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The one-dimensional Hubbard model with nearest-neighbor hopping, first- and second-nearest-
neighbor particle interactions, and one particle per site is reexamined by means of a small-crystal
approach—an exact solution of a four-site cluster with periodic boundary conditions. Lines of
symmetry crossing as well as singular lines and points are found. Analysis of correlation functions
indicates that although there are smooth, strong changes as the parameters approach the values of
the charge-to-spin-density-wave transition (a suggestion of an incipient second-order transition), the
actual change involves a crossover between unrelated symmetries (a clear indication of a first-order
transition). The relatively simple calculation and its results agree well with previous Monte Carlo
numerical simulations and settles the unresolved question of the order of the density-wave transi-

tion.

I. INTRODUCTION

Since its introduction in 1963, the Hubbard model' has
become the prototype of a system of fermions with
short-range interactions. It has been used to study a
great variety of many-body effects in metals, of which fer-
romagnetism, antiferromagnetism, metal-insulator transi-
tions, spin-density waves, charge-density waves, and su-
perconductivity are the most common examples.! ~’

The model has been applied to a variety of lattices—
one, two, and three dimensional®>>*~'2—and to small
clusters.'3~17 Exact solutions are available for one di-
mension® and for small clusters,'>~!” and exact theorems
have been proved for some cases.'® Since the numerical
solution of extended cases is in general very laborious and
computationally expensive,” exact results easily obtain-
able with relatively small clusters with periodic boundary
conditions'*~17 are an appealing alternative for studying
these complex systems. It should be remembered that a
cluster of N sites with periodic boundary conditions —the
so-called small-crystal approach—is exactly equivalent
to an extended periodic system in which the samplin§ of
the Brillouin zone is restricted to N specific points.'® 2

It is the object of this contribution to examine once
again the extended one-dimensional Hubbard model’ !
by means of the small-crystal approach. The model con-
sists of a one-dimensional chain, with one fully symmetric
orbital per site, an occupancy of one electron per site,
one-electron hopping of strength —:¢ between nearest-
neighbor sites, and two-electron interactions between
electrons in the same site (U), and between electrons in
neighboring sites (K). The system is known to exhibit
symmetry transitions in its ground state as a function of
the parameters. The transitions have been found in
weak-coupling?*?* and strong-coupling? theories, with
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real-space scaling methods,'®!! as well as in Monte Carlo

simulations.” There seems to be a controversy over the
order and nature of these transitions, which our calcula-
tion can definitely help to clarify. Section II contains the
definition of the problem, the method of solution and the
details of the calculation. Section III presents the results
and conclusions.

II. MODEL AND METHOD OF CALCULATION

The one-dimensional extended Hubbard model consists
of a very large (infinite) chain of sites i separated by a dis-
tance a and with periodic-boundary conditions. There is
one s orbital per site, each being either spin up or down,
denoted with subscript 0. The electron creation (destruc-
tion) operator is written as c,-t, (¢;j,). The Hamiltonian
consists of three terms:

H =Hband +Himra +Hneighbor ’ (2.1
where
Hyppg=—13 (cityci+l,o+cityci——1,o) , 2.2)
i,o
t t
Himra =U 2 CitCitCi1Ciy » (2.3)
i
Pt
Hneighbor=K 2 CioCioCi+1,0'Ci 41,0 - (2.4)

iyo,0’

These terms are the following (a) a band “hopping” in-
teraction (2.2) between electron states on adjacent sites,
with transfer integral —¢; (b) an on-site (intra-atomic) in-
teraction (2.3) of strength U; and (c) a nearest-neighbor
(inter-atomic) interaction (2.4) of strength K. Only an
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average occupancy of one electron per site is considered
in this contribution but, for the sake of completeness,
cases of U and K of either sign are considered.

The system has one-dimensional translational invari-
ance, and consequently a Brillouin zone which extends
over the interval

—m/a<k<m/a .

In particular we identify the following points in the zone,

k =0, point T, (2.5)
k =m/a, point X , (2.6)
k =xm/2a, point A, A’ . (2.7)

If the four points in k space mentioned above are the
only ones selected to sample the Brillouin zone, the prob-
lem is then reduced to the solution of a cluster of four
atoms, in linear arrangement and with periodic-boundary
conditions. The cluster contains all together four elec-
trons. Group-theoretical analysis of the cluster symme-
try and physical properties yields nine possible sym-
metries, corresponding to space representations I', X, and
A, and total spin S=0 (spin singlets), S=1 (spin triplets),
and S=2 (spin quintets). The degeneracies of these rep-
resentations are shown in Table 1.

