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Persistent currents in small one-dimensional metal rings
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We have performed analytical calculations and computer simulations to study the persistent
current / in small isolated one-dimensional metal rings énclosing a magnetic flux ¢. We have calcu-
lated I as a function of flux @, ring circumference L, temperature T, chemical potential u, and ran-
domness W. We find that I decreases exponentially with T, that I decreases as W? for weak W and
as exp(—L /£) for strong W, where £ denotes the localization length, and that I is periodic in ¢ with
period ¢o=hc /e. For certain averaging procedures the periodicity may change to ¢,/2.

I. INTRODUCTION

With the advance in technology, the fabrication of sub-
micrometer devices has become possible. For such
“mesoscopic” systems, 2 at sufficiently low temperatures,
the semiclassical theory of electronic transport breaks
down. Two aspects of the new quantum regime that ap-
pears at low temperatures are of particular importance.
First, the phase coherence length of the electron L, (the
length scale over which the electron can be considered to
be in a pure state) increases significantly at low tempera-
tures. When L, becomes comparable to some relevant
length scale (e.g., the system size), interference effects be-
come important. An apt example is the Aharonov-Bohm
oscillations in the magnetoresistance of small conducting
rings. Second, the energy levels of closed systems are
discrete. For mesoscopic systems this discreteness will be
felt at low temperatures that are experimentally accessi-
ble. The discreteness plays a major role in the appear-
ance of persistent currents in small normal metal rings
discussed below.

The physics of small metallic rings in an excellent test-
ing ground for many ideas in the field of mesoscopic
physics. The resistance of such one-, two-, and four-
terminal structures, its dependence on the enclosed mag-
netic flux, fluctuations, and various averaging procedures
have been discussed extensively in the literature.!~!! On
the other hand, the problem of persistent currents, per-
tinent to isolated conducting loops or cylinders threaded
by a magnetic flux, is less well understood. Here the term
“persistent current” refers to the circulating current in
isolated rings, which is a periodic function of the en-
closed flux with period ¢, ¢o=hc /e being the elementary
flux quantum. That effect, directly related to the nature
of the eigenfunctions of isolated rings and their flux sensi-
tivity, has been the subject of recent theoretical stud-
ies.!»13 Earlier work in the 1960s, e.g., Refs. 14-18,
dealing with flux quantization in superconducting rings
contain results pertinent to normal metal rings. Bloch, '’
Schick, '® and Gunther and Imry!” mention that one can
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have circulating currents for free electrons in sufficiently
small rings or cylinders. The idea of persistent currents
that are flux periodic in real normal-metal rings is more
recent and based on the observation that the electron
wave function may even then coherently extend over the
whole circumference of the ring. It was first proposed for
one-dimensional systems by Biittiker, Imry, and Lan-
dauer!'? in 1983 and by Biittiker'® in 1985. These authors
discuss that elastic scattering as well as finite temperature
and weak inelastic scattering do not destroy the effect (cf.
also Refs. 10 and 11). Recent reviews by Imry' and
Washburn and Webb? place the persistent-current prob-
lem into a broader context and point out many open
questions, some of which are addressed below. Until now
such currents have not been observed experimentally.

In this paper we study persistent currents in strictly
one-dimensional normal-metal rings.!* We extend the
earlier studies to include the dependences on randomness
and chemical potential as well as temperature, flux, and
ring size, using both analytical and numerical techniques.
This is preliminary to the analysis of the experimentally
more relevant multichannel systems. The results of the
latter will be published in a separate paper.°

Specifically, in the present paper we derive and summa-
rize results for the persistent current in one-channel sys-
tems of ring geometry threaded by an external magnetic
flux . The self-inductance of the loops is assumed to be
small, so that corrections to the flux due to self-
inductance may be neglected. Our calculations are for
noninteracting systems of electrons. Results for the free-
electron model and the tight-binding model do not differ
in their basic character. In Sec. II, we review the calcula-
tion of the persistent current in perfect single-channel
rings with no impurities, and evaluate the temperature
effects in various rings. In Sec. III, we discuss the effects
of disorder on the persistent current in one-channel rings
at zero temperature. We discuss both the limits of weak
and strong disorder. The sensitivity of the currents to
disorder is in certain ways analogous to that to tempera-
ture. We find that the current amplitude is of the order
of the absolute value of the total transmission coefficient
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of the ring (thought to be bent open and connected by
leads to reservoirs). In Sec. IV, we discuss the flux depen-
dence of the persistent current upon averaging. This is
partly motivated by the results for the magnetoresistance
of one-dimensional rings, whose flux dependence changes
from ¢, to ¢,/2 periodicity upon averaging (ensemble
averaging, energy averaging due to a finite temperature,
etc.).”~° Our conclusion is that for persistent currents in
one dimension ‘“‘period halving” occurs if one averages
over separate isolated rings with the number of electrons
varying randomly from ring to ring. A summary of our
results and a discussion are presented in Sec. V. In the
Appendix, we derive formulas for the persistent current
at temperatures large compared to the relevant level
spacing.

Throughout our work we assume that the magnetic
flux ¢ threads the rings axially but that the electrons al-
ways move in a field-free space. The ¢, periodicty of the
electron wave function is then strictly of the Aharonov-
Bohm?! type. In the one-channel case (see Fig. 1) the spa-
tial degree of freedom of the electron is the azimuthal an-
gle 0, and the vector potential A may be chosen to have
the form A= 2‘17(94)/L2 where 7 is the radial distance, L
the circumference of the loop, and 8 the unit vector in
the 6 direction. We will use as the spatial variable
x =L 0/2w instead of 6, so that x varies between 0 and L.
For the ring geometry, periodic boundary conditions ap-
ply, which lead to the usual quantization of energy levels.
The current carried by each eigenstate can be calculated
using the current operator. The total current is the sum
over the individual contributions from each state, weight-
ed with the appropriate occupation number. Following
Byers and Yang'* and Bloch,'® we work in a gauge for
the vector potential in which the field does not appear ex-
plicitly in the Hamiltonian and the current operators, but
enters the calculation via the flux-modified boundary con-
ditions,

WL)=exp | 27 400,
do
(1.1
dy i2rg | dy
—= =exp ,
dx x=L ¢0 d.x =0
where
he
=— (1.2)
b .
¢
/L
FIG. 1. One-dimensional ring of circumference L threaded

by a magnetic flux ¢.
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These equations imply that the eigenstates and energies
and hence all equilibrium physical properties of the ring
are periodic in ¢ with period ¢,. This is true also in the
presence of disorder. A flux ¢s4¢,X (integer) is
mathematically equivalent to a change in the boundary
conditions of the system. This observation is the key to
all our discussions of the sensitivity of the persistent
current to changes in temperature, chemical potential,
degree of disorder, and other parameters.

