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The electrical resistance and the magnetoresistance of the ceramic superconductor YlBa2-
Cu3Gy-„have been precisely measured in order to extract the temperature derivative and to ana-
lyze the Iuctuation regimes. The logarithmic dependence at high temperature is followed near
the transition by a twe4imensional Nuctuation regime in agreement with Aslamazov-Larlon
theory (critical exponent k2n~l), and a complex behavior below T,. Our findings disprove the
observation of a threeMimensional 8uctuation regime near and above T,.

The study of dimensionality effects in granular super-
conductors has a long history. ' They differ from those
found in conventional type-II superconductors because of
the geometrical connectivity of the superconducting re-
gions. The "percolation transition" at which the resistivi-

ty falls to zero has been studied already, and we have
found a quasiwne&imensional regime above the tempera-
ture Ttt (Ref. 2) when the superconducting coherence
length becomes shorter than the connectivity length.
Below the temperature Tss, i.e., near the so-called "mid-
point temperature, " Ginley eral. have pointed out
dimensionality (or size) effects in terms of the ratio be-
tween the penetration depth and the layer thickness of su-
perconducting shells. Dimensionality plays a role there
since the "shells" are anisotropic due to the inherent crys-
talline (orthorhombic) structure. 's Single~stal mea-
surements would show evidence for "dimensionality"
effect in various resistivity or conductivity regimes, but
measurements of critical exponents can also provide infor-
mation on the nature of the conductivity state, in particu-
lar near phase transitions.

In this respect, a recent paper by Freitas, Tsuei, and
Plasketts discusses Suctuations in a granular supercon-
ductor oxide compound (Y~Ba2Cu30s-„) and presents
some evidence for thrcelimensional (3D) (super-) con-
ductivity Suctuations above Tss. Our study sho~s strong
evidence for twe4imensional (2D) superconductivity Suc-
tuations near and below Tst. Our data approach T, much
more closely. We also examine the magnetic field
infiuence. In all cases, the number of data points taken is
large and allows us to study the temperature derivative it-
self on a log-log scale. The interplay between conducting
and resistive regions is delicate and emphasized.

Due to thermal Suctuations, Cooper pairs have a finite
existence probability above the sowalied "critical temper-
ature" for superconductivity. This leads to an "excess
conductivity hcF tJ- Cre, where trtt 1/pp ls thc normal-
state conductivity at some "high temperature. " Aslama-
zov and Larkin (AL) (Ref. 7) have obtained theoretical

expressions, which can be written

atr3 (e'/325)&oe

aery (e2/165)de

for the 3D and 2D excess conductivity, respectively. In
Eqs. (1) and (2), e is the deviation from the critical tem-
perature in reduced units. gc is the zero temperature
coherence length, while d is a characteristic length of the
2D system. Notice that the "critical temperature" is
undefincd up to here. It is convenient to take as a rough
guess for temperature T, that at d2R/dT~ 0. It is usu-
ally observed that T,=T, but T, would bc better deter-
mined as a free parameter in data fittinII as has been done
at other secondwrder phase transitions. ' We have also
presented elsewhere a discussion on the relation between
T, and Tst as a function of the applied field. 2 In princi-
ple, independent measurements of the superconductivity
coherence length or of the energy-gap temperature depen-
dence are necessary to define T,.

To keep the interpretation of results in terms of Suctua-
tions, it is clear that we call the temperature T, that at
which the macroscopic coherence length diverges, i.e.,
where critical Suctuations dominate the scattering pro-
cess. "

