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Static and dynamic properties of the classical XY chain in a transverse magnetic field
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%e present extensive computer-simulation results for the static and dynamic properties of the
one-dimensional classical XF model in a symmetry-breaking magnetic field. In-plane solitons are
directly observed and their density is determined as a function of field and temperature. The bulk

properties and the scattering function S(q, ro) are also determined, but while they show spin-wave

contributions they do not provide any clear evidence of soliton behavior. Our simulation results are
compared with theoretical predictions.

I. INTR@DUCTION

One-dimensional planar magnets have been studied in-
tensely over the last few years. ' ' These magnets are
systems whose static and dynamic properties are believed
to exhibit soliton or solitonhke features, if one direction
in the plane is made preferable. (In general, references to
these systems do no use the word "soliton" in the strict
mathematical sense but rather to imply kinklike behav-
ior. ) The system most studied theoretically is the one-
dimensional classical Heisenberg model with easy-plane
anisotropy and experimentally it is CsNiF3. The
difrerent studies carried out in this 6eld were reported in
1984.' Despite extensive recent activity, the 6eld is still
the subject of some controversy.

Mikeska showed that, using certain approximations,
the isotropic Heisenberg chain with single-ion (easy-
plane) anisotropy can be mapped onto the sine-Gordon
model, the thermodynamics of which have been discussed
by several authors. "' This mapping provides a descrip-
tion of time-dependent behavior and a simple picture has
been developed in which the solitons are regarded as
quasiparticles with finite mass and thermal distribution of
velocities. In ferromagnetic chains, solitons correspond
to moving domain walls, separating regions with a spin-
phase difFerence of 2m. Neutron scattering, ' specific-
heat, and spin-lattice relaxation-time measurements
claim evidence for spin solitons in CsNiF&, although
some authors question this interpretation. ' The impor-
tance of the quantum-mechanical nature of CsNiF3 with
regard to soliton behavior is still unclear (see e.g., in Ref.
10). In order to eliminate any uncertainty about the role
of quantum eft'ects, we wish to study a purely classical
system for which we can carry out a computer simulation
as an ideal classical experiment. %'e choose for our com-
puter simulation the simplest model which can be
mapped onto the sine-Gorgon model: the classical XI'
chain in a magnetic field. The Hamiltonian is given by

&=—J g (S,"Sg +SfSJy) hg S,"—
where the sum (i,j ) runs over all nearest-neighbor pairs
and the S; are three-dimensional classical vectors of unit

length. J is the exchange-coupling constant and
h =gp&H a magnetic field in the x direction. The ex-
change anisotropy makes it energetically favorable for
the spins to lie in the XF plane. The 6eld tends to align
the spins parallel to the positive x axis. Our results can
then be used to determine the suitability of the sine-
Gordon mapping, or other theories, for a purely classical
model.

%e have used a standard Monte Carlo method togeth-
er with a spin dynamics approach to study the model sys-
tem. Details of these methods are described in Sec. II of
this paper. The results are presented in Sec. III including
both static and dynamic behavior. In Sec. IV, we sum-
marize and draw conclusions.

II. MKTHGD

Equilibrium spin con6gurations were generated using a
single "spin-Nip" importance-sampling Monte Carlo
method. '" %'e used an algorithm which reoriented single
spins by comparing a random number to the exponential
of the energy change. By dividing the chains into two
sublattices (even and odd spins) we could vectorize the al-
gorithm on the Cray Research X-Mp Computer and on
the Control Data Corporation Cyber 205 computer. %e
typically took spin chains with X =2000 spins and
periodic boundary conditions. As described earlier' we
performed 1500 Monte Carlo steps (MCS's) per spin at
each temperature and magnetic 6eld value. The 6rst 500
MCS's per spin were not retained, allowing the system to
reach equilibrium. At some values of temperature and
field many more MCS's were necessary, and we retained
between 5&(10 and 3X10 MCS's/site for computing
averages after 6rst discarding between 5X 10 and 2X 10
MCS's/site, respectively. For each data set, such a
Monte Carlo run was repeated six times and the results
averaged. Even with these statistics the error in the
specific heat was as large as 10% for some range of tem-
perature and field. This surprising result agrees with the
6ndings of other authors' for an easy-plane chain. Data
were obtained on the Cyber 205 at the University of
Georgia. (Some of the early Monte Carlo data were ob-
tained using the Cray X-MP at the Kernforschungsan-
lage Jiilich. )

The speci6c heat was calculated both by numerically

Qc 1988 The American Physical Society



STATIC AND DYNAMIC PROPERTIES OF THE CLASSICAL. . . 6093

differentiating the internal energy and from the Auctua-
tions of the energy. Normally both methods give the
same result. For temperatures smaller than 0.4 J we had
diliculties reaching equilibrium, which was indicated by
the fact that the two methods could give slightly different
answers.