There is a close connection between the states of an
electron in a loop and the one-dimensional Bloch prob-
lem, as seen by identifying 27¢/é, and KL.'>!*!® The
energy levels of the ring form microbands as a function of
¢ with period ¢, analogous to the Bloch electron bands in
the extended k-zone picture (Fig. 2). The current carried
by level E, at T =0 is

[ =2 1 9E, (1.3)
" L " #dk, :
or, using the above analogy,
I OF, 1.4)
n=—C a¢ ( .

At finite temperatures, instead of summing the currents

I, over all levels with weight f(E,), one can calculate

the current from the thermodynamic potential of the sys-
14,18

tem,

OF
‘3

Figure 2 shows schematically the energies of the eigen-
states as a function of flux. In the absence of disorder in
the ring, the curves form intersecting parabolas. In the
presence of disorder, gaps open at the points of intersec-
tion, in the same way as band gaps form in the band-
structure problem. Since the band is symmetric in k for
the one-dimensional lattice problem, the eigenenergies of
the closed ring are symmetric in the flux. From Eq. (1.4),
the current carried by an eigenstate is proportional to the

I1(¢)=— (1.5)
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FIG. 2. Schematic diagram of the electron energy levels as a
function of the flux ¢/¢, in a one-dimensional ring with and
without impurities (solid and dashed curves, respectively).
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slope of the energy versus flux curve. Therefore, the
current is antisymmetric in the flux. At an integer or
half-integer flux quantum, the energy is maximum or
minimum; hence, at these values of ¢ the current is zero.

II. EFFECTS OF TEMPERATURE

In this section, the I-¢ characteristics of ideal rings
without impurities are determined for zero and nonzero
temperature within the free-electron and tight-binding
models. It is assumed that at the temperatures con-
sidered the phase coherence length of the electron is large
compared to the ring circumference, L, >>L.

A. T=0

For later reference, we review within the free-electron
and tight-binding models the I-¢ characteristics at zero
temperature for ideal one-dimensional rings of circumfer-
ence L threaded by the magnetic flux ¢, Fig. 1. The re-
sults for the two models are similar: The persistent
current as function of ¢ is periodic with period ¢y=hc /e
and exhibits discontinuous steps at ¢ values for which
single electron levels cross the Fermi surface, cf. Eq. (2.4)
and Fig. 3 below. Throughout the calculation we assume
that the electrons move in a magnetic-field-free space.
The electron spin is ignored.

The free-electron model of the ring is defined by

H=————+Vx),

2 2 2.1)

with the boundary conditions (1.1). In the absence of im-
purities, ¥ =0, the energy E, and current I, = —ev, /L
of the nth eigenstate are

2
_# |27 ¢
"=om |z ", ] ’
(2.2)
2meti ¢
,=—"2 n+2 |,
mL? bo

with n =0,%1,%2, ... . The level spacing at the Fermi
surface for zero flux will be denoted by A. For free elec-
trons,

ZTTﬁUF

A= . (2.3)

and there are two eigenstates per energy interval A.

Here instead of specifying the number of electrons N,,
we shall specify the chemical potential ¢ or Fermi
momentum kp at T =0. For certain choices of p or kg
(both are ¢ independent) the system will have a fixed
number of electrons (i.e., kp=N,7 /L for free electrons),
while for all others the number of electron will vary with
the magnetic flux ¢. The reason is that, at T =0, a state
is not occupied if its energy is larger than u and, as seen
from Fig. 1, the energy of a particular state may cross the
Fermi energy as a function of ¢.

The total current at T =0 is obtained by adding all
contributions from levels with energies less than u. For u
characterizing isolated rings with a fixed number of elec-
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trons [i.e., p=#N,m)?/2mL?], the total persistent
current is

1,22 for N. odd, —0.5< % <0.5

1(9) ; % 2.4)
-1, z‘P-—l for N, even, O.Og—(P— <1.0,
b0 éo

where I =evy /L. For general yu, for which N, may vary
between even and odd as a function of ¢, the current as-
sumes one of the above values corresponding to the num-
ber of electrons at the particular value of the flux. The
results for the various cases are shown in Fig. 3. The
current-flux characteristics exhibit sawtooth shapes.

The total persistent current is periodic in ¢ /¢, with
period 1. It can be expressed as a Fourier sum in ¢ /¢,.
Neglecting the small difference between the Fermi veloci-
ties of systems with N, and N, + 1, electrons, one obtains
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FIG. 3. Persistent current over one period of the magnetic
flux from Eq. (2.5). The chemical potential is fixed such that the
number of electrons in the ring is (a) even, (b) odd, and (c)
changes between even and odd as function of the flux. I, and ¢,
are defined in the text.
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2l
o

The dependence on the chemical potential becomes sim-
ple when the current is expressed in this way.

The tight-binding model for a ring with L =Na is
defined by

= 2, .
I(¢)= 3, —l-;cos(IkFL)sm 2.5)

=1

N N
H=-Vy (aJTaj,1+a]Taj+l)+ > eja;aj ,  (2.6)
j=1 i=1

and the boundary conditions (1.1). Here a ;" and a; denote
the creation and annihilation operators at site j, V the
hopping matrix element, €; the on-site energy, and a the
lattice constant. For the perfect case, € ; =0, the energy

6053
E, and current I, of the nth eigenstate are
2T ¢
E,=—-2Vcos|— |n+— ,
N b0 1
(2.7)
__2ev  Jor [ 4
I,= Nz SRy n+¢0 J )
with n =0,%1,%+2, ... . The level spacing at zero flux at
the Fermi surface is
4V .
A= sin(kga) , (2.8)

which has the same form as Eq. (2.3). The total current
at T =0 for u=—2V cos(N,m /N), for which the ring has
a fixed number of electrons N,, is

(2.9)

sin(2w¢ /N ¢g) ¢
~lo—m for N, odd, —0.5< b0 <0.5
I1($)= .
sin[(m/N)(2¢/py—1)] ¢
—1I, sin(r/N) for N, even, 0.0< ) <1.0.