Such Suctuations are known to exist below as well as
above T, just like at magnetic transitions. In a mean-
field-like approximation, the appearance of a gap in the
density of states implies different critical exponents below
and above T,. '2 However, correlated Suctuations (be-
tween spins at magnetic phase transitions, e.g., or of the
wave functions considered to be the order parameter here)
can be taken into account to calculate the contribution
from the energy gap Suctuations, and its congruent effect
on the number of conduction electrons temperature
dependence near T,. ' In the case of magnetic transitions
(and the argument is expected to apply here as welo, it is
observed that the same singularity occurs in the contribu-
tion from the number of conduction electrons and from
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the scattering mechanism by the relevant Suctuations
below the critical temperature, but also above it, into the
electrical resistivity temperature derivative. This does not
imply that the same value for the critical exponent is
found above and below T,.s But it is then expected that a
single critical exponent sufllces to describe the anomaly in
the excess electrical resistivity temperature derivative on
both sides of T,. Therefore, starting from the above for-
mulae (1)-(2), we will investigate the behavior of the ex-
cess resistivity through a single power-law dependence:

(3)

where 8 is a (negative) critical amplitude, C(T) a smooth
temperature function, and a "will determine whether the
fluctuations are 1D, 2D, or 3D.

The samples have been obtained from the same batch as
that used in previous investigations. They are quasisingle
phase and very porous. The oxygen deficiency is undeter-
mined. The resistivity measurements were done using a
standard dc four-probe method, capable of detecting
changes in the electrical resistivity of 1 part in 5 & 10 0,
with great care on eliminating spurious effects. Current
density was 0.3 A/cmz (but was varied in order to observe
any influence'"). Quasistatic conditions were carefully
obtained; the heating and cooling rates near T, were, at
most, of the order of 2 Kjh. Temperature measurements
are accurate with a few mK resolution over the ~hole
range.

For the magnetoresistance measurements, the magnetic
field (perpendicular to current direction) was applied
below room temperature before cooling. The warming
run was stopped at a moderate temperature above the su-
perconducting onset temperature (and below a tempera-
ture of the order of 240 K, above which some aging effect
was seen on other samples even in the absence of magnetic
Seld). Then the Seld or the current was changed and

another run started. Susceptibility measurements were
made but are not reported'here. They were not precise
enough to bring any special argument for the following
analysis on the nature of fluctuations near T,.

All samples show similar behavior starting from "high
temperature. " A quasilinear law is followed by a sigmoid
curve extending down to a "break" temperature Tq which
is field dependent. We show our extensive data for such a
"critical region" on Fig. 1, in the case of zero magnetic
6eld and for 4150 G.

The "excess electrical resistivity" temperature deriva-
tive was obtained after subtracting a small "background"
of the order of the high-temperature slope (10 s 0/K).

We have observed the behavior of R as a function of
a ' and s '~2 and noticed a change in the precision of the
data fitting at a=10 z, just up to where AL theory has
usually been verified, s' but neither law gives a convinc-
ing, good fitting. Thus, in order to compare the experi-
mental behavior to theoretical expressions (1) and (2), we

plot the results on a log-log graph (Fig. 2). Similar
analysis was made by Freitas et aI. s We use their scale
and data points for comparison. Our data run through
theirs with a similar departure from linearity at high tem-
perature, but without any substantial difference with
respect to the amplitude (Fig. 2 inset). Equations (1) and
(2) do not allow for free fitting parameters except T„
which Freitas et@i have .chosen equal to Tsr. This
choice does not play an important role away from the crit-
ical region. However, the apparent disagreement between
the amplitude of the "2D theory" and the data might be
accidental. Such an amplitude depends on the normal-
state conductivity, which is very anisotropic. The ratio be-
tween crt and tr& (i.e., within and perpendicular to the lay-
ers) is ex ted to be large (of the order of 100)
indeed. 's' Freitas eral suse the. 294-K value (i.e.,
2&10 3 0 cm). To compare to 2D theoretical expres-
sions, the value et, rather than es, must be used. This
leads to a scale shift of the order of ln(100/3) 3.5.
Hence, a fitting of the data with the 3D line (slope —

2 )
is as good (or as bad) as with the true 2D (AL) expression
(slope —1). See Fig. 2.

If less emphasis is put on the amplitude than on the
slope itself, then, taking into account data closer to the
critical temperature, such a plot hardly shows whether
Suctuations are 3D or 2D indeed (Fig. 2).

