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Surface barrier for electrons in metals
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Density-functional calculations using the full-potential linearized augmented-plane-eave
(FLAP%') 6lm method have been used to colopute the efFective potential for electrons at difkrent
surfaces of Al, Ni, Cu, Ag, and %'. In each case, the average af the potential parallel to the surface
is reproduced vre11 by a simple model barrier arith three adjustable parameters, arith relatively small

variations between dieerent metals and surfaces. FLAP% calculations have also been used to ex-

amine the elects of chemisorption on the surface barrier. The results of this rvork provide a basis
for the analysis of loecnerlyclectrondifraction fine-structure and inverse-photoemission spectra.

An understanding of the interaction of an electron
with a metal surface is essential for describing many sur-
face processes, such as low-energy electron diFraction
(LEED), field emission, photoemission, inverse photo-
emission, and surface-barrier tunneling. The variation of
the potential near the metal-vacuum interface, often re-
ferred to as the "surface barrier, "has been central to dis-
cussions of the electron-surface interaction for many
years. It is well known from classical electrostatics that
an electron outside an ideal metal surface is attracted to
its image, with a potential function of the form

V(z) =
2Z

'

%e use Rydberg atomic units, with the metal in the half-
space z &O.

This solution is clearly unsatisfactory near the surface,
where V(z)~ —oo. The first quantum-mechanical at-
tempt to go beyond this ideahzed picture was given by
Bardeen, ' who examined the potential barrier for the "jel-
lium" model of a simple metal, where the ionic charges
are represented by a uniform positive background. Bar-
deen performed approximately self-consistent Hartree-
Fock calculations, assuming a local density description of
correlation. His results showed that the electron-surface
interaction far outside the surface (z ~—oo ) is described
by the image form, but there are large deviations as the
electron approaches the surface. Within a few atomic
units of the surface, the corrections can be comparable to
the image term itself, and the potential goes over smooth-
ly to a value inside the metal characteristic of the interac-
tion of the electron with the "exchange-correlation hole"
in the bulk. This departure from the singular form of Eq.
(1}is often referred to as "saturation. "

More detailed calculations on the same model of the
metal-vacuum interface have been performed by other au-
thors. Lang and Kohn (LK} performed self-
consistent density-functional calculations, with a local
density description of exchange and correlation, to deter-
mine charge densities and elective potentials for an elec-
tron in the surface region. They found that the effective

potential for an electron in jellium had an exponential de-
cay as z~ —Oo due to their use of the local approxima-
tion for correlation and exchange. However, when they
considered the response of the surface to an external elec-
tric 6eld they found that the potential far from the sur-
face had the image form of Eq. (1), but with the reference
plane shifted outwards from the edge of the jellium back-
ground,

V(z) = 1

2(z —zt )

The position of the image plane (z =zt) can in this case
be identified with the center of mass of the induced sur-
f ce charge, and K found that zI lies 1-2 a.u. beyond
the jellium edge. Appelbaum and Hamann carried out a
variational calculation of the electron-surface interaction,
and fitted the calculation potential near the surface to a
shifted image potential of the same form. They found
that the position of the image plane so determined lay
closer to the jellium edge than that obtained by LK. Sub-
sequently, Ossicini et al. carried out calculations similar
to those of LK but with a nonlocal approximation for ex-
change and correlation. They 6tted the tails of their cal-
culated effective potentials to a shifted image potential
and obtained values of zl similar to those of Appelbaum
and Hamann.

The above considerations apply to static charges. A
simple physical model based on the interaction of a mov-
ing charge with its image shows that the interaction po-
tential must also depend on the speed and angle of in-
cidence. In the context of the long-range (van der
Waals) atom-surface interaction, it has been shown that
the image-plane location is a function of frequency, mov-
ing closer to the jellium edge for moving charges.

The picture which emerges from all the model calcula-
tions mentioned above is remarkably consistent. The po-
tential has a (shifted) image form far from the surface,
with a smooth transition to a value determined by the
electron-electron interactions in the solid. In view of the
importance of the surface barrier, ii is not surprising thai
there have been numerous one-dimensional barrier mod-
els proposed for the analysis of experimental measure-
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ments. Cutler and Davis have summarized earlier work
on these models, most of which were introduced to facili-
tate analytical solutions to barrier scattering problems,
rather than to simulate the results of accurate calcula-
tions of the barrier shape. It is natural to ask how well
model barriers can describe the actual potential barrier in
real materials, and which experiments are sensitive to the
barrier form.