For large N, the above expressions approach rapidly the
free-electron formulas (2.4); the differences are already
insignificant for N >5. For general u, for which N,
varies between even and odd as a function of ¢, the
current assumes one of the above values accordingly.
The total persistent current expressed as a Fourier sum
equals the free-electron result (2.5), when N and N, are
not too small.

B. T>0

With increasing temperature, the probability that elec-
trons occupy higher levels, which may carry larger
currents, increases. However, at higher temperatures,
the occupation probabilities of levels close in energy
(which encompass levels having currents of opposite sign)
are not very different. The net result is significant cancel-
lations of positive and negative contributions to the
current. For metals a characteristic temperature T* is
set by the level spacing A, Eq. (2.3) or (2.8). We find that
the Fourier coefficients of the persistent current [compare
Eq. (2.5)] decrease exponentially with temperature,
exp(—IT/T*) at T >T*, however, are not sensitive to
temperature at T <T* (for low harmonics I). For
T >>T*, the first harmonic (/ =1) gives a good approxi-
mation to the current. The results are summarized in
Figs. 4 and 5. Similar behavior holds for systems with a
low density of carriers. Note that the persistent current
pertains to time averages of the current.!> A decrease of
the current amplitude with temperature was also ob-
served by Biittiker. 3

Finite temperature affects the system in another impor-
tant way. At nonzero temperature, thermal excitations,
such as phonons, will be present. Such excitations in-
teract with the electrons inelastically, giving rise to phase
randomization of the electron wave function (besides
some level shifting). Hence such interactions wash out

0

[

quantum effects. We will assume that some electron-
phonon coupling exists by which thermal equilibrium is
established, but that this coupling is sufficiently weak so
that it does not lead to substantial level shifting and
broadening (on the scale of A). Hence, we assume impli-
citly that we work at sufficiently low temperatures and
small system sizes such that I,, the phase coherence
length of the electron, is large compared to L, the cir-
cumference of the ring.?

To calculate the persistent current we need to know
the eigenstates of the system and the thermal distribution
function. Typical to mesoscopic systems is the fact that
the energy levels form a discrete spectrum. Since the sys-
tems are not in the thermodynamic limit, the canonical
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FIG. 4. Persistent current vs flux at temperatures 7/T* =0,
0.5, 1, 2, and 3 for a ring with an odd number of electrons.
kzT*=A/27* is a measure of the level spacing at the Fermi
surface.
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FIG. 5. Persistent current vs temperature for a ring with an
odd number of electrons at ¢/¢,= —0.25. The dashed curve
represents the high-temperature expansion, Eq. (2.11) with / =1.
The crossover temperature is given by T*.

and grand-canonical ensembles give rise to different
single-level probability distributions. For a ring that can
exchange only energy with a reservoir, a description in
terms of a canonical ensemble with fixed number of parti-
cles N, is appropriate. However, it is more convenient to
consider a system that also weakly couples to a particle
reservoir, since the distribution function is the well-
known Fermi-Dirac distribution. We expect that the two
approaches give similar results for the persistent current.
Adapting the latter approach, we characterize the system
by a Fermi-Dirac distribution with the chemical potential
4, and compute the persistent current at finite tempera-
tures starting from

Up

e o
I$)=—— 3 —F5—>
L,=_ FBE m_H

where B=1/kyT. Details of the calculation are present-
ed in the Appendix. In the following we summarize the
principal results for temperatures large compared to the
relevant level spacing.

(i) Metals. In the limit u>>kpT, Eq. (A13) yields for
the persistent current

(2.10)

= 4I,T
=
*
exp(—IT/T") o oqtkyL, Jsin | 272 |
1—exp(—2IT/T*) b0

2.11)

with Iy =evp /L and

A fivp
kpT*=—=——-. 12
B 2 = L (2.12)

T* is the characteristic temperature that separates high-
and low-temperature regimes. The above result derived

CHEUNG, GEFEN, RIEDEL, AND SHIH 37

for the free-electron model holds also for metals with a
general band structure provided that near the Fermi sur-
face E —Ep=#iwg(k —kg). That includes the tight-
binding model. For T > T*, the first harmonic (! =1) in
Eq. (2.11) gives a good approximation to the current.
The numerical results in Fig. 4 exhibit the feature of the
current approaching sinusoidal behavior with increasing
temperature. Figure 5 shows that the first harmonic at
¢ /do=—0.25 fits well the corresponding numerical re-
sults for T > T*.

(i) Semiconductors. ~When pu is very small
(|p| <<kpT) and T>>T/m, Eq. (A12) yields for the
persistent current

» 4ekgT ml*T 72
1(¢)= —cos | |/
¢ 1§1 # T
er |7 (2
xXexp | — LA n 2md , (2.13)
T b0
with the characteristic temperature
k,,T—:'—A—Z-:ﬁz/mL2 s (2.14)
2

where A denotes the level spacing at the bottom of the
band at zero flux. For TR T /m, the first harmonic
(I=1) in Eq. (2.13) gives a good approximation to the
current. This case may apply to semiconductors with
small p.

(iii) Insulators. When p is large and negative, and
T >>T, Eq. (A7) yields for the persistent current
172

d elkpT | 2T ?
1= ——2= |2 | exp |-
¢ 1§1 #i nT P kgT 2T
X sin 2—2’91 (2.15)
0

A more precise condition under which (2.15) is valid is
given in (A8).

C. Conclusion

Nonzero temperature has the two main effects that all
discontinuities in the I-¢ characteristic become rounded
and that the maximum amplitude of the current de-
creases. The effects are exhibited in Figs. 4 and 5. The
characteristic temperature T* (or T) is set, for metals, by
the level spacing at the Fermi surface, A=2#n#iv. /L, and
for systems with a low density of carriers, by the level
spacing at the bottom of the band, A=#%2m7)*/2mL>.
At T > T* (or T) the persistent current is proportional to
sin(27¢ /¢y) with an amplitude that decreases exponen-
tially with temperature. For T <T* (or T) higher har-
monics contribute and the maximum amplitude of the to-
tal current depends only weakly on temperature.

