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Effect of atomic order on the electrical resistivity of Co, Fe o_, alloys
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We measured the electrical resistivity at 4.2 K of a series of Co, Fe o _, alloys in the ordered and
disordered state. For 30 <x <40 at. % Co the resistivity increases upon ordering as expected when
an energy gap occurs at the Fermi level. For 40 <x <70 at. % Co the resistivity decreases upon or-
dering due to an increase of the electron relaxation time. For two samples with x=38 and x=438
at. % Co we measured p(T,,T) at temperatures T=4.2, 77, and 295 K after quenching the samples
in salt water from several temperatures Ty around the ordering temperature T,. For the first sam-
ple, p(Ty,4.2 K) increases for Ty < T, and accordingly dp(Tj,4.2 K)/dT, has a strong negative
anomaly at T,. At high temperatures and in equilibrium, p(T) decreases upon ordering and dp/dT
has a positive anomaly at T,. This crossover from a gap-dominated to a relaxation-time-dominated
critical behavior is induced by increasing the measuring temperature T, therefore exciting electrons
across the energy gap. From the dependence of p(T,,T) on T we estimate the gap width to be
around 45 meV. For x=50 at. % Co both p(Ty,4.2 K) and p(T) decrease upon ordering. Here the

15 APRIL 1988-1

gapless behavior of the resistivity is due to the particular topology of the Fermi surface.

I. INTRODUCTION

The behavior of the zero-field resistivity of a binary al-
loy,

p=m*/e’n g7, (1)

near an order-disorder phase transition depends on the
possible variation with atomic order of the electron relax-
ation time, 7, and of the effective number of carriers per
unit volume, n ;. Here, m* is the electron effective mass.
If ns does not change, and if inelastic collisions are
neglected, the atomic-disorder resistivity can be written!

2K
p(T) /pge= [ dQ, fo "I(q,T)g%g , )
where
g T)=3 e T(gqoy) 3)
R

and d (), is an element of solid angle in g space. I'(q,T)
is the Fourier transform of the two-site correlation func-
tion, the direct analog of the spin-spin correlation func-
tion for an Ising antiferromagnet. Also, the o, are the
site-occupation parameters as described by Cowley,? and
Pdis is the atomic-disorder resisitivity in the completely
disordered state. Simons and Salamon® followed an argu-
ment similar to that of Fisher and Langer* (FL) to treat
the correlation function for atomic disorder. They found
that the anomaly in dp/dT for an order-disorder system
has the same form as that in the specific heat. In their
theory, short-range concentration fluctuations at ¢ ~2K
are dominant near the critical temperature. This leads to
a smooth increase of the resistivity across the critical re-
gion and to a positive cusp in dp/dT at the critical tem-
perature T,:

(1/pg)dp/dT)g o | €] =%, @)
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where e=(T—T,)/T, is the reduced temperature, and a
is the critical exponent for the specific heat. Suezaki and
Mori (SM)? discussed the critical behavior of the resistivi-
ty of antiferromagnets and order-disorder systems, when
long-range fluctuations are dominant. In their work,
they used the Ornstein-Zernike approximation for the
correlation function. Therefore their results are essential-
ly those of a mean-field theory, and are not expected to be
valid very close to T,. They obtained for the relaxation
time the following behavior:

1/r=A+B(1-D|e|¥), (5)

where B is the critical exponent for the long-range order
parameter. This leads to an upward-pointing cusp in the
resistivity at T, in opposition to the monotonic increase
predicted by Fisher and Langer. The resistivity deriva-
tive becomes

(1/pgNdp/dT gy~ || 1. (6)
Notice that in a mean-field approximation Eq. (2) leads to
p(T)/pgis=1—SHT) . (7