We have calculated the in-plane angle qv,. of each spin
with respect to the x axis. By taking the angle between
two nearest-neighbor spins hy; =y; —qv; &, we obtain ihe
phase of the nth spin from the sum

—(sin8; )=-0 . 1

dt JSt Bg;
(4b)

S,.(t+5)=S;(t b, )+—2S;(t)b+ ,'S;(t)—&+0(~ )

where the angles y; play the role of generalized coordi-
nates and the z components [sin(8, )] of the spin vectors
play the role of the corresponding canonical momenta. '

The integration of Eq. (3) was performed by using the
formula"

The spin phase angle P„in the XF plane versus position
is plotted for states separated by 200 MCS's per spin to
ensure that the phase angle plots are statistically indepen-
dent. A sohton can be seen easily as a phase jump of 2m

in these plots.
Specially selected spin states containing one or two sol-

itons are used as starting con6gurations for a spin dy-
namics simulation, which is used to study the time devel-
opment of the solitons.

The equation of motion for the XY model is

—S;=S;y[J(S;" i+S;"+i )e„

+J(Sf, +Sf+, )er+he„], (3)

1

JS~ B(sin8;)
(4a)

where e„,e~, and e, are the unit vectors in the x, y, and z
directions. Equation (3) can be obtained as canonical
equations of motion corresponding to the Hamiltonian (1)
as

where b is the time increment of the integration. To ob-
tain S; we must difFerentiate Eq. (3) twice with respect to
time. After several time steps, we again plotted the phase
P„ofthe spina to see the time development of the soli-

tons. We typically used an integration interval
b, =0.005/I, resulting in a maximum useful integration
time of t =30/I. Carrying out the time integration with
dieerent time increments and looking at the constants of
motion, one can test the accuracy of the integration rou-
tine. The constants of motion are not the only way to
test the quality of our integration. Correlation functions
which have to be positive by definition (e.g., time-
dependent energy-energy correlation function) indicate
problems with the accuracy of the time integration by
becoming negative. Our tests have shown' that the in-
tegration routine works extremely well.

We usually performed five spin dynamics runs using
di8'erent initial states for the same temperature and field.
The results we present are averages over these runs.
From each of the 6ve time integrations„ time-displaced
correlation functions are extracted:

(E,(0)E,.(t) ) = g [S,"(0)S,"+,(0)+S}'(0)Sf+,(0)+h /JS, '(0)][S,"(t)S,"+., (t)+Sf(t)Sf+, (t)+ h /IS,"(t)],
l

(S,(0)S,+„(t)),=—g [S,"(0)S,"+„(t)+Sf(0)S,'+„(t)],
t

(S'(0)S „(t))i= yS'(0)S'+„(t)1

(6b)

(6c)

These are averaged over the di8'erent runs and the last
step in the computer program performs a double Fourier
transform of the spin-spin correlation functions to yield
the scattering function S(q, to). To reduce cutoff effects,
we introduced Gaussian spatial and temporal resolution
functions. ' %'e first performed the space Fourier trans-
form by

(S( q, O)S(q, t))„—

The index k denotes the components parallel and perpen-
dicular to the symmetry axis. The sum over r runs typi-
cally over 100 neighbors. The cuto8' parameter hr was
chosen carefully to avoid spurious wiggles due to taking
the Fourier transform of a function with a step, but at the
same time avoiding excessive broadening. We obtained
best results with Ar =0.03. After this we determined the
time Fourier transform by

max

= g cos(qr)(S, (0)S;+,(t))k exp[ —
—,'(r hr) ] . SI,(q, ~)= I cos(cot )(8( q, O)S(q, t))k—

(7)
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III. RKSUI.TS

A. Static properties
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sine-Gordon prediction (quadratic temperature depen-
dence) and the dashed line is a guide for the eye only.
The point for the lowest temperature (ks T=0.25J)
clearly deviates from the straight hne, but this single
point is not su%cient evidence for the presence of the
sine-Gordon peak in the specific heat.

Figure 4 shows the x and y components of the static

s
4

~ %

FIG. 3. The positions of the peaks in the specific heat in a
temperature-Seld plane. The dashed line is a guide to the eye
only and the solid line is the prediction by the sine-Gordon
theory. Note the point at k& T=O.25J.

spin-spin correlation function as a function of distance
for different fields. The y components decay exponential-
ly to zero and the x components decay exponentially to a
constant value which is the square of the magnetization.
The z components are not plotted, because they are zero;
there is no correlation between the z components of the
spins. In Fig. 5, we show the temperature and field
dependence of the inverse correlation length. The corre-
lation length was calculated by fitting an exponential de-
cay to the correlation functions. In the case of the x
components the constant (square of the magnetization)
was subtracted first.

