a
superposition raised to a power close to, but not equal to,
one. This occurs due to a charge conservation self-
consistency requirement using an atomic sphere approxi-
mation in which the spheres overlap but are not space
filling.

The expression for ¢, is given by Eq. (7) and depends
on QG, vy, and (y—pB). Thus, interchanging S and ¥
changes the sign of ¢,: if ¥ > B, the potential is repulsive
and vice versa. Runs were therefore made with this
modification, which also alters the embedding function
and the electron density. There was little change in va-
cancy and interstitial formation and migration energies.

This can be understood on two counts. First, neither
By nor B+7v change when B and ¥ are interchanged, and
these are the relevant parameters determining defect en-
ergies, as reported above. Secondly, the effective two-
body potential, Eq. (10), can be rewritten in the form

e—r(r/re—l) e—B(r/re—l)
=30G (12)
br=200 |G T BB
which is unchanged by this switch. Thus, to the extent
that the effective two-body potential is a first-order ap-
proximation to the EAM, interchanging  and y will not
alter the results to first order.

Defect energies

As discussed above and indicated by the results in
Table I, none of the three cutoff procedures yields defect
energies in the anticipated ranges. In case a, bond break-
ing is essentially fixed by matching the unrelaxed vacancy
formation energy, but bond squeezing energies are too
small. Indeed, increasing both the shear constant and y
by 1.38, which does not alter the vacancy formation ener-
gy, yields realistic energies for a broad range of defect en-
ergies as shown in Table II. Most formation energies are
somewhat low in case b. Increasing the shear constant by
a factor of 1.24 increases the self-diffusion energy to the
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experimental value of 2.07 eV and generally scales all en-
ergies upward, also listed in Table II. The results of
Foiles et al.? using a full long-range model are given for
comparison.

SUMMARY

A nearest-neighbor EAM model has been developed
using a universal equation of state given by Rose et al.*
and with both the atomic electron density function and
the two-body potential taken as exponentially decreasing
functions with exponential parameters 8 and ¥, respec-
tively. The input parameters in the model are the atomic
volume () (or the nearest-neighbor distance r,), the
cohesive energy E., the bulk modulus B, the average
shear modulus G, and the two exponential factors 8 and
v. Radial Hartree-Fock wave functions are used to
determine B and the vacancy formation energy for y.

To define a nearest-neighbor model, a cutoff mecha-
nism between the first- and second-neighbor distancges
must be specified for the exponential terms, which re-
quires a cutoff distance parameter r,. Three schemes
were tried: truncation, subtracting a constant term, and
fitting a parabola. All were affected by the cutoff parame-
ter, but a value of r,.=3.45 A was found as the best
compromise. Cutoff effects generally increase with short-
er distances while second-neighbor effects become
significant at longer distances.

The parameter dependence may be summarized as

(a) the cohesive energy has a negligible effect on defect
energies,

(b) the bulk modulus has a minor effect on defect ener-
gies,

(c) the variation of defect energies with the shear
modulus is approximately linear,

(d) there is little variation in defect energies with 8 and
v if their average is held constant,

(e) the two-body potential can be attractive or repulsive
with little effect on calculated defect energies,

(f) vacancy energies are decreased and interstitial ener-
gies increased by increasing the average of 8 and y.
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