ITII. EFFECTS OF ELASTIC SCATTERING

In this section, the I-¢ characteristics of rings with im-
purities are expressed in terms of the total transmission
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coefficient of the rings and discussed both in the weak-
and strong-scattering regimes. The calculations are for
independent electrons at zero temperature.

A. Transfer-matrix method

We derive the persistent current in disordered one-
dimensional rings within the tight-binding model using
the transfer-matrix method. The model is defined in Eq.
(2.6). The I-¢ characteristics of the ordered tight-binding
model were discussed in Sec. II and found to be analo-
|

6055

gous to those of the free-electron model. Now we include
the random potential energy term; in numerical calcula-
tions we choose random on-site potentials ¢; with in-
dependent square distributions of strength — W /2 to
+ W /2. The hopping matrix element V is set constant so
that the disorder parameter’is W /V. The transfer-matrix
method is well known,?*~2° our results for the persistent
current are new.

The transfer matrix T ; connects the wave function
across site x = ja, where a is the lattice constant. It is ob-
tained by requiring that the general wave function,

Aeik{x—(j—l/2)a]+Be—ik[x—(j~1/2)a] when x =(j—1)a,ja ,

U (x)= Ceklx~ti+1/2al | Do —iklx—(i+1/2a] when x —ja(j +1)a ,

satisfy the continuity condition and the tight-binding
Schrodinger equation, H{(x)=E{(x), at site j. Note
that the wave function is defined at discrete x =ja,
j=12,...,N. We parametrize the solution in term of
the energy E which is related to the wave vector k via%6

E (k)= —2V cos(ka) . (3.2)
The result is

C
D

A
B

I,

A
B

exp(ika)/t} ri/t;

ri/tf exp(—ika)/t;

with the transmission and reflection coefficients
— 2iV sin(ka)
/7 2iVsin(ka)—¢; ’

1 5

2iV sin(ka)—¢g;

(3.4)

The wave functions at sites j +2,j +3, ... are then ob-
tained by multiplying the wave functions at the preceding
sites with T j A JETTRRE respectively. After having
gone through the whole ring one will arrive back at the
original site. For the wave function to be an eigenstate of
the ring problem it must satisfy the boundary condition

(1.1). Writing the total transfer matrix in the form

1/t* r/t N
T r*/t* 1/t =j1=1011 ) 3.5)
the boundary condition can be written
A i2mg A
I|p|=exp b Bl (3.6)

which, using the relation |7 |2+ |t | 2=1, can be simpli-
fied to®

cos 2md =Re (3.7)
b0

1_

(3.1

[

Equation (3.7) determines the allowed values of the quan-
tum number k and, therefore, the eigenenergies (3.2). It
can be expressed in terms of either k or E. For the
current carried by the nth eigenstate, we obtain

sin | 279
1,() OF, e %o (3.8)
=—c =— .
" 3 A 0 !
aERe(l/t)

where the denominator is calculated at the solutions
E=E, of (3.7. For the ordered ring, ¢;=1, i.e.,
1/t =exp(—ikL), we recover for the spectrum E, and
current I, the results of Eq. (2.7).

This very simple expression (3.8) for the persistent
current is the starting point of our numerical work and
analytical analysis. The advantage of this approach is
that it allows us to treat large systems without serious
computing-time problems. For large L one simply needs
to multiply a larger number of matrices T ; to obtain the
total transmission coefficient z. It is also possible to study
the large-W limit, in which the then very small persistent
current is calculated from the very large slope of Re(1 /7).
Numerical differentiation allows us to obtain this large
slope accurately.

Much information can be deduced from Egs. (3.7) and
(3.8). One important result is that the amplitude of the
persistent current is roughly proportional to the modulus
of the total transmission coefficient. The current at
¢ /¢,=0.25 is a good measure of the current amplitude,
cf. Egs. (2.4) and (2.5). [Without impurities, this is the
flux at which the energy spectrum is maximally asym-
metric, see Eq. (2.2) or (2.7).] We concentrate on the
current at this flux in the following discussion.

The matching condition (3.7) involves Re(1/¢), which
we express as Re(1/t)= |1/t |cosa. [Figure 6 shows
Re(1/t) versus E for four values of W.] The two factors
vary with energy E on very different scales. |1/¢ ]| is a
slowly varying envelope, whereas cosa is a rapidly oscil-
lating factor. For the ordered ring, cosa =cos(kL) is well
approximated by cos(2mE /A), where A is the energy
range containing two states. For the disordered ring, it is
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FIG. 6. The function f(E)=Re(1/t) in the matching equa-
tion (3.7), for a ring with L /a =10, as a function of the energy
for different degrees of disorder, W /V =0, 2, 4, and 16.

appropriate to presume that on average cosa has the
same form, with an energy range A that contains on aver-
age two levels. Studies of the spectrum of random Ham-
iltonians show that the level spacing possesses a large de-
gree of regularity.?"?® Except in the limit of extremely
strong disorder and away from the band edges, the aver-
age level spacing is approximately equal to the unper-
turbed value. Therefore, for the tight-binding model the
level spacing is A=(4wV /N)sin(kgra) of Eq. (2.8), when
W <<27wV. When W >>27wV, then A=2W/N. This
latter estimate is obtained as follows. For large W the
electrons are tightly bound with energies close to their
on-site energies €;. By assumption the ¢; have a square
distribution, therefore on average there are two levels
within the energy range 2W /N. When W > 27V, § is less
than five lattice constants. Such extremely strong locali-
zation does not seem relevant for persistent-current ex-
periments.

The current amplitude can then be estimated from Eq.
(3.8). Consider a level E, close to the Fermi energy. We
assume that cos(27E /A) is the major varying factor in
f(E)=Re(1/t). When W «<2nV, A=~(4wV /N)sin(kga)
=2ntvp/N,, and one obtains f'(E)=(L /fivg)| 1/t |
sin(27E /A). Replacing sin(2wE/A) by 1, which is
justified at ¢/¢,=0.25 where the energy levels are given
by cos(27E /A)=0, one finds

I,=Iy|t], (3.9)

where Iy=evp/Na. When W >>27V, A is 2W /N. One
then obtains in the half-filled-band case
I

w Igjt| . (3.10)

Y%

The total current at zero temperature is obtained by
summing the currents of all states with energies smaller
than the Fermi energy. For ordered rings, the total
currents at ¢/¢d,=0.25 is approximately equal to one-
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half the current of the last occupied level below the Fer-
mi energy. We expect the same to be true for the average
current in the presence of disorder. Using Eq. (3.9), we
obtain for the total current amplitude the estimate

I=lIy|t]|, (3.11)
where |¢ | is measured at the Fermi surface. We have
checked this result for the special cases of rings with sin-
gle impurities characterized by &-function and square-
barrier potentials as well as rings with random sets of im-
purities. The above expression gives good agreement
with numerical results for the current amplitude at
¢/$,=0.25.