The scattering of electrons from surfaces should pro-
vide information about the surface barrier. Experience
has shown, however, that the calculated intensities in
(LEED} are insensitive to assumptions about barrier
shape, except at very low energies ( &20 eV). In this en-
ergy range, high-resolution measurements exhibit fine
structure, which we have shown to be determined princi-
pally by the surface potential barrier. ' To analyze these
spectra we have used a one-dimensional barrier model of
the form

1
[ I —exp[A(z —zo)]] if z &zo

2(z —zo)
V(z)= '

0
otherwise .3 exp[ —8 (z —zo)]+1

Here A and 8 are constants determined by matching
V(z) and its derivative at the reference plane z =zo, so
that 8 = Uo/A and A = —1+2UO/A, . This barrier mod-
el satisfies the qualitative requirements mentioned above,
and has three adjustable parameters zs, A, , and Uo. It has
an asymptotic form similar to the shifted image potential
[Eq. (2)], as this is essential to fit the observed pattern of
peak spacings in LEED 6ne structure.

The parameter zo may loosely be identified with the lo-
cation of the image plane. Since LEED experiments are
often performed with electrons which have substantial ki-
netic energies, zo will be energy dependent, and it should
lie closer to the surface than the static image plane. The
zo we find is an eQectiue image-plane location for generat-
ing a potential for LEED and similar phenomena. The
parameter A, determines the range over which the barrier
saturates. At the reference plane, the potential has the
value V(zo)= —A, /2. As z-mao inside the solid, the
model potential approaches the value Uo, the inner po-
tential of the metal. Uo is also a function of the electron
kinetic energy, becoming smaller in magnitude as the ve-
locity increases. For low-energy-electron-difFraction
t«ies, Uo is approximately equal to the sum of the Fer-

mi energy snd the surface work function. Its value de-
creases at higher energies as shown by studies of Bragg
peak locations in LEED intensity spectra.

Recently we have analyzed linearized augmented-
plane-wave (LAPW) calculations of thin metal films to
study the adequacy of this model for transition metal sur-
faces. Although the calculated potentials for W(001) and
W(110) show pronounced three-dimensional features, the
model of Eq. (3) was found to describe very well the aver-
aged single-particle efFective potential in the surface re-
gion. ' *' Moreover, the results of our simulations of the
LEED fine structure with this model yield barrier param-
eters zo, A, , and Uo in close agreement with those ob-

tained by fitting the model to the results of the LAP%
calculations. ' *' '

In view of the importance of model barriers in studying
surface processes such as inverse photoemission, photoas-
sisted field emission, snd tunneling microscopy and the
success of our model barrier in analyzing the LEED fine
structure for W(001} and W(110) we have attempted to
explore its applicability to other metal surfaces. Our aim
is to model the potential seen by an external electron and
we use the thin-film calculations as a guide to the form of
the efFective potential in the transition region close to the
metal surface. %e determine values of the barrier param-
eters by fitting the efFective potentials to the model poten-
tial of Eq. (3).

In addition to the range of variation of the three pa-
rameters zo, A, , and Uo, it is important to determine (a}
the difFerences between the values of the parameters ob-
tained from density-functional calculations for jellium
and for real surfaces, (b) the variation in the parameters
from one crystal face to another, (c) whether zo and A, are
functions of Uo in general, and (d) the efFects of chem-
isorption, at monolsyer coverage, on the surface-barrier
structure.

The results of this study should indicate the suitability
of our barrier model for simulating electron scattering
processes at surfaces, and should be of direct relevance
to the analysis of very-low-energy-electron-difFraction
(VLEED) experiments' and inverse-photoemission spec-
tra 16—19

In Sec. II, we outline aspects of the density-functional
method, which is the basis of the work of LK and of the
surface calculations described below. %e show that the
numerical values of the jellium potential found by LK are
described well by our model barrier. In Sec. III, we de-
scribe density-functional calculations for surfaces of Al,
Ni, Cu, Ag, and % using the full-potential linesrized
augmented-plane-wave (FLAPW) method. Section IV
discusses the efFects found for chemisorption, and our
concluding remarks are given in Sec. V.