Since the long-range order parameter S goes like | ¢ |?
near and below T,, we recover the result of Suezaki and
Mori for T < T,. We expect that very close to T, short-
range fluctuations will be dominant. As we move away
from the critical region where the FL theory applies, the
mean-field approximation should become a reasonable
approximation. This crossover has been observed in
some systems.® However, in both regimes a decrease of
the resistivity upon ordering is predicted, caused by an
increase in the relaxation time. This decrease of the resis-
tivity, and the linear relation between dp/dT and the
specific heat, has been verified in some order-disorder sys-
tems such as CuZn (Ref. 3) and CoFe.” The success of
this theory suggests that CuZn and CoFe exhibit no
significant n.q variation near T,. On the other hand,
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there exist order-disorder systems such as Fe;Al (Ref. 8)
or CoPt,’ where there is a slight increase in the resistivity
upon ordering. This has been observed in measurements
in equilibrium at high temperatures. This situation, also
found in antiferromagnets, is characterized by a max-
imum in the resistivity below T, or by a negative anoma-
ly in dp/dT at the ordering temperature. This effect is
probably caused by a decrease of the number of carriers
due to the formation of new Brillouin zones upon order-
ing. In turn, these can give rise to energy gaps at the Fer-
mi level. When two points of the same sheet of the Fermi
surface are connected by a superlattice wave vector Q, an
energy gap opens at the Fermi level, the density of states
goes down and, accordingly, n 4 decreases. Using Eq. (1),
this explains the increase of the resistivity caused by or-
dering in antiferromagnets and certain order-disorder
systems. Miwa!® finds theoretically that n. is a linear
function of the sublattice magnetization below 7,. How-
ever, Hall-effect measurements indicate rather that n g
varies like the square of the sublattice magnetization.
The latter result has also been obtained theoretically by
Ausloos,!!

neﬁzndis(lmco |E|ZB)’ T<To 8)

where n 4, is the number of carriers per unit volume in
the fully disordered state and C, is a dimensionless pa-
rameter characterizing the energy gap. Using Eq. (1) this
leads to a contribution to the critical resistivity going as
| €| %, similar to that coming from 1/7 in SM theory.
However, the sign of the |&|* term is opposite in the
two cases. It is positive for the energy-gap contribution,
and negative for the relaxation-time contribution. Mea-
surements of the ordinary Hall effect can decide whether
the gap effect is predominant or not.

Putting together the critical contributions from the re-
laxation time and from the energy-gap effect on n 4, we
obtain a general expression for the resisitivity anomaly
near an order-disorder phase transition

(p/pais)= Ao+ Ay |e|*+B, |e| ~¢! ©)
or
(1/pgis)dp/dT= A, |e|*~ 1+ B, |e| ~®. (10)

The constants 4, B;, A,, and B, take different values
and sign above and below T,. Similar expressions have
been proposed to fit the critical resisitivity in antiferro-
magnetic systems.!?> Gap effects may not be visible when
measuring p(T) at the ordering transition, essentially for
two possible reasons.

(a) The topology of the Fermi surface may be such that
the ordering wave vector Q does not span portions of
that surface. This has been proposed to explain the “gap-
less” behavior in CuZn.>

(b) When the measuring temperatures are hundreds of
Kelvin, thermal excitation of electrons can easily over-
ride gaps of the order of 10-100 meV.

In relation with (b), experiments can be devised to test
the dependence of the gap effect on temperature. Sam-
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ples can be annealed at a temperature T, near T, long
enough for atomic order to reach equilibrium. They are
then quenched in water, freezing the atomic order
present at TQ, and p( TQ,T) is then measured at tempera-
tures T equal to 4.2, 77, and 295 K. We can then write

neg=no+nexp(—A/kpT) (11

to model the thermal excitation of electrons across the
gap. Here A is the gap width. Using Eq. (1) and assum-
ing that the critical behavior is dominated by changes in
n g, rather than in 1/7, we obtain

p(Ty,T)~[A+Bexp(—A/kzT)] ' +p,(T), (12)

where p,p(T) is the contribution of phonons, such that
Ppr(0)=0. Then
p(Ty,0)

(T, T)—puon(T)

=[1+Cexp(—A/kzT)].  (13)

Equation (13) allows the direct calculation of A(Tj ) from
experimental results for p( Ty,T).

II. EXPERIMENTAL METHOD

Our Co-Fe alloys were made from
Specpure/Puratronic Johnson and Matthey cobalt and
iron. The melting operation was done in a high-vacuum-
resistance furnace with a base pressure below 1076 Torr.
Mass losses during melting were on the average below
2%, but reached 4% in certain cases. This forced us to
perform a final chemical analysis of the ingots to check
possible deviations from the nominal value. The final
compositions were found to differ by less than 1% from
the nominal compositions. This allows us to quote the
nominal compositions.