Further information can be inferred for the case of
strong disorder. As a function of ¢ /¢, the left-hand side
of the matching equation (3.7) varies between —1 and
+ 1. For strong disorder, |t | is very small, therefore
f(E)=]|1/t |cosa has a very large slope at E=E,.
Hence, the energy range within which f(E) changes
from —1to + 1is very small. Within that energy range,
f(E) and f'(E) can be represented accurately by a Tay-
lor series including the f’’ term. Substituting this expan-
sion into Egs. (3.7) and (3.8), one obtains the first and
second harmonics of the current,

27
b0

_ L
213

47d
b

1 . .
I,(¢)= —sin sin + -
? f

£
#i

(3.12)

For W << 2V, one estimates for levels close to the Fermi
energy that f'=(L/#vg)|1/t| and f" <<(L /#vp)?
|1/t |, using the earlier approximations. That means
the coefficients of the first two harmonics are

1
7_7%]0 | t | ,
E:II
2f'3

When the transmission amplitude |z | is small, the
current is sinusoidal in the flux and has an amplitude pro-
portional to |t |. The amplitudes of higher harmonics
are smaller by at least a factor of |t |. We do not show
the signs of the coefficients in Eq. (3.13). We know that
for any disorder the sign of the first term alternates from
level to level since the slope of f (E) alternates. However,
the above argument is too crude for statements about the
sign of the second term. Numerically there is evidence
that the second harmonic of the average total current
does not change sign.

Another numerical approach to the disordered tight-
binding model is to write the Hamiltonian (2.6) in the
form of a matrix, to diagonalize the matrix numerically,
and to determine the current of the nth level,
I, = —cdE, /0¢, by numerical differentiation (or to use
the current operator on the wave function). We have also
worked with this approach. However, we cannot study
large disorder with this approach because the very small
currents cannot be obtained numerically with sufficient

o

(3.13)
<<£0—|t |2.
2

EEN
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accuracy from —cdE, /0¢ or from applying the current
operator.

If the disorder is very weak, perturbation theory is ade-
quate. We will state only two results from perturbation
theory that hold for arbitrary impurity potentials in the
weak-coupling limit. First, since the correction to the
wave function is first order in the impurity potential, the
leading correction to the current is second order in the
impurity potential. The cross terms do not contribute
since they are orthogonal. Second, the corrections to the
total current approach zero for large Fermi velocities.
The physical reason is that impurities do not appreciably
slow down fast-moving particles. For states representing
those particles, | ¢ | =1. Hence the total current (3.11) is
approximately equal to the unperturbed one.

B. Single scatterer

The effects of impurity scattering are easily observed
for a ring with a single impurity. For simplicity, we con-
sider the free-electron model with an impurity character-
ized by a 8-function potential, ¥V (x)=¢gb(x), in Eq. (2.1).
The case of a square-well potential barrier leads to similar
conclusions.

The persistent current I, (¢) is obtained by replacing in
Egs. (3.7) and (3.8) 1/t by exp( —ikL)/t with

)
ifi‘k/m —¢
and
27,2
E(h)="k" (3.15)
2m

The weak- and strong-coupling regimes are defined by
£ <<€* and € >>¢*, respectively, where £* is determined
from | Vi | =(A/27%) with | V. | =e/L, which yields
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FIG. 7. Effect on the persistent current vs flux of a single 5-
function impurity of strength €/e*=0, 0.5, 1, 2, 4, and 8 in a
ring with an odd number of electrons. The scale factor is
e*=LT*. The curves resemble those of Fig. 4.

[The factor 27 is included so that e* /L =k T*, cf. Eq.
(2.12).] Since N, ~L, €* like vy is “intensive.” Figure 7
exhibits the results for the I-¢ characteristics at 7 =0 for
a system with N, odd; the results can be generalized to
nonzero temperatures by weighting the states with a Fer-
mi distribution function as in Eq. (2.10). Comparing
Figs. 5 and 7 is instructive. It shows that the effects of
temperature and elastic scattering on the I-¢ characteris-
tics are very similar. In the latter case, the curves ap-
proach sinusoidal behavior at € /e* >> 1.

In the weak- and strong-coupling limits, analytical re-
sults for the persistent current are obtained by solving
Eq. (3.8) in those limits. The persistent current is well ap-

2
E‘:ﬁv, =”Ne (3.16) proximated, for e/¢* <m when ¢/¢,<0.25 and for
T mL ) e/e* <mH(1—2¢/¢,) when ¢/¢y>0.25 (and N, odd), by
|
0
He)=—122 |1 L | £ : (3.17)
b0 T | € sin? 27 2md sin 2w
o o b0
and for e /e* > T,
* *
1) =1, [(= 1) Egin | 278 | 4 | &5 | gin |278 |4 oo | (3.18)
2 € b0 € b0

In both formulas corrections of order 1/N, and higher to
the terms shown have been dropped. In Eq. (3.17), the
first nonvanishing correction is order €? as expected from
perturbation theory. In Eq. (3.18), the amplitudes of the
odd harmonics include factors (—1) *, i.e., differ in sign
for N, even and odd. In magnitude the first harmonic
dominates. Its amplitude agrees with Eq. (3.11) with ¢

given by Eq. (3.14). In the form given, Eq. (3.18) holds
also for € large and negative.

C. Random set of impurities

All electron eigenstates are exponentially localized in
one-dimensional disordered systems. We will speak of
weakly or strongly disordered rings depending on wheth-
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er the localization length £ is larger or smaller than the
circumference L on the ring. In the strongly disordered
regime the amplitude of the persistent current is found to
decrease exponentially with L /&.

In localization theory®* one defines the localization
length £ in terms of the resistance R (R in units of 4 /e?)
of long one-dimensional wires,

{nR) _2 (3.19)
L §

( ) denotes an average over the impurity distribution.