II. DENSITY-FUNCTIONAL CALCULATIONS
FOR JKLLIUM

The density-functional formalism provides a frame-
work for calculating the total energy and density of a sys-
tem of interacting electrons in an external 6eld, V,„,. It
reduces the many-particle problem to the self-consistent
solution of single-particle equations of Hsrtree type

[—V' + V,s(r)]g;(r)=e;f;(r) .

The efFective potential in this equation can be written

V,&(r) =@„(r)+V„,(r)+ V,„,(r),
(4)

where 4„is the electrostatic potential, found by solving
Poisson's equation, snd V„,is the exchange-correlation
potential. The density is found from

n(r)= g f; ~
g;(r)

~

',
i=1

where the f; are appropriate occupation numbers, and
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the calculation is repeated until self-consistency is ob-
tained. The calculation is simpMed greatly if V„,has a
local dependency on the density, and this approximation
is very common.

In the calculations of Lang and Kohn, the external
field is that of a uniform positive charge in the half-space
z y0, and Eqs. (4)-(6) have the single spatial parameter,
z. They were solved for electron gases of densities corre-
sponding to r, values from 2 to 6, yielding values of the
inner potential, work function, and effective potential in
each case. The results are plotted for r, =2, 4, and 6 in
Fig. I, together with our fit to their curves using the
model of Eq. (3). The fit is performed by fixing the value
of Uo to the value determined by I.K, and optimizing the
parameters A, and zu. We have emphasized the region
close to the surface in performing this fit because the I.K
calculations are known to be inaccurate as z~ —00 due
to their use of the local density approximation for corre-
lation and exchange.

Figure 1 shows that the fit is very good, and the values
of Uo, zo, and A, obtained are presented in Table I. We
also show the classical image potential with its origin at
the center of mass of the induced surface charge as deter-
mined by LK from the linear response of the system to an
additional external Geld. It is clear that significant satu-
ration sets in as the electron approaches within 5 a.u. of
the surface, although the shifted image form is adequate
far away.

The values of zo which we have determined by fitting
the LK data to our model are significantly closer to the
surface than the classical-image-plane locations deter-

—0.70
—0.65
—0.20

1.25
0.62
0.46

1.21
0.46
0.28

mined by LK, but similar to those of Appelbaum and
Hamanns and Ossicini et al. 6 These diIFerences may
arise from the dNerent ways in which the long-range ex-
change and correlation efFects are treated in each of these
calculations. s

The location of the el'ective image plane zo relative to
the jellium edge varies inversely with r„sothat metals
with a high density of conduction electrons (small r, }pro-
duce a stronger image force on a charge at the same dis-
tance from the jellium edge. Similar trends are apparent
for the other parameters. A small value of A, indicates
strong saturation of the barrier, and we note that metals
with a low density of conduction electrons (large r, ) have
the smallest values of A, . The calculated value of the
inner potential Uo varies approximately inversely with r, .

These results show that the saturated image barrier
provides a satisfactory picture of the surface barrier in
the jellium model, with reasonable value of the parame-
ters. However, the jellium approach neglects the atomic
structure, which produces diIFerent work functions and
inner potentials for different crystal faces. It is also un-

likely to be adequate for transition and rare-earth metals
which have strongly bound d and f conduction electrons.
Many important metals fall into these categories, and it is
necessary to test the model potential against more realis-
tic calculations of the effective potential at the metal-
vacuum interface.

TABLE I. Surface-barrier parameters for the jellium model
(Rydberg atomic units) determined by 6tting the effective poten-
tials of LK (Ref. 4). The parameters zo, X, and Uo are defined

by Eq. (3) and z~ is the position of the jellium edge.

III. DENSITY-FUNCTIONAL CALCULATIONS
FOR THIN FILMS

0%0 o
Ct

FIG. 1. Comparison of the effective potential energy for an
electron in the vicinity of jellium surfaces with r, =2,4, 6. The
open circles represent the calculated results of Lang and Kohn
(Ref. 4), the solid curve is the fit obtained using Eq. (3), and the
dashed curve is the classical image potential for the static case.