A CsCl ordered structure is known to exist in the range
30<x <70 at.% Co as shown by neutron-diffraction
studies.'>'* Some controversy arises from the possible
existence of ordered CoFe; and Co,Fe phases, reported
from resistivity and specific-heat measurements.!*> At the
present date these phases have not been observed directly
by neutron diffraction and therefore their existence is hy-
pothetical. Our own anisotropic magnetoresistance data
seem to support the existence of new ordered phases,
close to CoFe, and Co,Fe structures.'® All samples were
homogenized for 24 h in dry hydrogen at 1400°C. This
temperature is about 100°C below the melting point.
After homogenization was completed, the temperature
was lowered to 900°C. Then the hydrogen atmosphere
was replaced by a high vacuum [P ~(6-7)X 10~ Torr].

The samples were held for 2 h at this temperature to
remove any dissolved hydrogen. To obtain maximum
atomic order the samples were furnace cooled from
900 °C to room temperature in 8 h.

In these alloys, ordering mainly occurs from a
vacancy-jump mechanism. The relaxation time obeys an
Arrhenius law'’

TESD(T)zTocxP(ESD/kBT) N (14)
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where the constant 7 and the self-diffusion energy Egp
are related to a vacancy formation, and to migration en-
tropies and energies. For Co-Fe alloys, Fishman!® and
Henry'® obtained 7,~10"'" s and 2.7<Egp <2.9 eV.
Table I gives the relaxation times calculated from Eq.
(14) at several temperatures and also the calculated value
of the minimum anneal time 107 needed to reach equilib-
rium.!7 It is clear from Table I that perfect order with
S=1 cannot be obtained with our furnace cooling, be-
cause the sample does not stay long enough at tempera-
tures of about 500°C or less for a state of equilibrium to
be reached at these temperatures. However, some au-
thors have directly measured the degree of order S of
furnace-cooled Co-Fe samples,’®?! and reported values
greater than 0.9. To lower the degree of order, we
quench the samples into a salt solution after allowing
enough time for equilibrium to be reached at the quench-
ing temperature Ty, thus freezing the atomic disorder
present at this temperature. Notice that cooling must be
fast enough such that appreciable atomic diffusion does
not occur during the quenching process. Roughly,
quenching times should not exceed 7(2.7 eV, T;)/10. For
Ty =900°C this would mean quenching times of the or-
der of milliseconds according to Table I. However,
quenching in cold, salted water produces at most quench-
ing rates of about 7000 °C/s for thin enough samples and
optimum operational conditions. We expect therefore
that quenching becomes ineffective for quenching temper-
atures exceeding 850-900°C. Samples to be quenched
are introduced in a quartz tube connected to the diffusion
pump by a valve and a flexible bellow at a pressure of
6x107° Torr. The annealing temperature is kept con-
stant within 1-2°C. After equilibrium at a temperature
T, has been reached, the valve is closed and the quartz
tube quickly immersed into a pan filled with a cold, sa-
turated, salt-water solution where it is smashed. The wa-
ter is sucked into the tube and cools the sample in a frac-
tion of a second. In most of our samples the resistivity
was measured after furnace cooling (ordered state) and
after quenching from T, =800°C (disordered state) at
T=4.2,77, and 295 K. In two Co, Fe o _, samples with
x=38 and 48 at. % Co, we measured p(T,T) at T=4.2,
77, and 295 K for several quenching temperatures T
above and below the ordering temperature T,. Resistivi-
ty measurements with a relative resolution of 1:10* were
done using a conventional dc four-probe technique. We

TABLE I. Relaxation time 7 for two possible self-diffusion
energies Egp. We also show the minimum annealing time re-
quired to reach equilibrium, defined as 107 (Egp =2.9 eV).

T, assuming T, assuming Minimum
T (°C) Egp=2.7 eV Egp=29 eV anneal time
500 1h 20 h 200 h
530 17 min 5h 50 h
550 6 min 1.5 h 15 h
650 55s 68 s 11 min
880 7 ms 50 ms 05s
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also measured p(7T) in equilibrium at high temperatures
through the order-disorder phase transition. A very slow
rate of cooling or heating (0.1-0.2°C/min) is needed in
order to ensure equilibrium conditions. Under these cir-
cumstances, no hysteresis effects were observed in the
resistivity runs under heating or cooling cycles.