The cluster has 8!/4!4!=70 states arranged in no more
than 28 symmetry-required energy levels. The distribu-
tion of those levels among the nine possible symmetries is
shown in Table II. It should be emphasized that these
levels are dictated by the symmetry of the problem, and
that many times the Hubbard model, for general interac-
tions, shows additional (accidental) degeneracies, i.e., the
number of levels for this cluster may be, in general, less
than 28. For specific values of the parameters the degen-
eracy is indeed greater. In particular for U =K =0, the
noninteracting particle limit, the number of levels
reduces to five (see Table III). In the extreme strong-
interaction limit, t=0, there are also five levels (see Table
IV), with further reductions in very special cases (e.g.,
U =K, U=0, and K=0).

An analysis of the limits is easy and instructive.

(A) The noninteracting limit, U =K =0, shows a six-
fold degenerate ground state of energy (—4¢) and sym-
metries °T, 'T, and 'X.

The strongly interacting limit is more interesting and
complex. The results of its analysis depend on whether
the number of electrons is strictly restricted to four in the
four-site cluster, or whether number fluctuations are al-
lowed. (B) For t=0 and the number of electrons strictly
restricted to four in the cluster the results are as follows:
(B1) For U <0, K <0 the ground state is fourfold degen-
erate, its energy is 2U +4K, and the contributing sym-
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TABLE I. Degeneracy of the various representations.
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metries are 'T", 'X, and ' 4. The corresponding distribu-
tion of electrons is ( - - - 2200220022 - - - ), in which the
electrons tend to cluster together to take full advantage
of the nearest-neighbor and second-neighbor attractive
interactions; (B2) For U> 0, K < U /2 the ground state is
sixteenfold degenerate, its energy is 4K, and the contrib-
uting symmetries are 'T’, 'X, 3X, 34, and °X. The elec-
tron distribution corresponds to ( --- 1111111111 ---)
and arbitrary spin orientations, which include fer-
romagnetism (the spin quintet), ferrimagnetism (the spin
triplets) and spin-density waves (the spin singlets); (B3)
For K >0, U < 2K the ground state is twofold degenerate,
its energy is 2U, and the contributing symmetries are 'T’
and 'X. The electron distribution corresponds to
(--+2020202020 - - - ), i.e., charge-density waves.

(C) If, on the other hand, only the average number of
electrons is restricted to four per cluster, and fluctuations
are allowed, the results get considerably modified: (C1)
For K <0, U <(—2K) the state of minimum energy is a
heterogeneous admixture of equal amounts of two phases,
one with eight electrons per cluster [full cluster with elec-
tron distribution ( ---2222222222---)] and symmetry
IT, the other with no electrons [empty cluster with elec-
tron distribution ( - - - 0000000000 - - - )] and also of sym-
metry 'I'. The average energy of this two-phase compos-
ite is 2U + 8K; (C2) The structures described in (B2) are
still stable, but only for U>0, —U/2<K <U/2; (C3)
The structures described in (B3) and their boundaries
remain unchanged.

The conclusions to be drawn from (A), (B), and (C) are
the following: (i) since the symmetries 'T" and 'X contrib-
ute to the ground-state manifold in all limits of (A) and
(B) it is likely that, for any of the values of the parameters
t, U, and K, the ground state will be either 'T, or 'X; (ii)
the heterogeneous admixture described in (C1) comprises
only empty and full bands, and is therefore independent
of the band term (2.2), i.e., its energy is 2U + 8K and will
remain stable as long as that energy is the absolute
minimum; (iii) there must be phase transitions, either of
first or of higher order, in the three limits

U=2K—>+w ,
U=-2Kk—>+ o,
K=0, U»>—c .
It is always possible that additional phase transitions ex-
ist in other regions of parameter space.
The symmetries 'T" and 'X have been completely ana-

lyzed in the four-site cluster. As shown in Table II each
of these symmetries involves the diagonalization of a sim-

TABLE II. Multiplicity of the matrices for the various repre-
sentations.

r X A r X A
§=0 1 1 2 §=0 6 6 4
S=1 3 6 S=1 4 3 4
S§=2 5 5 10 S=2 0 1 0
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TABLE III. The 28 energy levels in the limit U =K=0.