Several methods exist to solve the (self-consistent)
density-functional equations for a surface, and accurate
solutions require that the spatial variations of the charge
and potential (including the ionic charge) be treated
correctly. A surface has intrinsically low symmetry, and
approximations commonly used for the bulk, such as the
muSn-tin approximation, would give rise to large and in-
correct dipoles. It would be advantageous to treat a
semi-infinite solid, as in the case of jeHiurn, but accurate
methods for calculating the electronic structure are not
currently available. The alternatives are to treat a finite
number of layers (of the order of 5 —20} in supercell or
thin-film geometries. In the supercell geometry, one con-
siders a bulk unit cell comprising a number of atomic lay-
ers plus empty or vacuum" layers, repeated periodically
throughout space. The film geometry assumes periodici-
ty in two dimensions only, and treats the vacuum region
correctly. The screening length of the electrons is com-
parable to the interlayer spacing, so that a small number
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of layers can represent the surface reliably. Experience
has shown that the thin-film approximation is well

Justified for many properties, including such delicate
questions as the energetics of surface reconstructions.

The thin-film FLAP% method used here is described
ln deta11 elsewhere. IQ this method, space is divided
into spheres surrounding the atomic sites, a vacuum re-
gion outside the Nm, and the interstitial region. The po-
tential, density, and wave functions are expressed in the
"natural" representations for each region: products of
spherical harmonics and numerical radial functions in-
side the spheres, plane waves in the interstitial, and prod-
ucts of 2D plane waves and z-dependent functions in the
vacuum region. The approach is variational, and its ac-
curacy can be improved systematically. %bile the
Coulomb potential is treated without shape approxima-
tion, we assume the local density approximation for ex-
change and correlation. The differences between these
calculations and others which make additional approxi-
mations are generally unimportant, provided that the
main anisotropies in the density and potential are taken
self-consistently into account.

To make the comparisons between the barrier model
and the surface calculations, the planar average of the to-
tal potential is needed. While the planar average of the
tota/ potential is well defined, this average is quite deep
due to the nuclear attraction. In the spirit of LEED-type
calculations, the potential inside the muffin-tin spheres
should not be included in the determination of the sur-
face barrier, and the straightforward solution is to aver-
age over the interstitial region alone. This has the disad-
vantage, however, that the averaged potential is discon-
tinuous in slope at the sphere boundaries.

For present purposes, the contribution to the average
arising from the spheres can then be found using any con-
venient, physically motivated method, and various ways
can be found which result in a smooth average while re-
moving the main contributions from the spheres. In pre-
vious work, ' ' the charge density and potential of the
surface were approximated by a plane-wave expansion as-
sumed valid everywhere inside the film plus muffin-tin
contributions inside the spheres. In this representation,
the average potential is simply the average of the plane-
wave portion.

In the present calculations, the plane-wave representa-
tion of the density and potential is assumed valid only in
the interstitial region, while inside the spheres the actual
charge density is used. This change in representation re-
quires a different method of solving Poisson's equation,
and the simple average of the plane-wave-extended poten-
tial is not the same as determined before. ' ' The solu-
tion of Poisson's equation used exploits the fact that the
potential outside the spheres depends on the density in-
side only through the multipole moments of the density.
Once the potential is obtained outside the spheres, a
boundary-value problem is solved inside the spheres us-
ing the actual density to generate the Coulomb potential
in rapidly converging representations appropriate to the
various regions of space.

The planar-averaged potential used for comparison
with the barrier model was obtained by assuming a

plane-wave representation for the Coulomb potential in
the interstitial region:

Vl(r) =Q V(6 }e' '+ pm(G1)exp(iG1 ri)cosh(Giz )
G

D
+Co —g

2

This form assumes reAection symmetry about the center
of the film, and the constant c0=2mP(0) is related to the
6=0 Fourier coefficient of the (pseudo-) charge densi-

ty
' inside the film of thickness D. While this form of

the potential is the same as used before, ' ' its value in-
side the spheres can differ markedly because of the
difFerent methods used to solve Poisson's equation.