On the other hand, the Landauer formula gives®!

_ Al 1—e?
le]? [e]?
For strong disorder, i.e., |r | =1, one obtains from Egs.
(3.19) and (3.20)

(3.20)

(nj1/t)=% . (3.21)
¢

Using R =exp(2L /§)—1 in conjunction with Eq. (3.20)
and appropriate averages, *? one concluded that Eq. (3.21)
holds over the full range of disorder.

For the tight-binding model in the half-filled-band
case, the localization length has been calculated for long
wires in two limits, 3>24

2
§=10 80 when W <21V, (3.22)
and34,24
a
S S—— 20V . 3.2
& (W /20y When W >>2m (3.23)

These results hold for energies close to the Fermi energy
(u=0).

For the ring geometry we define the crossover from
weak to strong disorder by L =~£. The energy parameter

: T T T T [ T T T T l T T T T ] LI T T ] T:
0.5~ -
- O\ .
C N _ ]
ok o $/$0=025
o N\ ]
< C \o ]
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Eozf N\ 3
3 L No ]
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O.l o ]
- ~ ~o_ ]
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(0] O.l 0.2 0.3 0.4

disorder Ug
FIG. 8. Effect of disorder on the average current,

I/Iy=exp{In(I/1,)), for a ring of N =20 at ¢/¢,=0.25 in the
half-filled-band case. The dashed curve is the prediction from
(3.25) and (3.22). The curves resemble those of Fig. 5.
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that determines the sensitivity of the persistent current to
disorder is the level spacing A, Eq. (2.8). In units of A the
degree of disorder (apart from a numerical factor) is mea-
sured by

w1
- 3.24
VI2L A ( )

where the first factor is the average of the modulus of the
random potential energy in Eq. (2.6). Using A=4maV /L
and Eq. (3.22), one finds that for sufficiently large L the
condition L ~§ implies the crossover value Ug =0.235.
In Fig. 8 we show the average persistent current I /I
versus Uy at ¢/¢,=0.25 for a small ring of L =20 with
ten electrons. The data is obtained from numerical diag-
onalization of the Hamiltonian (2.6). [Each point
represents the exponential of the ensemble average of
In(1 /I,) over 100 impurity configurations.] The decay of
the amplitude as a function of disorder is very similar to
the one as a function of temperature in Fig. 5. The
current amplitude, at ¢/¢,=0.25, can also be estimated

UR=

by wusing Egs. (3.11) and (3.21), which yields for
W <«<2nV
I =1I,exp ——z (3.25)

The dashed curve in Fig. 8 represents the estimate (3.25)
with 1/£ given by Eq. (3.22). The deviations for
Ur %0.25 are due to the fact that there W becomes
larger than 27V, so that Egs. (3.11) and (3.22) no longer
apply. For larger L the deviations will occur at larger
values of Up.

We now consider the half-filled-band case, for which
the Fermi energy u=0. The localization length is given
by Eq. (3.22) or (3.23) depending on whether W is smaller
or larger than 27V. Approximating the total current by
one-half of the current of the highest occupied level, we
conjecture from Egs. (3.12) and (3.13) that for strongly
disordered rings (W << 2mV) to leading order,

I, LW? 27
I(¢)=—exp |— sin
pI= g exp 105.0a¥? o
1
zTOexp(—IS.OSUI% )sin ZTTQJ . (3.26)
0

For very strong disorder (W >>27V), where A=~2W /N,
one obtains as generalization of Eq. (3.10),

I W —L/a

0

()~ ———
(¢) 2 27V

w

v 2m¢
2eV

o

sin (3.27)

However, note that this latter formula is presumably not
relevant to persistent-current experiments. The
coefficients of the second harmonics are smaller by ap-
proximately a factor of exp(—LW?/105.0aV?) and
(W /2eV)~L7%, respectively.

In Fig. 9 we compare numerical results for
—(a/L)In(1 /1y _¢)) at ¢ /¢y=0.25 with the asymptotic
forms for the inverse localization length from Egs. (3.22)
and (3.23) as functions of the degree of disorder. Accord-
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FIG. 9. The inverse localization length in units of the lattice
constant a as calculated from (3.25) vs disorder. The dashed
curves are the limiting behaviors for small and large W as ob-
tained from Egs. (3.22) and (3.23), respectively.

ing to Eq. (3.25), the expression —(a/L)In(I /Iy _g)
should be equal to the inverse localization length when
W «<2mV, and also for large L when W >>27V. We find
that the data agree very well with the prediction for
W <27nV. For W >2rV, the agreement is not as good
because the current is not precisely of the form
Iy _gexp( —L /&) [compare the different prefactor in
the expression for the current (3.10)]. However, for large
L that difference becomes less important and
—(a/L)n(I /1y _o)) approaches the asymptotic form of
the inverse localization length corresponding to Egq.
(3.23).

D. Conclusion

The effects of disorder on the I-¢ characteristics were
discussed for rings with single impurities and random sets
of impurities. Like temperature, impurity scattering
“mixes” electron states with positive and negative veloci-
ties. The effects of impurities are to round off discon-
tinuities in the I,-¢ characteristics (gaps appear in the
microbands at the band edges, see Fig. 2) and to reduce
the amplitude of the current. This is similar to the effects
of temperature described in Sec. II. We used the
transfer-matrix formalism to study analytically the weak-
and strong-coupling regimes by making contact with lo-
calization theory, and investigated numerically the whole
range of disorder.

IV. EFFECTS OF AVERAGING

The resistance of mesoscopic normal-metal ring with
two leads connecting it to an external source has been ex-
tensively studied as a function of the enclosed magnetic
flux.2 It is now understood that the ¢, periodicity of
the resistance is halved and becomes ¢,/2 upon the ap-
propriate averaging (ensemble averaging, effective energy
averaging occurring at finite temperatures, etc.).’”’
Here we shall be interested in studying the flux depen-
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dence of the persistent current, and in particular we shall
examine whether similar “period halving” of the current
may take place as a result of various averaging pro-
cedures.