A much better examination of the critical Suctuations is
to take the temperature derivative of (3) and to calculate
A. from a log-log plot. This reduces the uncertainty in the
"constants" and subtracted (or not) background. Such a
plot is shown on Fig. 3 for the field-free case. One finds

1 (slope -2) below s 10 2, and A, 0 (slope —1)
above 8 10,since

4 ~

ln = —(A, + 1)inn,T (4)

v(x)
FIG. l. Elcctncai resistivity (0) of granular ceramic oxide

+l~s2Cu309-y ln thc "crlticsl region, " Rnd thc tcmpcrsturc
derivative (A) of the electrical resistivity (a) without a magnetic
Scld (earth's field 0.5 G), (h) with 4150 G.

assuming p a+bT+hp and dy Rs(1 —(en/s) ). This
indicates twe4imensional Suctuations closer to Tsr =T,'

90.51 K and anisotropiclike behavior further away.
Isotropy would give a slope of —,

' . '7

A 1D or 2D behavior would be expected throughout the
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FIG. 2. Temperature dependence of the excess conductivity vs reduced temperature deviation s ~ith log-log scales. 20 and 30
AL-theory slope predictions are indicated. Inset: data and range from Ref. 6 (Freitas et a/ , Ref. 6),.and our data points.

whole temperature range if g was anisotropic, larger than
a characteristic grain (or shell) linear dimension. The
3D-like behavior away from T, in Ref. 6 could be due to
polycrystallinity. Notice that the logarithmic behavior of
p extends well above 180 K, but it is yet unexplained.

In Fig. 3, we also show the log-log plot of low-field
(4150 6) measurements of the "excess resistivity" tem-

-3.,

FIG. 3. Temperature derivative of the excess electrical resis-
tivity in the presence of 0.5 and 4150 6 magnetic 6eld in the
"critical region, "on a log-log plot. The sohd lines give the criti-
cal exponents A, 0 and A, 1. AR is expressed in mA and
~(294 K) -5.72 mn.

perature derivative above (and below) T, in order to ob-
serve the coupling between the magnetic field and the sub-
microscopic anisotropy. Indeed, the external magnetic
field has a different and drastic infiuence on the carriers
(Cooper pair) in the Cu-0 layers or on the current paral-
lel to the c axis. The background is also easily subtracted
through the same (as for zero field) linear law. The mag-
netic field in8uence is neatly seen. A shift in Tsr (or T,)
is of the order of 10 KJG, similar to that found at high
"critical" field values. For this graph, we have T, 90.25
K, where dzR/dTz Q.

This low (4150 6) magnetic field reinforces the in-
herent 2D submicroscopic structure. If any exist, 3D fiuc-
tuations have to be reduced. It is seen that the 2D (AL)
slope is also approached here as in the absence of field. At
higher departure from T, polycrystallinity dominates

0), and the slope —1. The logarithmic behavior of
p also extends as far as in the zero-field case (of course).

It is interesting to observe the change in regimes in the
vicinity of T, and at low temperature. The latter case has
been studied in Ref. 2. Notice the very large slope
(R. & -7) in the zero-field case when approaching the
percolation transition. This was interpreted as an ex-
ponential law in Ref. 2, and has lead to 1D conductance
channel tnterpretatlon.

In the presence of magnetic field, the transition is
broadened due to the combined infiuence of the shift in

T„ lattice deformation„and the random distribution of
anisotropic grains. This is marked by a normal fattening
of the slope of R(T) at T, itself.

In conclusion, in opposition to the results of Freitas
er al , s we have .proved by precise measurements near T„
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allowing for fine data analysis, that the deviation from
linearity and the sigmoid behavior is due to 2D fluctua-
tions. A quantitative comparison with 2D AL theory has
been achieved near T,. We have also observed a remark-
able log-T dependence of R(T) above the critical region
over two orders of magnitude of s.

The lack of matching between grains with anisorroJpic
substructure is essential to understand the behavior of
R(T) in the "critical region, "and to explain the magnetic

field influence. Measurements on single crystals will

better illuminate this conclusion.
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