The potential Vl can be expanded straightforwardly
into a spherical-harmonic representation on each sphere
n (with radius S ),

Vs(sa)=@VI'm(&u)I'i (~a»

using the standard Rayleigh expansion for a plane wave
and a similar expansion valid for plane waves with com-
plex wave vectors to treat the exp(iGII rll cosh(Gllz
terms. To obtain the full potential inside the spheres, one
then solves the boundary-value problem

V (r )=I drp (r)G(r, r) — fs dQ VI(S, )

where G(r„r)is the electrostatic Green's function for a
sphere and BG/Bn is its normal derivative. Here we have
solved Poisson's equation inside the spheres, but neglect-
ing the volume term (i.e., setting the density inside the
spheres to zero). This is equivalent to replacing the den-
sity inside the spheres by bulk jellium, since the latter
gives no electrostatic contribution. Note, however, that
the full anisotropy of the density inside the spheres is tak-
en into account in determining the interstitial potential
and the boundary-value problem. The modified potential
inside t'he spheres is then

'I

Va«a) =X (10)a a, S a a

for the Coulomb potential plus the exchange-correlation
potential corresponding to the interstitial plane-wave-
extended charge density.

The averaged potential V(z) is given by

V(z)= '
JdriV(ri, z) (11)

where A is the surface unit-cell area and V is the
modified potentia1 given above. These averages can all be
calculated simply (only the m =0 spherical harmonics
contribute). Three-dimensional plots of the full and
modified potentials for a (10) plane of the W(001) surface
are shown in the left frames of Figs. 2(a) and 2(b), respec-
tively, and contour plots of the modified potential in Fig.
3. Even though the full potential is dominated by the at-



tractive nuclear Coulomb potential, its three-dimensional
nature is still evident. As discussed above, the modi6ed
potential removes most of the effects of the muftin-tin
contribution. The planar averaged potential is shown in

Fig. 4(a). The expanded plot for —5(z &1 shows that
the model barrier [Eq. (3), dashed line] provides a very
good representation of the planar average in this range.

The results of Stting the model barrier to the averaged
thin-film erat'ective potentials are presented in Table II.
The same 6tting procedure was used as for the jellium
effective potentials discussed in Sec. II. The barrier pa-
rameters obtained for Al closely resemble the results of
the jellium calculations for r, =2 (see Table I). The
eff'ective image plane for Al(001) lies 1.03 a.u. beyond the
jellium edge compared with 0.70 a.u. for r, =2. The
values of A, and Uo are also similar in both calculations
despite the considerable differences in the computational
models used to calculate the effective potentials. This re-
sult indicates that the jellium approach is adequate for

free-electron metals although it neglects the e8ects of
crystal structure on the barrier.

For transition metals we observe much stronger devia-
tions from the jellium picture. All cases listed in Table II
have efkctive image planes located between 0.69 and 1.65
a.u. from the jellium edge, corresponding roughly to
r, &2 in the jellium model of I.K (see Table I). The
values of zo, k, and Uo are larger for the more densely
packed faces of W(110) and Cu(001) than for the more
open faces W(001) and Cu(110). The heavier metals such
as Ag and W also have larger values of zo because of the
increased atomic radii. There is a general trend for zo
and A, to increase for metals with a large Uo, but this
trend is not as uniform as in the jellium model, because
factors such as the lattice structure, the atomic radius,
and the electronic con6guration also influence the values
of the barrier parameters for transition metals.

The difference between the values given in Table II for
W(001) and W(110) and those reported previously'0'z'4

FIG. 2. Three-dimensional plots of (a) the total effective potential and .(b) the modi6ed potential in a (10) plane for %'(001). The
right frame shows the corresponding results for p (1&1)-2H chemisorption.
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has the form

1 if z (z) ~zo
V(z) . 2(z —zo) (z —zo)t

Uo, z ~z2

with a polynomial interpolation between these two re-
gions. WhHe the optimum value of zo (1.93 a.u.} is simi-

0.5

-1.5-

FIG. 3. Contour plots (spawns 0.075 Ry) of the modiaed, po-
tential for W(001) [(10) plane, left] and for the same plane for
%'(001)p (1g 1)-2H.

arise from the difFerent definitions of the "modified" po-
tentials. The differences between the two faces are very
similar in the two calculations, and the qualitative con-
clusions are unchanged. The uncertainties in zo, A, of
-0.2 and in Uo of -0.1 give a range of uncertainty to be
expected for such analyses.