Although the bulk properties give no clear indication
of soliton contributions we were able to observe the soli-

tons directly. In Fig. 6(a), a typical spin-phase plot is
shown for a chain of 2000 spins. One soliton can be
identified clearly as a phase jump of Zn. (The resolution
is not good enough to see single spina. ) Figure 7 shows a
part of a spin chain on an enlarged scale so that single
spins can be seen. Note that the temperature and field
are difFerent in Figs. 6 and 7. It is simple to measure the
width of the solitons in Figs. 6 and 7. In Fig. 8 we show
the soliton width as a function of inverse field. The soli-
ton width was determined by fitting the shape function
tanh(x) to the data points in Figs. 6 and 7. There is a
good agreement between the Monte Carlo results and the
sine-Gordon soliton width.

In Fig. 9 results for the density of solitons are given.
The scales are chosen so that if sine-Gordon theory
holds, all points should be on one line (the dashed line in
Fig. 9). Our results show that the slope is reproduced
properly (the slope corresponds to the soliton energy), but
not the absolute value of the density. This result is in
agreement with calculations by Jensen and Fogedby
who took the out-of-plane fluctuations of the spins into
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x
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0
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0.2- x h=00
h= 0.2

8 10

FIG. 4. Spin-spin correlation function of the x components
(upper curves) and the y components (lower curves) as a func-
tion of distance r for di8'erent fields as indicated. The arrows in-
dicate the corresponding value for r = 00, which is the square of
the magnetization.

~ i f ~

0.5 k g &.0
8
J

FIG. 5. The inverse correlation length as a function of tern-
perature for different fields as indicated. The data were ob-
tained by fitting an exponential decay to the spin-spin correla-
tion functions. A constant due to a finite magnetiziation was
subtracted first.
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FIG. 6. A spin-phase plot for an entire chain of 2000 spins. T=0.2Jlkz and h =0.3J. (a) This is a configuration containing one

soliton which is used as a starting configuration for a spin dynamics run. {b)This is the result of the spin dynamics run after only two

time steps of the integration (i.e., t =0.01/J): the soliton has disappeared. The arrow marks its former position. The field is above

the stability field h, .

account and found an enhancement of the soliton density.
Looking at the solid lines in Fig. 9 we see that the
enhancement factor depends linearly on the magnetic
field. This also means that the soliton density approaches
the sine-Gordon result (dashed line) as the field ap-
proaches zero. Of course, the sine-Gordon picture does
not make any sense for zero field. The agreement be-
tween our Monte Carlo results and Jensen and Fogedby's
calculation is qualitative but not quantitative.

8, Dynamic properties

Figure 6(b) shows a spin-phase plot which results from
a spin dynamics run, with the configuration of Fig. 6(a) as
the starting configuration. The temperature is k8 T
=0.2J and the magnetic field is h =0.3J. After just two
time steps (t=0.01/J) the soliton has disappeared. In

h /J =0.2+0. 1 . (12)

This finding is in good agreement with theoretical calcu-
lations. ' In a continuum approximation, an instability
field due to out-of-plane Auctuations of the spins is found
to be h =0.4J. A further calculation taking the discrete-
ness of the lattice into account reduces this prediction to
h =0.2723J. '

Fig. 7 the soliton is still there after a much longer time
(t =15/J). The temperature in this figure is the saine as
in Fig. 6 but the field is decreased to h =0.1J. From
analyzing many more plots like these we find that above a
"critical" field the solitons are unstable. %'e find the sta-
bility field
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FIG. 7. The Sgure shows the spin phase Pi as a function of
spin site number I. Individual spins can now be resolved. The
temperature is the same as in Fig. 7 but the field is reduced to
0.1J. The soliton is stable and has traveled about four lattice
spacings. The Seld is below the stability field h, .

FIG. 8. The field dependence of the width of the solitons.
The temperature is as marked. The solid line is the prediction
of the sine-Gordon theory.
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FIG. 11. Time dependence of the y component of the spin-
spin correlation function. For clarity, not all data points are
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FIG. 9. The soliton density nk" in a universal representation.
The dashed line indicates the prediction of the sine-Gordon

theory [see Eq. (10)]. The solid lines have the same slope as the

sine-Gordon prediction.

The time-dependent energy-energy correlation function
is plotted in Fig. 10. It is expected that this correlation
decays like t '~ .ts For small fields and large tempera-
ture we can observe this behavior, but for large 6elds it is
always a t ' dependence. There is a crossover between
these two difFerent decay types as a function of field.