First we consider the free-electron problem at T =0.
From Eq. (2.5) we see that the /th Fourier coefficient is
proportional to cos(l/kL). This means that if we average
the persistent current over some range of the chemical
potential, each Fourier coefficient averages to zero. Thus
this type of averaging would not lead to period halving.
However, if we consider a ring with fixed number of elec-
trons, then the Fourier coefficients in Eq. (2.5) as a func-
tion of N, alternate in sign for odd /, but do not change
sign for even /. This implies that if we average over an
ensemble of isolated rings, where the number of electrons
in each ring is fixed but varies randomly from one ring to
the other, only term with even / survive. This result in a
¢/2 periodicity of the persistent current. Note that the
above argument does not involve elastic scattering along
the ring (which is a common, though not necessary,
scenario in the study of period halving in the resistance of
two-terminal rings). We emphasize that various averag-
ing procedures used in the magnetoresistance case do not
result in period halving in our procedure.

For finite temperatures, the Fourier decomposition of
the persistent current of a metal ring is given by Eq.
(2.11), in which kp =V 2mu /#%. Within the framework of
the grand-canonical ensemble the average number of par-
ticles N (which is a fluctuating quantity) is given in terms
of u (which is a constant parameter). If we average over
an ensemble of rings, each with a randomly selected pu
subject to the constraint that N is an integer, we again
obtain period halving. With increasing temperature, the
large-/ terms in Eq. (2.11) vanish exponentially faster
than the small-/ terms. Consequently, period halving as a
consequence of finite temperature does not take place.

Next we consider the effect of similar averaging pro-
cedures in the presence of impurities. In the weak-
scattering limit there are small correction terms to the
current in the free-electron limit. The odd-/ terms still al-
ternate in sign with N,, hence the results of the above dis-
cussion remain qualitatively unchanged. In the strong-
scattering limit the / =2 term is always smaller than [ =1
term [cf. Egs. (3.18) and (3.26), and Eq. (3.27) for a single
impurity and many impurities, respectively]. Our results
for 8-function [Eq. (3.18)] and square potentials suggest
that in the strong-scattering limit the / =1 term does
vanish upon averaging over particle number (ensemble of
isolated rings with a random number of electrons). The
second harmonic (in the strong-scattering limit) does not
contain a coefficient which alternates with N,, and will
not vanish upon particle averaging. We propose that for
general disorder, averaging over the particle number will
lead to a period halving, even in the strong-scattering
limit. Evidently in that limit the current amplitude is
very small. We shall also have to average over a larger
ensemble of rings (compared to the weak-scattering limit)
in order to see the hc/2e periodicity. When averaging
over the chemical potential rather than N,, all Fourier
components will vanish, and no period halving will be ob-
served. This is similar to what happens in the pure case
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at T =0. Different choices of u define periodic functions
I(¢) which differ from each other in phase (as well as in
shape). Averaging over those functions gives a vanishing
expectation value of I.

V. SUMMARY

We have derived expressions for the persistent current
in small one-dimensional normal-metal rings of cir-
cumference L threaded by an external magnetic flux ¢ as
functions of the ring size L, flux ¢ temperature T, and de-
gree of disorder W. In a separate paper?® we will discuss
the generalization of these results and the new features of
persistent currents in multichannel rings. Experimental
studies of such persistent currents would allow one to
probe the nature of the discrete band structure of submi-
crometer metal and semiconductor devices.

The principal properties of persistent currents in one-
dimensional loops are as follows.

(i) For a time-independent flux ¢ applied to the ring,
there are circulating currents that are periodic in ¢ with
period ¢,=hc /e and have a magnitude that is given by
the sum over the velocities in all occupied levels. At zero
temperature, the current I is dominated by the last filled
level and different I-¢ characteristics result depending on
the filling of these levels. These results are summarized
in Egs. (2.4) and (2.5), and Fig. 3. The maximum ampli-
tude I,=evp /L decreases inversely proportional to the
ring circumference L. The history of these results is dis-
cussed in the Introduction.

(ii) At finite temperatures the quantum levels are occu-
pied according to some probability distribution function,
e.g., Eq. (2.10). The T =0 steps in the I-¢ characteristics
become rounded and the amplitudes of the currents re-
duced, as exhibited in Figs. 4 and 5. For metal rings Eq.
(2.5) is replaced by Eq. (2.11), which shows an amplitude
reduction of the /th harmonics, sin(27l¢ /¢,), by factors
exp(—IT /T*) that come to bear for T > T*. The value
of the characteristic temperature is determined by the
level spacing at the Fermi surface,?? Eq. (2.12), and it de-
creases inversely proportional to the ring circumference.
Similar expressions apply to semiconductor rings, Egs.
(2.13) and (2.14). The decrease with temperature of the
current amplitude was seen by Biittiker. !*

(iii) Disorder that leads to elastic scattering in the ring
was treated within the transfer-matrix formalism. We
obtained simple formulas for the persistent current in
terms of the transmission coefficient of the system, Eq.
(3.11). These equations were analyzed numerically and,
in the limits of weak and strong disorder, also analytical-
ly. All forms of disorder were found to round the T =0
steps in the I-¢ characteristic and to reduce the ampli-
tude of the persistent current, Figs. 7 and 8. Weak disor-
der leads to corrections of order W? only. For strong dis-
order, the I-¢ characteristic is well described by the first
harmonic in the flux, sin(27¢/d,), with an amplitude
that decays as exp(—L /§), where £ is the localization
length.

(iv) Several averaging procedures that lead to period
halving in the problem of conductance of a two-terminal
ring, do not do so here. Averaging procedures that do
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lead to such a change in periodicity are those in which
ensembles of rings containing different numbers of parti-
cles are considered. They are not related to the “back-
scattering mechanism” in the conductance problem. The
two problems, that of the conductance and that of the
persistent current, differ from each other qualitatively.
This can be seen, for example, by considering the limit of
strong elastic scattering. In this limit the conductance is
proportional to |t | % (¢ being the total transmission am-
plitude) whereas I < |t |; cf. Eq. (3.11).

Before concluding, a few remarks are in order.

(a) As already pointed out by Biittiker et al.'? and
Biittiker,!* the currents considered here are genuinely
persistent and do not decay to zero with time, even in the
presence of some weak phase-smearing effects. A finite
phase-breaking time, 7,4, results in a diminished ampli-
tude of the dc current I. One could then argue naively
that after times larger than 7, the electron no longer
remains in its original phase and I decays to zero. How-
ever, if the particle does not lose its coherence before
completing several turns around the ring (this means
UpT4>>L in the weak-scattering limit), the inelastic
broadening of the discrete levels will be smaller than the
level spacing and the persistent current does not vanish.
In other words, finite magnetic flux introduces an asym-
metry between electrons with clockwise and anticlock-
wise momentum, respectively (and thus leads to a ther-
modynamic state with a persistent current), provided that
the phase-breaking length L, is not too short compared
toL.