The barrier parameters obtained from the thin-film cal-
culations are in qualitative agreement with those ob-
tained empirically by fitting measured spectra for a num-
ber of metal surfaces (see Table III). In general the
values of zo, A, , and Uo are reasonably close to those in
Table II, but the numbers derived from LEED fine-
structure analysis are lower than those obtained from the
thin-film calculations. These dilferences are consistent
with dynamical effects arising from the higher kinetic en-
ergies of the electrons used in I.EED experiments. The
empirical results for W(001) and W(110) are the most reh-
able, as they are based on a detailed analysis of a large
amount of high-quality data. The other I.EED results
should be regarded as preliminary until they have been
checked against a larger data base.

It is encouraging that the photoemission and inverse-
photoemission results of Smith and Chen's using the
model barrier of Eq. (3) lead to a value of zo in Cu(110)
( —2.4 a.u. ) in satisfactory agreement with our value
( —2. 17 a.u.). They also obtain the same value for Ni(110)
and Cu(110},consistent with our results for the (001) sur-
faces of these elements. It should be noted, however, that
the position of the reference plane, zo, depends on the
barrier model assumed. Thorner and Borstel, ' for exam-
ple, assumed the model of Rundgren and Malmstroxn in
analyzing inverse photoemission data from Cu(001). This

-1.0

2(Q. U. )

0 e

-5
I

0.5-

-1.0-

i i t

3 2
z (a.u. )

FIG. 4. Planar average of the modi6ed potential for the {10)
plane of %'(001); (a) clean surface, (b) with p(1&1) hydrogen
chemisorption.
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Al(001)
Ni(001)
Cu(001)
Cu(110)
Ag(110)
%(001)
%(110)

—1.03
—0.72
—0.69
—0.96
—0.96
—1.65
—1.14

—2.95
—2.38
—2.40
—2.17
—2.35
—3.15
—3.28

1.00
1.20
1.15
1.05
0.97
0.98
1.03

1.08
1.19
1.12
1.11
1.01
1.35
1.45

lar to the values in Table III, it is not surprising that they
are not identical.

These results indicate values of the barrier parameters
appropriate for analyzing LEED and inverse-
photoemission spectra. For all of the transition metals
listed in Table II we find that lzo —zz I

—1 a.u. , ~-1
a.u. ', and UD-1 Ry. Using these starting values, the
optimal barrier parameters can be obtained by Stting the
experimental data as described elsewhere. "

We have studied previously the effects of hydrogen and
oxygen adsorption on the I.BED fine structure of
W(110). if we consider that chemisorption produces a
thin dielectric layer of thickness 5 and dielectric constant
e on the metal surface, the classical image analysis shows
that the potential energy of an electron a distance z from
the metal surface is given by

—1 2V(z)— I—
2 [ z —(zo+5) [ (a+1)

~

z —(zii+5)
~

for 5~~
(
z

)
. (13)

As z~ —cc or @~ac this result reduces to the image
form, shifted outwards from the substrate surface by a
distance

~
zo+5

~
. The presence of the dielectric layer

therefore shifts the reference plane farther from the jelli-
um edge of the metal. However, the correction term aris-
ing from the presence of the dielectric film on the surface

TABLE III. Empirical values of the barrier parameters
determined by Stting LEED fine-structure, photoemission, and
inverse-photoemission data (Rydberg atonic units).

Vf(001)
%'(110)
Ni(001)
Ni(110)
Cu(001)
Cu(1)0)
Cu(111)

—2.90
—3.10
—2.30
—2.4
—2.35
—2.4
—2.60

0.90
0.90

0.9
1.05
0.9
1.10

1.00
1.05
1.05
0.85
0.85
0.85
0.90

10,13
14
22
18

22-25
18

23-25

TABLE II. Barrier parameters obtained by fitting the model
barrier potential to the averaged thin-Slm effective potentials
(Rydberg atomic units). The variables are defined in Eq. (3) and
the location of the jellium edge is taken as half the interlayer
spacing normal to the surface above the topmost layer of atoms.

Crystal plane

reduces the strength of the image force relative to the
clean metal, and the outward shift of zo will be less than
that predicted by the jellium model. The inner potential
of the metal will also change on chemisorption, and this
change should be similar to the measured change in the
work function for that surface. The saturation parameter
A, can be expected to change correspondingly.