III. RESULTS AND DISCUSSION

Figure 1 shows the zero-field resistivity of furnace-
cooled and quenched alloys at 4.2 K. The quenching
temperature is 800 °C. Two regions can be distinguished,
showing different ordering effects on the resistivity.
From 30<x <40 at.% Co, the resistivity of furnace-
cooled alloys is larger than that of quenched alloys.
From 40 <x <70 at. % Co the opposite is true. In the
first case, we are probably observing an energy-gap effect.
These effects should be easier to observe when the frac-
tional increase of the relaxation time caused by ordering
is small. In turn, this means that we must be off
stoichiometry. This may explain why this gap effect is
observed at x=35 at. % Co rather than at 50 at. % Co.
Another possibility is that the gap is associated with an
Fe,Co superlattice rather than the FeCo superlattice of
CsCl type. Beitel and Pugh?? measured the ordinary Hall
coefficient R, at 77 and 300 K for a series of furnace-
cooled Co,Fe y_, alloys. They found that R, dimin-
ishes by 16% from 77 to 300 K in a Co;sFeqs alloy, while
| R¢(77 K) | ~ | R((300 K) | for a CosoFesq alloy. Foner
et al.®® have shown that R, is almost independent of
atomic order in a CosyFes, alloy. As |R,| is propor-
tional to 1/n.4 these results for R, and correspondingly
for n.4 can be understood if an energy gap occurs at the
Fermi level for x =35 at. % Co, but not for x=150 at. %
Co. This is consistent with our own results for p at 4.2 K
described earlier. In Figs. 2 and 3 we study in more de-
tail the behavior of the resistivity in two samples where
the gap effect is negligible or preponderant, respectively.

For the CoygFes, sample (Fig. 2) we find 7,=733°C
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FIG. 1. Zero-field resistivity at 4.2 K for ordered and disor-
dered Co, Fe,o_, alloys.
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FIG. 2. Normalized zero-field resistivity and its temperature
derivative at 4.2 K, for.a Co,Fes, sample quenched from tem-
peratures T, around the ordering temperature 7,. In the inset
we show the normalized temperature derivative of the resistivity
measured at high temperatures and in equilibrium.

and p(T,=800°C, 4.2 K)=3.24 uQlcm. In this sample
Pord4.2 K)<p4i (4.2 K). As atomic order sets in for
Ty <T, the resistivity decreases. The solid line through
the p(Ty, 4.2 K)/p(T, =800°C) data corresponds to a fit
of Egs. (1) and (5) for T,=733°C. We use 8=0.312 as
predicted by the three-dimensional Ising model. Notice
that in Eq. (5) the reduced temperature is now defined as
e=(Ty—T,)/T,. The |¢| 28 term has a negative sign as
expected from the increase of the relaxation time as
atomic order sets in. We do not have enough data close
to T, to show any rounding or cusp in the resistivity.
When we measure p(T,T) at 77 and 295 K the resistivi-
ty anomaly is of the same type as at 4.2 K; these data are
not shown. In the same figure we also show the normal-
ized temperature derivative of the resistivity of quenched
samples, [1/p(T,=800°C,4.2 K)] [dp(Ty,4.2 K)/dT,].
This quantity has a positive anomaly at T, =T, as ob-
tained in most ferromagnets. In the inset we show the
resistivity derivative in equilibrium at a high temperature
T. It shows a positive peak at T, similar to that observed
in the quenched samples. These derivative values
represent a 20-point fit of the resistivity data to a second-
order polynomial. These data agree very well with those
of Seehra and Silinsky’ for a similar sample. No energy-
gap effect is then found at this composition. As observed
in Sec. I, the energy-gap effect may be obscured by
thermal excitation of the charge carriers across the gap
when the resistivity is measured in equilibrium at high
temperatures. However this explanation fails for
quenched samples where the measurements are done at
4.2 K. Therefore we conclude that the topology of the
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FIG. 3. Normalized zero-field resistivity and its temperature
derivative, at 4.2 K, for a Co33Feg, sample quenched from tem-
peratures T, above and below the ordering temperature 7,. In
the inset, we show the normalized temperature derivative of the
resistivity, measured at high temperatures in equilibrium.

Fermi surface is such that the superlattice wave-vector Q
does not connect points of that surface at this composi-
tion.