E Degeneracy ’r T D¢ D¢ D¢ 34 'A
—4¢ 6 1 1 0 0 2 0 0
—2t 16 0 0 0 0 0 2 2

0 26 2 4 1 3 2 0 0

2t 16 0 0 0 0 0 2 2

4t 6 1 1 0 0 2 0 0

TABLE IV. The 28 energy levels in the limit 1=0.
E Degeneracy ’r r D¢ D¢ D¢ ‘4 "4
4K 16 1 1 1 0 1 1 0
U+3K 32 2 2 0 2 2 2 2
U+4K 16 1 1 0 1 1 1 1
2U +4K 4 0 1 0 0 1 0 1
2U 2 0 1 0 0 1 0 0
TABLE V. Hamiltonian matrix for the 'T" symmetry.
2U -2tV 0 0 0 0
—2tV2 U +3K —21v2 0 0 0
0 —2tV2 U +4K U 0 0
0 0 U U +4K 0 0
0 0 0 0 U +4K 0
0 0 0 0 0 U+3K
TABLE VI. Hamiltonian matrix for the 'X symmetry.
2U_ 2V2 0 0 0 0
21V2 U+3K 2tvV'2 0 0 0

0 2tV'2 U +4K 0 0 0

0 0 0 4K —2tV'3 0

0 0 0 —2tV'3 U+3K 2t

0 0 0 0 2t 2U +4K

TABLE VII. Expectation values of the correlation operators for limiting cases.

State Ocnn Ocsn Osnn Ossn
2020 1 0 0 0
2200 4 1 0 0
T 0 0 0 0
Titd 0 0 1 0
111 0 0 1 1
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ple 6X6 matrix. The two matrices were generated by
standard group-theoretical techniques and are shown in
Tables V and VI.

Diagonalization of these matrices yields eigenvalues
and eigenfunctions which contain the required informa-
tion. Results of the diagonalization are presented in the
next section.

In order to study thoroughly the nature of the ground
state and to obtain useful information about the nature of
the transitions, four correlation operators are defined,
and their expectation values calculated for the ground-
state wave function,

a=(y |0, [¥),

where ¢ stands for the ground-state eigenvector, and «a
takes four values (1) acyny corresponding to charge,
nearest-neighbor correlations, (2) acgy corresponding to
charge, second-nearest-neighbor correlations, (3) agyn
corresponding to spin, nearest-neighbor correlations, and
(4) agyn corresponding to spin, second-nearest-neighbor
correlations. The operators O, are given in the Appen-
dix. It should be noted that these correlation functions
are positive-definite quantities which vary between 0 and
1. Discontinuities in these coefficients as functions of the
parameters correspond to level crossings and are strong
indications of a first-order phase transition in the system.
Rapid but continuous changes in the a’s are a strong in-
dication of higher-order phase transitions. Table VII
gives the values of the four a’s for five limiting cases.

(2.8)

III. RESULTS AND CONCLUSIONS

Figure 1 shows the division of parameter space (U /t)-
(K /t) according to symmetry of the ground state. There
are three-regions, (i) a homogeneous region of symmetry
T (the charge-density-wave region); (ii) a homogeneous
region of symmetry 'X (the spin-density-wave region);
and (iii) a heterogeneous region of phase separation be-
tween the full, charged (eight electrons) and the fully
empty (no electrons) clusters. These regions are separat-
ed by two first-order lines corresponding exactly to
U =2K and to E =2U +8K. They intersect at a singular
point in the diagram

(U/t)=—(12)172
(K/t)=—(3)12,

14

3.1)
(E/t)=—(3%0)172

There is also a singular line U=0, K >0, where the
ground state is accidentally degenerate, with symmetries
T and !X coalescing there. The noninteracting case
(U =K=0) is also a very singular point where, as said be-
fore, six states and three symmetry levels T, 'T, and 'X
become degenerate.

It should be remarked that, as discussed in the previ-
ous section, both the spin-density-wave and the charge-
density-wave states admit both symmetries: 'T" and 'X.
The fact that the minimum energy is achieved by
different representations in each case is a strong indica-
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FIG. 1. The T=0 phase diagram as a function of U/t and
K /t. There is a line of discontinuities separating the 'T" and the
!X symmetries and a second line of discontinuities separating ei-
ther phase from the heterogeneous admixture of the charge-
separated phases. The line U=0, K > 0 has an accidentally de-
generate ground state. There are also two singular points in the
diagram: U=K=0 (the noninteracting case) and
U =2K = —1.1952¢, where the two lines of discontinuity meet.

tion that the phase transition should involve an “unrelat-
ed” symmetry change, i.e., be of the first-order type.
Ground-state energies are shown in Fig. 2. Figures
3-6 show the four a correlation functions defined in the
preceding section and in the Appendix. An analysis of
these figures yields the following conclusions: (i) all
correlation functions are discontinuous along the line of
charge separation, E =2U + 8K; (ii) the nearest-neighbor
correlation functions acyy and agyy are discontinuous
along the U =2K line; (iii) the second-nearest-neighbor