Figure 11 shows the y component of the time-
dependent spin-spin correlation function. For short
times we see linear spin-wave behavior. This is in agree-
ment with the spin-wave picture by Nelson and Fisher
and with our zero-Geld results. '5 Nelson and Fisher pre-
dicted a zero-field behavior, which is given by

&,(r, t)= exp[ —I/&tr(
~

r —«
~
+ ( r+«) )], (13)

where a is the inverse correlation length and c is the
spin-wave velocity. This correlation function is constant
for t ~ r/c and then decays. For nonzero field the decay
is of course not exponential, bot nevertheless we see the
plateau from Eq. (13). The time for which the correlation
function is constant is the time which information needs
to travel the distance r and therefore gives a direct mea-
surement of the spin-wave velocity. For long times we
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FIG. 10. Time dependence of the energy-energy correlation
function for di8'erent temperatures and 6elds. The symbols
denote the following. For k&T/J=0. 1: , h/J=0. 05; G,
h/J=0. 05; 6, h/J=0. 3. For k&T/J=0. 2: +, h/J=0. 1; X,
h/J=0. 6. For kqT/J=0. 5: O, h/J=0. 1; N, h/J=1. 5. The
solid lines have slope —1 and the dashed line has slope —2.

FIG. 12. Time dependence of the z component of the spin-
spin correlation function. The position of the Srst maximum is
proportional to the spin-wave velocity. For clarity, the zero line
is shifted by 0.1 from curve to curve. k&T/J =0.2 and
h/J=0. 1.
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see the precession around the magnetic field (large oscilla-
tions) and superimposed on it are small osciHations due to
spin waves. These small oscillations have the same fre-
quency as the oscillations in Fig. 12. For small fields the
z component (Fig. 12) shows pure spin-wave behavior and
the position of the erst maximum corresponds to the end
of the plateau in the y polarization. For large fields the
longitudinal spin-spin correlation function exhibits pre-
cessional motion around the Geld.

In Fig. 13 we show the three polarizations of the
scattering law S(q, ro). The fluctuations due to a finite
number of configurations and due to the relatively short
(compared to macroscopic times) integration times are
still noticable.

The scattering function S„(q,co) in Fig. 13(a) shows a
large peak at q =0 and ~=0. %'e can see a tiny remnant
of the dispersion relation. Nevertheless it does not allow
us to extract the dispersion relation. The increase for

q ~0 in the x polarization and in the y polarization stems
from errors in subtracting the proper magnetization from
the correlation functions. This is the most pronounced
inliuence from the finite number of configurations used in
our calculation.

In the scattering functions S (q, co) and S,(q, co) we can
clearly identify the dispersion relation. In Fig. 13(b) a
large peak at q =0 and co&0 can also be seen. It decays
very fast with increasing q. This peak is broader than the
peak in the x polarization. %ithin the error bars we
could not find any differences between the spin-wave
dispersion for the two polarizations.

Mikeska' predicted a soliton-induced central peak,

S, Iq, u) I.
1.5

(c)

o QA 1P

FIG. 13. The components Sk(q, m) of the scattering law for
kz T/J =0.4 and h /J =0.1. The resolution functions described
in Eqs. (7) and (8) were used to simulate the finite resolution of a
spectrometer. (a) A: =x, (b} k =y, (c) k =z. The spatial resolu-
tion is in all cases hq=0. 03 and the energy resolution is
Ao) =0.1J

FIG. 14. The spin-wave dispersion curve for different tem-
peratures and fields as determined from the spin-wave peaks in
S(q,~},e.g., in Figs. 13(a}and 13{b). The solid lines are a guide
to the eye only and the dashed lines give the prediction from
linear spin-~ave theory (harmonic approximation).
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which is not obvious in our results. %ith the quality of
the results we have reported here a clear statement con-
cerning this central peak cannot be made. Much larger
calculations with much better statistics on con-
figurational averages are necessary to study that peak.
%e believe that simulations of spin chains with at least
N =10000 spins (or at least 25 runs on 2000 spin chains)
are necessary to investigate the existence of such a central
peak.

From the position of the spin-wave peaks we deter-
mined the dispersion curves for diferent 6elds and tem-
peratures. In Fig. 14 a typical example for a dispersion
curve is shown. It shows the behavior of a linear spin-
wave model as qualitatively predicted by a harmonic ap-
proxirnation to the spin Hamiltonian in Eq. (1). The gap
indicates the inAuence of the magnetic 6eld on the spin-
wave spectra.

IV. CDNCLUSION

Our Monte Carlo results give clear evidence for the ex-
istence of spin solitons. They also prove that simple
sine-Gordon theory describes some features correctly but
fails on others. %hen the theory is improved, e.g., the

discreteness of the lattice is taken into account or the
out-of-plane Auctuations are treated, the agreement be-
tween theoretical predictions and the Monte Carlo results
becomes Inuch better. Nevertheless the missing soliton
peak in the specific heat is not understood and further
theoretical calculations are needed. In addition to the
nonlinear soliton behavior, the system sho~s clear linear
spin-wave behavior even though there is no long-range
order. The combination of Monte Carlo and spin dynam-
ics simulations is thus a powerful tool to test analytical
approximations and calculations.
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