It is important to have a good understanding of the ex-
pected changes in the barrier parameters as a basis for
VLEED studies of chemisorption. This is a promising
experimental technique which has been used recently to
study several adsorption systems. ' ' In our study of ox-
ygen and hydrogen adsorption on W(110) we found that
VLEED was very sensitive to the adsorption sites of the
adatoms. LEED computations at very low energies are
relatively simple, but the analysis requires a good model
of the surface barrier. We found, however, that the ma-
jor elects were due to changes in the scattering proper-
ties of the surface layer, so that there was no need to op-
timize completely the barrier parameters for the chem-
isorbed system.

For this reason we have analyzed a thin-film calcula-
tion of hydrogen on W(001) to determine the shifts occur-
ring in the barrier parameters on chemisorption. These
results should indicate an appropriate choice of barrier
parameters for VLEED studies of chemisorption on tran-
sition metals. The calculations for the saturated
W(001)p(1 X 1)-2H system were carried out as described
above for clean surfaces. The H-W interlayer spacing was
determined from total energy FI.AP% calculations, and
the calculated structural and electronic properties are in
good agreement with available experimental data. The
potentials for the hydrogen-covered surface are shown
alongside the corresponding results for the clean surface
in Figs. 2-4. The hydrogen atoms strongly modify the
potential in the surface region, resulting in different bar-
rier parameters.

The results in Table IV show that the efFective-image-
plane location moves outwards by 0.3 a.u. , which is con-
siderably less than the shift in the jellium edge of 1.24
a.u. , since the dielectric layer reduces the image force and
suppresses the outward shift of the reference plane. The
inner potential increases from 1.35 to 1.40 Ry, consistent
with the measured increase of the work function of
W(001) of 0.90-0.95 eV as a result of hydrogen chem-
isorption. The calculated work-function change is 0.95
eV. The difference between the work-function change
and the change in Uo is due to both the averaging and
6t ting procedures.

The results of this analysis con6rm our previous con-
clusions that chemisorption on a metal surface pro-
duces a small outward shift of the effective image plane
and corresponding changes in A, and Uo. This picture
should be valid for other chemisorption systems and pro-
vide a basis for estimating changes in barrier parameters
for use in analyzing VLEED experiments.

V. CGNCLUSIQNS

%e have shown that our simple, three-parameter bar-
rier model provides a good 6t to the averaged, one-
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Crystal plane

%(931)
H/%'(001)

—1.50
—2.74

Zo

—3.15
—3.45

0.98
1.25

1.35
1.40

dimensional efFective potential for an electron in the vi-

cinity of metal-vacuum interfaces. The parameters can
be identi6ed with important physical properties of the
barrier, and can be optimized independently by 6tting
thin-film calculations or experimental data. The resulting
values of the parameters zo, A, , and Uo obtained by both
procedures are in close agreement.

By comparing the calculated values of the barrier pa-
rameters for several transition metals, we have shown
that the characteristic values of these parameters are
similar to those for free-electron metals with r, &2.
Structural effects are evident, with difkrent values of the
parameters being obtained for dilerent planes of the
same crystal. In general, zo and A, increase as Uo in-

TABLE IV. Barrier parameters for clean %(001) and
H/%'(001) obtained by fItting the model barrier to the averaged
thin-film potentials (Rydberg atomic units). The location of the
jellium edge, zj, is calculated in accordance with the approach
of LK {Ref.2).

creases, but the pattern is complicated by the dependence
of these parameters on the atomic radii, crystal structure,
and electronic structure of the metal. A study of the ad-
sol'ptloll of hydrogen oil W(001) llidlcates tllat the
efective-image-plane location zo moves outward from the
metal during adsorption and that the other barrier pa-
rameters A, and Uo change in parallel with the work-
function change.

These results provide a semiquantitative picture of the
one-dimensional potential energy barrier for electrons at
the metal-vacuum interface. They can be used to select
appropriate values of the barrier parameters for analyz-
ing electronic processes which involve surface-barrier
eIFects. Such processes include LEED fine-structure
analysis, VLEED studies of chemisorption, inverse-
photoemission spectroscopy, and surface-barrier tunnel-
ing.
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