Consider now the data for Co;gFeq, in Fig. 3. Here the
resistivity has a pronounced negative derivative with
respect to Ty below T, as expected from the energy-gap
effect on n. 4. In this sample p 4(4.2 K) > py(4.2 K). As
atomic order increases for Ty <T, the resistivity in-
creases, again as expected when the energy-gap effect is
dominant. The solid line through the p(Ty,7=4.2 K)
data is a fit of Eq. (9). We used a=0.013 and B=0.312
(3D Ising model).?* The coefficients obtained from
the fit are 4,=1.19 and B, =—1.58 at T, <T,, and
A,=-0.271 and B;=0.505 at Ty >T,. The ordering
temperature giving the best fit is 7,=(700%0.5)°C.
Below T, the coefficient 4, of the | €| % term is strongly
positive, leading to the observed increase in the resistivi-
ty. The effect of ordering on the relaxation time, below
T,, corresponds to the negative || ~**! term.

In the inset of Fig. 3 we show our data for
[1/p(T=740°C))(dp/dT) in equilibrium at a high tem-
perature T. We see that this derivative has a positive
peak at T,, contrary to the negative peak found in the
quenched sample, at 4.2 K. This means that, at high
temperatures, the gap effect ceases to be dominant, being
replaced by the effect of ordering on the relaxation time.
At temperatures around 1000 K, gaps of the order of
kg T ~100 meV should barely affect the resistivity. The
maximum of [1/p(T =740°C)|(dp /dT) occurs at T=697
K. There is a 3 K discrepancy with respect to the critical
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FIG. 4. Normalized zero-field atomic disorder resistivity,
T, T)=[p(Ty,T)—p(T)/p4is4.2 K), at 4.2, 77, and 295
K, for a CosFeq, sample quenched from several temperatures
Ty above and below T,. In the inset we show the equivalent
quantity at high temperatures, in equilibrium, as was described
in the text.

temperature found when fitting the p(7,4.2 K) data. It
is possible that a small decrease in temperature occurs
after we remove the sample from the furnace, before
quenching it into water.

Figure 4  shows the quantity p,(Ty,T)
=[p(Ty,T)—pn(T)V/p4s4.2 K) measured at 4.2, 77,
and 295 K for a CosgFeq, sample quenched from several
temperatures T, around the ordering temperature. This
normalization removes the phonon contribution to the
resistivity at each measuring temperature 7. Here p,,(T)
is defined by

pon( T)=p(750°C, T)—p(750°C,4.2 K) . (15)

The introduction and use of the phonon resistivity p,(T)
implicitly assumes that it does not depend on the state of
atomic order of the sample. The solid lines through the
data are fits of Eq. (9). The displayed quantity should not
depend on the measuring temperature T, if the gap effect
were independent of T. However, Fig. 4 shows that its
value at Ty < T, diminishes as we increase the measuring
temperature 7. Again this suggests the disappearance of
the gap effect at high T. At even higher measuring tem-
peratures (see inset, where we show the quantity
P (T =[p(T)—p,p(T)/pgs 4.2 K)), the gap effect is ap-
proximately absent and the atomic-disorder resistivity in-
creases with increasing 7. For the data shown in the in-
set, p,n(T) was assumed to be a linear function of T with
such a slope that the alloy-disorder resistivity be indepen-
dent of T at T>T,. Using values of p(Ty,T)—p,(T)
from Fig. 4, we now use Eq. (13) to estimate the width of
the energy gap A(T), at a given state of order character-
ized by T,. Data obtained at 4.2 K are used to approxi-
mate the corresponding T =0 values. The gap width
reaches a maximum value of 45+5 meV below T, and
remains nearly constant for Ty <680°C. In this analysis
based on Eq. (13), we neglect the effect of order on .
Therefore our results for the gap width are only valid
close to T, where the gap effect is dominant.

Finally a comment should be made about the small
change in the lattice parameter upon ordering. It is
known that the lattice parameter has a maximum in-
crease of 0.2% upon ordering for a CosyFes, alloy.”> In
turn, this leads to a decrease of n 4 by about 0.6%. The
corresponding increase in p according to Eq. (1) is very
small, when compared with gap or relaxation-time effects
(15-20 %). We then neglected corrections due to lattice
parameter variations in our calculations.
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