K/t 0|

u/st

FIG. 2. The ground-state energy, in units of 7, as a function
of U/t and K /t. The energy takes the value —4¢ for U =K=0
and the value —7.1714¢ for U =2K = —1.1952¢ (the two singu-
lar points).
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FIG. 3. The correlation function acyn for charge, nearest
neighbors, as a function of U/t and K /t. Note the discontinui-
ty of the function along the U =2K line, and the strong correla-
tion in the 'T" ground-state region.

correlation functions acgy and aggy are continuous along
the same line, but exhibit slope discontinuities (kinks)
there; (iv) acny is large in the charge-density-wave region
(indicating nearest-neighbor charge oscillations), and
small elsewhere; (v) agyy is large in the spin-density-wave
region (indicating nearest-neighbor spin oscillations), and
small elsewhere; (vi) acgy is small everywhere, except in
the region of large negative values of both U and K, close
to the line of charge separation; (vii) aggy is small
throughout; (viii) acyn, near the U =2K line and in the
charge-density-wave region, has a rapid decrease indica-

CSN

4} 4

FIG. 4. The correlation function acsy for charge, second-
nearest neighbors, as a function of U/t and K /t. Note that the
function is continuous along the U =2K line, but exhibits slope
discontinuities (kinks) there; there is strong anticorrelation al-
most everywhere in the diagram.
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K/t O

-2

ust

FIG. 5. The correlation function agyy for spin, nearest
neighbors, as a function of U/t and K /t. Note the discontinui-
ty of the function along the U =2K line and the strong correla-
tion in the 1X ground-state region.

tive of an incipient “higher-order” transition to the 'T’
spin-density-wave state; however, exactly at the U =2K
line there is a symmetry crossover and the 'X symmetry
becomes the spin-density-wave ground state; (ix) the
first-order charge- to spin-density-wave transition is ex-
actly at the U =2K line and not, as found in Monte Carlo
calculations,’ at values of U slightly smaller than 2K; the
discrepancy may be caused by the small cluster approach,
but it may also be due to the strong “second-order” pre-
cursor on the charge-density-wave side, which may (in
the numerical simulations) spuriously displace the transi-

SSN
4} J
o /
008 o0
K/t 0 2°g2

1

-2

i

u/st

FIG. 6. The correlation function agsy for spin, second-
nearest neighbors, as a function of (U /t) and (K /t). Note that
the function is continuous along the U =2K line, but exhibits
slope discontinuities (kinks) there; there is strong anticorrela-
tion everywhere in the diagram.
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tion away from U =2K, as well as yield a second-order
transition for U ~2K ~0; (x) in the vicinity of the line of
degeneracy, U=0, K >0, where the ground state is ac-
cidentally degenerate, there must be complicated finite-
temperature effects, and therefore equally complex nu-
merical simulation results, which may be the cause for
the discrepancies between previously published results.

In conclusion, the exact solution of a half-filled, four-
site cluster extended Hubbard model, with periodic-
boundary conditions indicates once again that simple
models are surprisingly rich in structure, that symmetry
crossovers are common, and that numerical simulations
and perturbation expansions should be handled with ex-
treme care and an unusually critical eye.

APPENDIX

The four operators used in the text to calculate
ground-state correlation functions are defined in what fol-
lows. The four atoms in the cluster are numbered i=0, 1,
2, and 3, where 0 and 2 and 1 and 3 are the two second-
nearest-neighbor pairs. The number operators are

+

Rig=CisCiq - (A1)

1o

1]

If the following five two-particle operators are defined,

P(O;a)=3(ngtng, +nyny +nyny +nynyy ), (A2)
P(Lp)=Hnginy+ngng +nny+nyny
+nytnsy+ngng Hnyiner +nphoy)
(A3)
P(La)=qlnorny +nonyp+nyny +ngny,
+hytny g ny tnsng 0y ngr)
(A4)
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P(2;p)=3(noinar +noinay +nygnyy+nyng),  (AS)
P(2;a)=t(ngrny +nypns +nyng +ngpngy ), (A6)
then the required correlation operators are

Ocnn=3[14+P(0;a)—P(1;p)—P(1;a)], (A7)
Ocsn=3[1+P(0;a)—P(2;p)—P(2;a)], (A8)
Osnn=1[1—P(0;a)—P(1;p)+P(1;a)], (A9)
Ossn=1[1—P(0;a)—P(2;p)+P(2;a)] . (A10)

Expectation values of these operators can be between 0
1

and 1. Values greater than 1 indicate positive correla-
tion, i.e., charge (C) or spin (S) oscillations. Values small-
er than 1 indicate tendency towards charge (C) or spin (S)
uniformity for that particular site separation (NN for
nearest neighbors, SN for second-nearest neighbors). Ex-
pectation values of these operators for limiting cases are

shown in Table VII.
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