(b) We postpone the discussion of order-of-magnitude
estimates for the persistent current to a separate paper?
dealing with the experimentally more relevant multichan-
nel systems. However, one may note that for a one-
dimensional metal loop whose perimeter is 1 um the max-
imal zero-temperature persistent current is of the order of
a few tenths of £A in the weak-scattering regime.

(c) We have shown that upon averaging over isolated
one-dimensional rings with random numbers of particles
we may obtain period halving of I(¢). It remains an
open question whether a multichannel ring acts
effectively as an ensemble of one-dimensional rings, thus
self-averages I (¢) yielding period halving.

(d) When the electron does not travel in a magnetic-
flux-free space, one may obtain additional effects due to
the spin of the electron. The Hamiltonian then contains
an additional term E = —o,uyzH, where pup is the Bohr
magneton and o, assumes the values 1. In order to be
able to observe the oscillating nature of the persistent
current with @, we should require that the change in E,
when the flux is varied by ¢, be smaller than the energy
oscillations in the absence of E. The latter are of the or-
der of the level spacing (in the weak-scattering limit).
This condition is satisfied for a circular ring of circumfer-
ence L ~107* cm. A more detailed discussion is required
for the multichannel case.
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APPENDIX: TEMPERATURE EXPANSION
FOR THE PERSISTENT CURRENT

Temperature expansions for the persistent current are
derived within the free-electron model and a general
band-structure model of metals.

Generalizing Eq. (2.10), we write the persistent current
as

€ Un
I=——3F (A1)
L~ eB(E,, © +1
where v, and E, are functions of the wave vector k,, see,
e.g., Eq. (2.2) for the free-electron model. We replace
>, f(n)by fz,, f(x)8(x —n)dx, and substitute

. d
&(x —n)=fexp[zq(x ’"”)]?3._ .

We first perform the sum over n, which yields
>, expl —ign)=3,2w8(q —2Ilm), and then the integral
over g. The result is the Poisson summation formula,

S fi= 3 [ flx)em™ax .
n=—ow l=—0w — %

Next we make the substitution kK =(27/L)(x +¢ /d,) to
obtain

(A2)
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This formula is now discussed for the free-electron model
(2.1) and a general band-structure model.
For free electrons, Eq. (A4) becomes

ekBT
mh

: 71172
_i2[”¢/¢0f°° yelly(ZT/TJ
e

- 0C

. (AS)
et 41

dy ,

with the reduced chemical potential a=—pBu and the
characteristic temperature kz T =#%/mL>.

(i) Insulators, a >>1. In this case, the Fermi distribu-
tion function can be expanded
[expla+y?)+1]-1= 3 (—1yr+le—nla+r® (A6)

n=1

where the first term is equivalent to taking the Boltzmann
distribution. We now perform the resulting Gaussian in-
tegrals in (A5) to obtain

172

2 & elkpT | 2T I’T
I= (—1)'—r— — exp | —na— ——
1§1n§1 nfi |\ ngT P nT
X sin 2;_7(?, (A7)
(4]

Equation (2.15) is the n =1 term of this expression. The
first term (n =1, ] =1) is the leading term of the double
sum when

2V2exp [a——= | >>1>>2exp — (A8)

(ii) Semiconductors and metals. In this case, (A5) can
be evaluated by contour integration in the complex y
plane. For [ =0, the integral vanishes. For [ >0, the
path can be closed in the upper y plane. The poles in the
upper y plane are located at

L 2 2_211/2}1/2
y—i‘/i{ a+[a”+(2n —1)"7°]' /%)

I= 3 1), (A3) i 2 2_211/271/2
1= +‘—/=2-§a+[a +(2n —1)}7?]/2312 (A9)
where .
. AL with n=1,2,3,.... For [ <0, one observes
I,(I):—e_'umﬁ/% * _mf__‘;mflﬁ)e ] dk _ (A4) 11(—.l)=[11(1)]', the resulting expression for the current
—w e Kyl 27 (A3)is
|
© o 4ekpT T 172
I=3% 3 cos |l | = {—(:z~{»[czz2-+-(2n—1)21r2]”2}”2
Ziici T
T | 2
xexp | —I | = | (a+[a®+(2n —1272]'2}172 [sin | 2TE (A10)
T do
The first term (n =1, ] =1) is the leading term of the double sum when
T 172
exp | — [—Tj [a+(@*+97)12]' 2 | cexp | — | = | [a+(a®+72)?)2 | «1 . (A11)

From formula (A 10) one obtains the persistent current in two limits.

(a) Small chemical potential. Setting a =0 in (A 10), we get
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(2n — V)7l*T
T

cos exp

Equation (2.13) is the (n =1) term of this expression.
The (I =1, n =1) term is the leading term of the double
sum when V'T 2 (T /7)!/2.

(b) Metals. For metals, o is large and negative. Ex-
panding the arguments of the cosine and exponential in
(A10) to leading order in (—a ™ 1), we obtain

2 = 4ekgT [1(2n —1)T
I= cos(lkzL)exp | - ———
1§1 n§1 #i F P T*
wsin | 279 | | (A13)
bo
with the characteristic temperature 7*,
~ 12
2ukgT A
ks T*= | =— =27 (A14)

(2n —D7lT
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2l

(A12)
o
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! sin

whose value is determined by the spacing of the energy
levels at the Fermi surface A=27n#v; /L. Performing the
sum over n yields Eq. (2.11).

The formulas (A13) and (2.11) for the persistent
current in metal rings are valid for a general band for
metals. Returning to Eq. (A4), assuming that the two en-
ergy branches near the Fermi surface can be approximat-
ed by the linearized dispersion law

E(k)=‘uiﬁvp(k ?kp) s

T

(A15)

and performing a contour integration, similar to the one
leading to Eq. (A10), for the poles at

k =%k
F+ ﬁv;

, n=1,2,3,... (A16)

one obtains again the current (A13) with T* defined by
kpT*=A/27% of (A14).
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